Quercetin Derivatives as Novel Antihypertensive Agents:

Synthesis and Physiological Characterization

Fedora Grandea,†, Ortensia I. Parisi a,b,†, Roberta A. Mordoccoa, Carmine Roccac, Francesco Puocia,∗, Luca Scrivano a, Anna M. Quintieric, Patrizia Cantafioc, Salvatore Ferlad, Andrea Brancaled, Carmela Saturninoc, Maria C. Cerrac,∗, Maria S. Sinicropia,Ψ, Tommaso Angelone c,Ψ

a Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy;
b Department of Informatics, Modeling, Electronics and Systems Engineering, University of Calabria, 87036 Arcavacata di Rende (CS), Italy;
c Department of Biology, Ecology and E.S., University of Calabria, 87036 Arcavacata di Rende (CS), Italy;
d School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Wales, UK;
e Department of Pharmaceutical and Biomedical Sciences, University of Salerno, 84084 Fisciano (SA), Italy.

*To receive all correspondence:

Prof. Francesco Puoci Email: francesco.puoci@unical.it; Tel.: +39 0984 493151; Fax: +39 0984 493298.

Prof. Maria C. Cerra Email: maria_carmela.cerra@unical.it; Tel: +39 0984 492907; Fax: +39 0984 92906.

Ψ Co-senior authors.

† Fedora Grande and Ortensia Ilaria Parisi have contributed equally to the manuscript.
Abstract

The antihypertensive flavonol Quercetin (Q1) is endowed with a cardioprotective effect against myocardial ischemic damage. Q1 inhibits angiotensin converting enzyme activity, improves vascular relaxation, and decreases oxidative stress and gene expression. However, the clinical application of this flavonol is limited by its poor bioavailability and low stability in aqueous medium.

In the aim to overcome these drawbacks and preserve the cardioprotective effects of Quercetin, the present study reports on the preparation of five different Q1 analogues, in which all OH groups were replaced by hydrophobic functional moieties.

Q1 derivatives have been synthesized by optimizing previously reported procedures and analyzed by spectroscopic analysis. The cardiovascular properties of the obtained compounds were also investigated in order to evaluate whether chemical modification affects their biological efficacy. The interaction with β-adrenergic receptors was evaluated by Molecular Docking and the cardiovascular efficacy was investigated on the ex vivo Langendorff perfused rat heart. Furthermore, the bioavailability and the antihypertensive properties of the most active derivative were evaluated by in vitro studies and in vivo administration (1 month) on spontaneously hypertensive rats (SHR), respectively.

Among all studied Q1 derivatives, only the ethyl derivative reduced left ventricular pressure (at 10^{-8} M÷10^{-6} M doses) and improved relaxation and coronary dilation. NOSs inhibition by L-NAME abolished inotropism, lusitropism and coronary effects. Chronic administration of high doses of this compound on SHR reduced systolic and diastolic pressure. Differently, the acetyl derivative induced negative inotropism and lusitropism (at 10^{-10} M and 10^{-8}÷10^{-6} M doses), without affecting coronary pressure. Accordingly, docking studies suggested that these compounds bind both β1/β2-adrenergic receptors.
Taking into consideration all the obtained results, the replacement of OH with ethyl groups seems to improve Q1 bioavailability and stability; therefore, the ethyl derivative could represent a good candidate for clinical use in hypertension.

Keywords: Quercetin, Heart, Hypertension, Nitric Oxide.
1. Introduction

Quercetin (Q1) is the major representative of flavonols, a subclass of flavonoids (Fig. 1). This compound is often present in glycosylated form, the associated sugar moiety is usually glucose and, although glycosylation can occur at any of the five hydroxyl groups, the most common Quercetin glycoside presents the sugar moiety appended at position 3 (isoquercetin).

The major sources of Q1 are fruits such as apples, citrus, berries and cherries, vegetables such as onions and broccoli, and beverages such as red wine and tea (Kaur and Kapoor, 2001). It has been also found in several medical plants, such as Ginkgo Biloba, Aesculus Hippocastanum and Hypericum Perforatum (Sharma and Gupta, 2010). The interest towards this flavonol is due to its wide range of bioactivity. Q1 shows not only antioxidant properties like all the flavonoids (Hayek et al., 1997) but also anti-inflammatory (Ferry et al., 1996), antiviral, antibacterial, anticarcinogenic (Deschner et al., 1991; Pereira et al., 1996; Verma et al., 1988), liver-protecting, cardiovascular (Angelone et al., 2011; Vizcaino et al., 2002) and anti-platelet effects (Pignatelli et al., 2000).

The mechanisms by which Quercetin exerts these effects are not completely understood, but it is plausible that different biochemical processes are involved. For example, the antioxidant properties seem to be due to the ability of Q1 to act as a scavenger of free radicals and bind transition metals. This capability makes Q1 able to inhibit lipid peroxidation and protect cell membranes and nucleic acids from the free radical-mediated molecular damages.

Several recent studies focused on the Q1 cardiovascular protective effects. In particular, the antihypertensive effect of such a flavonol has been extensively studied. This compound resulted able to decrease oxidative stress, inhibit angiotensin converting enzyme activity, improve endothelium vascular relaxation, and modulate cell signaling and gene expression (Angelone et al., 2011; Larson et al., 2010; Pignatelli et al., 2000).
However, the clinical application of Q1 is limited by its poor bioavailability and low stability in aqueous medium, due in particular to the two phenolic hydroxyl groups at position 3 and 7.

During the last years, several studies have been carried out to enhance the pharmacokinetic properties and chemical stability of Q1 and numerous derivatives, showing different biological properties, have been identified (Kim et al., 2010).

Based on the results obtained in our previous study, which demonstrated that Quercetin is able to induce biphasic inotropic and lusitropic effects, herein we describe the preparation of five different Q1 derivatives in which OH groups have been replaced with hydrophobic functional groups in the aim to enhance the lipophilic character of this compound and, thus, improve its bioavailability.

All the synthesized molecules have been subjected to in vitro tests to estimate their bioavailability and in vivo assays to evaluate the cardiovascular effects.

2. Materials and methods

2.1. Chemistry

2.1.1. General Chemical Information

Melting points were determined using a Veego make silicon oil bath-type melting point apparatus and are uncorrected. Purity of the compounds and completion of reactions were monitored by thin layer chromatography (TLC) on silica gel plates (60 F254; Merck), visualizing with ultraviolet light or iodine vapors. The IR spectra were recorded using KBr disc method on a Shimadzu FT-IR, Model 8300. The 1H-NMR spectra (on a Bruker 300/400 MHz spectrometer) were recorded in DMSO. Chemical shifts were reported as part per million (δ ppm) using tetramethylsilane (TMS) as an internal standard. The assignment of exchangeable protons was confirmed by the D2O exchange studies wherever required. Mass spectral data was obtained on a QTRAP Applied Biosystem SCIEX spectrometer or on JEOL-SX-102 instrument (JEOL, Tokyo, Japan) by fast atom
bombardment (FAB positive mode). Spectral data (IR and NMR) confirmed the structures of the synthesized compounds and the purity was ascertained by microanalysis.

2.1.2. 2-(3,4-diacetoxyphenyl)-4-oxo-4H-chromene-3,5,7-triyl triacetate (Q2)

This compound was synthesized following experimental conditions previously described (Picq et al., 1982).

The crude resulting was purified by column chromatography (chloroform/ethyl acetate, 9:1 as solvent). The product was isolated as a white solid, 35% yield. Mp 190°C (chloroform/ethyl acetate). 1H-NMR (CDCl$_3$) δ: 7.54-7.50 (m, 2H), 7.31-7.02 (m, 2H), 6.56 (d, 1H, $J = 2.1$ Hz), 2.42-2.15 (m, 15H). 13C-NMR (CDCl$_3$) δ: 169.25, 167.81, 167.74, 156.85, 154.25, 150.41, 144.37, 142.19, 127.77, 126.42, 123.92, 123.84, 113.88, 108.96, 21.17, 21.02, 20.65, 20.50. IR ν_{max}: 1775, 1645, 1178, 1149, 1127, 1107, 1074, 1021, 899 cm$^{-1}$.

2.1.3. 2-(2,2-diphenylbenzo[d][1,3]dioxol-5-yl)-3,5,7-trihydroxy-4H-chromen-4-one (Q3)

This compound was prepared according to an experimental procedure previously described (Lu et al., 2014).

The crude resulting oil was purified by column chromatography (petroleum ether/ethyl acetate, 4:1 as solvent). The product was isolated as a yellow solid, 7% yield. Mp 217°C (petroleum ether/ethyl acetate). 1H-NMR (d_6-Acetone) δ: 12.0 (s br, 3H, OH); 7.76 (m, 2H); 7.50 (m, 3H); 7.38-7.23 (m, 6H); 7.09-6.98 (m, 1H); 6.42 (d, 1H); 6.15 (d, 1H). 13C-NMR (CDCl$_3$) δ: 175.13, 162.26, 161.13, 156.2, 148.89, 147.60, 139.76, 135.68, 129.33, 128.48, 127.51, 126.25, 125.40, 124.53, 122.95, 108.67, 107.90, 103.82, 98.84, 94.11. IR ν_{max}: 2800, 1598, 1493, 1260, 1241, 1213, 1187, 1043, 1018, 697 cm$^{-1}$.

2.1.4. 2-(2,2-diphenylbenzo[d][1,3]dioxol-5-yl)-4-oxo-4H-chromene-3,5,7-triyl triacetate (Q4)

This compound was synthesized following experimental conditions previously described (Kim et al., 2010).

The product was isolated as a white solid, 32 % yield. Mp 193°C (chloroform/ethyl acetate). 1H-NMR (d6-Acetone) δ: 7.53-7.31 (m, 5H, Ar); 7.39-7.29 (m, 5H, Ar); 7.07 (m, 3H); 6.88 (m, 2H); 2.22 (m, 9H). 13C-NMR (CDCl$_3$) δ: 170.09, 169.30, 167.84, 156.81, 155.24, 154.05, 150.33, 149.80, 147.68, 139.53, 129.42, 128.43, 128.41, 128.40, 128.38, 128.36, 128.35, 128.33, 128.26, 126.26, 126.25, 126.23, 126.21, 126.18, 123.53, 123.04, 114.69, 113.65, 108.87, 108.74, 108.28, 21.18, 21.05, 20.66. IR ν_{max}: 1777, 1626, 1496, 1259, 1176, 1138, 1043, 1019, 754 cm$^{-1}$.

2.1.5. 2-(3,4-diethoxyphenyl)-3,5,7-triethoxy-4H-chromen-4-one (Q5)

This compound was prepared according to an experimental procedure previously described (Picq et al., 1982).

The product was isolated as a yellow solid, 20% yield. Mp 123°C (n-hexane – chloroform/ethyl acetate). 1H-NMR (CDCl$_3$) δ: 7.78-7.58 (m, 2H, Ar); 7.03-6.83 (m,2H, Ar); 6.34 (m, 1H); 4.28-3.86 (m, 10H); 1.92-1.09 (m, 12H), 0.89-0.75 (m, 3H). 13C-NMR (CDCl$_3$) δ: 178.90, 164.74, 161.97, 156.73, 151.07, 148.09, 137.85, 122.98, 122.10, 113.57, 112.17, 111.05, 98.09, 92.56, 68.56, 68.03, 64.42, 64.17, 29.68, 15.70, 15.62, 14.80, 14.69, 14.56. IR ν_{max}: 1599, 1474, 1393, 1267, 1214, 1172, 749 cm$^{-1}$.

2.1.6. 3,5,7-tris(benzyloxy)-2-(3,4-bis(benzyloxy)phenyl)-4H-chromen-4-one (Q6)

This compound was prepared according to an experimental procedure previously described (Bouktaib et al., 2002).
The product was isolated as a yellow solid, 15% yield. Mp 121°C (dichloromethane). 1H-NMR (CDCl$_3$) δ: 7.68-7.50 (m, 4H), 7.40-7.08 (m, 23 H); 6.9-6.79 (m, 1H); 6.45-6.28 (m, 2H); 5.19-4.89 (m, 10H). 13C-NMR (CDCl$_3$) δ: 178.82, 164.44, 162.02, 156.66, 156.30, 147.81, 145.56, 137.60, 137.44, 136.88, 136.63, 136.42, 135.78, 135.64, 128.84, 128.78, 128.73, 128.67, 128.60, 128.49, 128.33, 128.27, 128.18, 128.01, 127.86, 127.45, 127.33, 127.16, 123.95, 123.43, 122.59, 121.88, 115.26, 114.86, 113.62, 111.53, 106.20, 98.64, 92.98, 74.34, 74.22, 71.11, 70.84, 70.41. IR ν_{\max}: 1586, 1255, 1194, 1166, 1123, 1001, 815 cm$^{-1}$.

2.2. Molecular modelling and docking simulations

The molecular modelling simulations were performed on an Apple Mac pro 2.66 GHz Quad-Core Intel Xeon, Running Ubuntu 12.04. Different crystal structures of human β_2-adrenergic receptors were examined in order to identify the putative binding site. The β_2-adrenergic receptor bound to the partial agonist carazol (PDB ID: 2RH1) was chosen for our docking studies (Cherezov et al., 2007).

No human crystal structure of the β_1-adrenergic receptor is available, so the *meleagris gallopavo* β_1 receptor co-crystallised with the partial agonist cyanopindolol has been used (PDB ID: 4BVN) (Miller-Gallacher et al., 2014). Due to the high identity with the human β_1-adrenergic receptor (75% identity) and the conserved amino acids residues of the binding site, no homology model preparation was required and the crystal structure was used for the docking studies.

Docking studies were performed using Glide docking as part of Maestro package (Glide, Maestro version 9.5.014, Schrödinger, Inc., New York, NY). The two co-crystallised molecules were selected as center of the binding site and, then, the selection was extended to the near amino acids building a 12 Å grid. A ligands database in Maestro format, prepared using the LigPrep function, was used as input for the docking calculation. Ligand docking was performed using Glide SP (standard
precision) setting the default values, and no water molecules were considered. The output solutions were visual inspected in MOE to identify the interaction between ligand and protein (Molecular Operating Environment, http://www.chemcomp.com/MOE-Molecular_Operating_Environment.htm, accessed Aug 20, 2014).

2.3. Bioavailability studies

2.3.1. General bioavailability methods

Hydrochloric acid, pepsin from porcine gastric mucosa, esterase from porcine liver, α-amylase from porcine pancreas, pancreatin from porcine pancreas, sodium cholate, sodium dihydrogen phosphate, disodium hydrogen phosphate and sodium hydrogen carbonate were purchased by Sigma-Aldrich (Sigma Chemical Co., St Louis, MO, USA). All solvents were reagent-grade or HPLC-grade and provided by Carlo Erba Reagents (Milano, Italia). Dialysis tubes were provided by Spectrum Laboratories Inc., MWCO: 12-14,000 Dalton, U.S.A. Absorption spectra were recorded with a Jasco V-530 UV/Vis spectrometer.

2.3.2. In vitro bioavailability studies

In vitro bioavailability studies were carried out in simulated gastric and intestinal fluids through a slight modified dialysis tubing procedure (Chimento et al., 2013). The dialysis tubing method is based on two enzymatic phases: pepsin digestion, which occurs in the first two hours, and pancreatin digestion, in the following four hours. The two phases are described below.

Pepsin Digestion. 300μL of a Q5 solution (1.0 mM in DMSO) were mixed with 1.0 mL of a 0.85 N HCl solution containing 24000 U of porcine pepsin per mL and 3.0 mL of a sodium cholate solution (2% w/v in distilled water). The obtained mixture was introduced into a dialysis bag, which was sealed on each end with clamps and immersed in a flask containing 10 mL of a 0.85 N HCl solution
(pH 1.0). The flask was then incubated for 2 h into a shaking water bath at 37 ± 0.5°C, simulating the human physiological conditions of temperature.

Pancreatin Digestion. At the end of the 2 h pepsin digestion, the dialysis bag was recovered and carefully opened. 11 mg of amylase, 11 mg of esterase and 1.3 mL of a 0.8 M NaHCO$_3$ solution containing 22.60 mg porcine pancreatin/mL were added to the peptic digesta. After the digesta and enzymes solution were mixed, the dialysis bag was sealed again and placed into a flask with 10 mL of a phosphate buffer solution at pH 7.0. The flask was incubated into the shaking water bath at 37 ± 0.5°C for further 4 h.

In order to evaluate the *in vitro* bioavailability of the sample, 3 mL of the medium were withdrawn from the flask at the time points of two and six hours, after pepsin and pancreatin digestions, respectively. The concentrations of the samples were determined by UV/Vis spectroscopy and calculated by using the equations obtained from the calibration curves of Q5 standard solutions at pH 1.0 and 7.0, respectively. For this purpose, all the prepared standard solutions were analysed by UV-Vis spectrophotometer and the correlation coefficient (R^2) and slope of the regression equations obtained by the method of least square were calculated at pH 1.0 and 7.0, respectively.

The same procedure was applied to evaluate the bioavailability of Q1, used as control for data confrontation.

Each experiment was repeated three times.

2.4. In vivo studies

2.4.1. Animals

Animal care, sacrifice and experiments were in accordance with the Italian law (D.L. 26/2014), the Guide for Care and Use of Laboratory Animals published by the US National Institutes of Health.
2.4.2. *Perfusion technique*

The performance of the rat heart was evaluated according to the Langendorff technique. Rats were anesthetized with ethyl carbamate (2 g/kg rat, i.p.). Hearts were rapidly excised and transferred in ice-cold buffered Krebs-Henseleit solution (KHS). Aorta was immediately cannulated with a glass cannula and connected with the Langendorff apparatus to start perfusion at a constant flow-rate of 12 ml/min. in order to avoid fluid accumulation, the apex of the left ventricle (LV) was pierced. A water-filled latex balloon, connected to a BLPR gauge (WRI, Inc. USA), was inserted through the mitral valve into the LV to allow isovolumic contractions and to continuously record mechanical parameters. The balloon was progressively filled with water up to 80 μl to obtain an initial left ventricular end diastolic pressure of 5–8 mmHg. Coronary pressure was recorded using another pressure transducer located just above the aorta.

Left ventricular pressure (LVP) was measured by means of a latex water-filled balloon inserted into the left ventricle via the left atrium [adjusted to obtain left ventricular end-diastolic pressure (LVEDP) of 5–7 mmHg] and connected to a pressure transducer (BLPR gauge;WRI, USA). The maximal values of the first derivative of LVP, \([+\text{(LVdP/dt)}_{\text{max}}, \text{mmHg/s}]\), which indicates the maximal rate of left ventricular contraction, the maximal rate of left ventricular pressure decline of LVP \([\text{(LVdP/dt)}_{\text{min}}, \text{mmHg/s}]]\), the rate pressure product (RPP: HR \times LVP, in \(10^4\text{mmHg·beats/min}\)), used as an index of cardiac work, and LVEDP were used to assess cardiac function. Mean coronary pressure (CP, mmHg) was calculated as the average of values obtained during several cardiac cycles.
The perfusion solution consisted of a modified non recirculating KHzs containing 113 mM NaCl, 4.7 mM KCl, 25 mM NaHCO₃, 1.2 mM MgSO₄, 1.8 mM CaCl₂, 1.2 mM KH₂PO₄, 11 mM glucose, 1.1 mM mannitol, 5 mM Na-pyruvate. pH was adjusted to 7.4 with NaOH (1 M) and the solution was equilibrated at 37 °C by 95% O₂–5% CO₂. All drug-containing solutions were freshly prepared before the experiments.

Statistics. Statistical analysis was performed by one-way ANOVA and Newman-Keuls Multiple Comparison Test, when appropriate. Differences were considered statistically significant at p<0.05. GraphPad Prism software, version 5 (GraphPad Software, San Diego, CA) will be used for all the statistical analysis.

2.4.3. Drugs-stimulated preparations

For each drug, preliminary experiments (data not shown) obtained by the repetitive exposure of each heart to one concentration of the single drug (10⁻⁸ M) revealed the absence of desensitization. Thus, concentration-response curves were generated by perfusing each cardiac preparation with KHzs enriched with increasing concentrations of either Q₂, or Q₃, or Q₄, or Q₅, or Q₆, or Q₁ (from 10⁻¹⁰ M to 10⁻⁶ M) for 10 min.

3. Results and discussion

3.1. Chemical

The preparation of five Q₁ derivatives, in which all the OH groups have been substituted with different hydrophobic functional groups, has been performed optimizing previously reported procedures as depicted in the Scheme 1 (Bouktaib et al., 2001; Kim et al., 2010; Lu et al., 2014; Picq et al., 1982).
3.2. Molecular docking studies

A series of molecular docking studies were performed to investigate the putative binding mode of the reported compounds on both β1 and β2 receptors. Quercetin (Q1) seems able to bind both receptors (Fig.2). In the β2-receptor Q1 forms two H-bonds with Asp113, while in the β1 it establishes three different H-bonds (Asn129, Tyr207, Asn319). The possibility to bind both receptors could lead to β1/β2-adrenergic biological effects caused by Quercetin.

Interestingly, compounds Q4 and Q6 could not be docked in any of the receptors, probably because of their rigidity and steric hindrance. This observation could possibly explain the total absence of activity for Q6 and the very small activity for Q4. Compound Q2 gave good docking results only for the β2-receptor (Fig.3 (A)) interacting with Tyr199 and occupying the active site as Q1. Once again, we could not generate any useful docking result from the β1-receptor. Q3 and Q5 docks well with both receptors. Q3 forms H-bonds with Asp121 and Ser211 in the β1 and with Asp113 and Ser203 in the β2 (Fig.3 (B,C)). Q5 does not seem to establish any specific hydrogen bond but it occupies extensively the active site (Fig.3 (D,E)).

From these studies, we can say that Q1 and the other most active compounds Q2, Q3 and Q5, could potentially interact with the β-adrenergic receptors. Due to the similar active site geometry (Fig.3 (F)) between the two types of β-receptors, it is likely that the reported compounds can easily bind both targets balancing the different biological effects linked with the specific β-adrenergic receptors.

3.3. Ex vivo studies

3.3.1. Basal conditions
After 20 minutes of stabilization, the following basal recordings were measured: LVP = 85±1.7 mmHg, heart rate (HR) = 276±7.3 beats/min, RPP = 3.3±0.12 10^4 mmHg beats/min, CP = 66±1.7 mmHg, +(LVdP/dT) max = 2768±82.1 (mmHg/sec) and-(LVdP/dT) max = 1547±28.7 (mmHg/sec). Endurance and stability of the preparation, analyzed by measuring performance variables every 10 min, showed that the heart preparation is stable for up to 180 min on the perfusion apparatus.

3.3.2. Dose-response curves of Q1-Q6

The biological efficacy of Q1 and its modified derivatives was evaluated by analyzing the hemodynamic performance of the rat heart ex vivo perfused according to Langendorff. We found that application of Q1 from 10^{-10} M to 10^{-6} M resulted in positive inotropic and lusitropic effects at low concentrations (10^{-10} to 10^{-8} M) and in negative inotropic and lusitropic effects at higher concentrations (10^{-7} and 10^{-6} M). Q1 induced vasodilation at low concentration (10^{-10} to 10^{-8} M) while it did not modify HR (data not shown). These effects are similar to those previously published by Angelone et al. (2011). Q2 determined a significant negative inotropic effect revealed by the reduction of LVP, LVdP/dt max and RPP, and a negative lusitropic effect revealed by the reduction of LVdP/dt min. Q2 did not significantly affect HR, while it induced vasoconstriction at all concentrations tested (Fig.4). Contrarily, Q3 was unable to affect the rat cardiac performance, except for a small vasoconstriction detected at high concentration (10^{-7} M) (Fig. 5). Q4 exposure induced a decrease in LVP and LVdP/dt max at 10^{-6} M, while it unchanged the other cardiac parameters (Fig.6). Notably, Q5 induced a dose-dependent significant negative inotropic effect revealed by the reduction of LVP, LVdP/dt max and RPP, and a negative lusitropic effect revealed by the reduction of LVdP/dt min (Fig. 4). Q5 did not change HR, but it determined a significant reduction of the coronary pressure at high concentrations (from 10^{-8} M to 10^{-6} M) (Fig. 7). Q6 did not affect the cardiac performance (Fig. 8).
3.4. Cellular mechanism of action of Q5

In the present study, we analysed the transduction pathway activated by Q5 since, contrary to all others quercetin derivatives here tested, it induces a coronary vasodilation which is significant at high doses. This coronary effect is similar to that elicited by quercetin on the ex vivo rat heart, already shown by Angelone et al. (2011), and resembles the coronary activity of flavonols (Duarte 1993 and 2001). It has been reported in the mammalian heart, that β1- and β2-adrenoceptors represent the main intermediaries of the cardiac response to adrenergic stimulation, each of them modulates different signal pathways resulting in different outcomes on cardiac function. β1-adreceptor, the most abundant subtype in mammalian heart (Brodde et al., 2006), induces the activation of the stimulatory G protein (Gs)/adenylyl cyclase (AC)/cAMP/cAMP-dependent protein kinase A (PKA) pathway (Woo and Xiao, 2002), while β2-adrenoceptor has been shown to regulate an alternative signaling through the activation of inhibitory G proteins (Gai) (Woo and Xiao, 2002). The main signal pathway regulated by β2-adrenoceptors through Gai is the phosphatidylinositol-3 kinase (PI3K) signaling cascade and the activation of the Nitric Oxide pathway (Conti et al., 2013). Our docking studies indicated that Q5 binds both β1- and β2-adrenergic receptors. However, since Q5 determined negative inotropism, lusitropism and vasodilation, we suggest that it mainly interacts with β2 adrenergic receptor. In order to explore the intracellular β2-dependent mechanism of action by which Q5 determines negative inotropism and lusitropism and vasodilation, hearts were treated with the NOSs inhibitor L-NAME in the presence of Q5 (Fig. 9). Results indicated that L-NAME abolished Q5-dependent cardiac effects suggesting the obligatory role of NO in mediating the intracellular signaling activated by this derivative.

3.5. In vitro bioavailability studies
Most of the natural compounds suffer of low *in vivo* bioavailability. Possible reasons for a reduced bioavailability are low intrinsic activity, low degree of absorption, high metabolization rate, poor activity of metabolites and/or rapid elimination (Bhattaram et al., 2002). Despite its strong activity, several studies in the past decades related the low bioavailability of Q1 to poor absorption and rapid metabolism (Cai et al., 2013).

In the attempt to improve Q1 bioavailability, several molecular modifications could be introduced. Considering the hydrophilic/hydrophobic ratio of the molecule, most of the hydrophilic character of Q1 is provided by –OH groups. In order to improve its hydrophobicity, as well as its capability to cross biological membranes, the modification of these groups in more hydrophobic ones is an interesting strategy. Indeed, the ethylation of hydroxyl groups (Q5) resulted in a more hydrophobic molecule than Q1 (see Table 1 with clogP). Interestingly, the other substitutions that increased significantly the hydrophobicity of the analogues (Q3, Q4 and Q6), not only might lead to very poorly soluble compounds (cLogP >5), but they could also be rapidly hydrolysed in vivo.

Table 1.

<table>
<thead>
<tr>
<th>Quercetin derivative</th>
<th>Weight</th>
<th>logP (o/w)</th>
<th>slogP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1 (Quercetin)</td>
<td>302.238</td>
<td>2.032</td>
<td>2.0109</td>
</tr>
<tr>
<td>Q2</td>
<td>512.423</td>
<td>2.9887</td>
<td>2.8948</td>
</tr>
<tr>
<td>Q3</td>
<td>466.445</td>
<td>6.5850</td>
<td>5.5837</td>
</tr>
<tr>
<td>Q4</td>
<td>592.566</td>
<td>7.3080</td>
<td>6.0282</td>
</tr>
<tr>
<td>Q5</td>
<td>442.508</td>
<td>4.8087</td>
<td>5.2618</td>
</tr>
<tr>
<td>Q6</td>
<td>752.863</td>
<td>12.0437</td>
<td>12.4953</td>
</tr>
</tbody>
</table>

For this reason, Q5 derivative was selected for the evaluation of the *in vitro* bioavailability, according to the dialysis tubing procedure, a fast, reliable and low cost method, which allows to
evaluate the bioavailability of different kinds of compounds. The test was conducted on Q1 as well, used as control to compare bioavailability data.

Bioavailability is defined as the percentage of the tested molecule recovered in the bioaccessible fraction, after in vitro digestion, in relation to the original non-digested sample and it can be calculated by the following Equation (1):

\[
\text{Bioavailability} (\%) = \frac{\text{Bioaccessible content}}{\text{Total content}} \times 100 \quad (1)
\]

The in vitro evaluation of the bioavailability of Q5 has shown an enhanced bioaccessibility since the first two hours (the obtained results were reported in Table 2), reaching almost 19% at the end of the experiment. On the other hand, according to our procedure, the bioavailability of unmodified quercetin (Q1) showed a total percentage slightly under 11%. This result suggests that improving lipophilicity by ethylation is important in increasing the amount of Q1 that could potentially reach the bloodstream.

Table 2.

In vitro bioavailability (%) of Q5 and Q1 after pepsin (2 h) and pancreatin (4 h) digestions.

<table>
<thead>
<tr>
<th>Time point</th>
<th>Q5 bioavailability (%)</th>
<th>Q1 bioavailability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pepsin digestion (2 h)</td>
<td>8.5 ± 0.7</td>
<td>4.4 ± 0.9</td>
</tr>
<tr>
<td>Pancreatin digestion (4 h)</td>
<td>10.3 ± 0.8</td>
<td>6.3 ± 0.8</td>
</tr>
<tr>
<td>Total in vitro bioavailability (6 h)</td>
<td>18.8 ± 1.2</td>
<td>10.7 ± 1.3</td>
</tr>
</tbody>
</table>
Previous studies reported data about \textit{in vivo} bioavailability of \textbf{Q1}. Reinboth et al. (2010) reported a 4\% absolute bioavailability of \textbf{Q1} in dogs, while the bioavailability of unchanged \textbf{Q1} in pigs is 0.54\% (Ader et al., 2000). Also oral bioavailability evaluation in human volunteers has been conducted in the past, showing that less than 2\% of orally administered \textbf{Q1} can be found in bloodstream (Gugler et al., 1975). Compared to these results, \textbf{Q5} displays a greatly improved bioavailability.

3.6. \textit{In vivo} studies

Due to coronary dilation, the negative inotropism and lusitropism induced by \textbf{Q5}, this quercetin derivative (10nM) was administrated to the rat for 1 month in the drinking water in order to analyse its anti-hypertensive properties. For this purpose, the Spontaneous Hypertensive Rat (SHR) were used as models of human hypertensive condition, and Wistar Kyoto rats as normotensive control (n=6 for each groups) (Harlan, Italy). Tail cuff method was used for weekly measures of systolic and diastolic blood pressure (BP). Tail cuff was connected to a pneumatic pulse transducer and a programmed electro-sphygmanometer (BP-2000 series II; blood pressure analysis system, Visitech System). Blood pressures measured are reported in Table 3.

\textbf{Table 3}

Systolic and diastolic BP values measured in WKY and SHR before and after \textbf{Q5} administration.

Significance of difference was evaluated by t-test;*=p<0.05.

<table>
<thead>
<tr>
<th></th>
<th>Systolic BP (mmHg)</th>
<th>Diastolic BP (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before Q5</td>
<td>After Q5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WKY</td>
<td>SHR</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Syst</td>
<td>120 ± 2.3</td>
<td>197 ± 6.6</td>
</tr>
<tr>
<td>Diast</td>
<td>119 ± 2.5</td>
<td>145 ± 7.0*</td>
</tr>
<tr>
<td></td>
<td>83 ± 3.9</td>
<td>132 ± 6.3</td>
</tr>
<tr>
<td></td>
<td>75 ± 3.3</td>
<td>101 ± 5.9*</td>
</tr>
</tbody>
</table>

These data suggest that the chronic administration of the **Q5** determines a reduction of systolic and diastolic pressure in the presence of hypertension.

4. Conclusion

Poor bioavailability and low stability of Quercetin could be determining factors of its beneficial effects; therefore, in the present research study, a small series (Q2-Q6) of variously substituted Q1 derivatives was synthesized in the aim to overcome these limitations without affecting the cardioprotective properties of this polyphenol.

The best structural combination required for cardiovascular activity seems to be functional substitution of each OH group with an ethyl moiety (Q5 derivative). Accordingly, among all the tested compounds, only this derivative determined a significant reduction of the left ventricular pressure (LVP), from 10^{-8} M to 10^{-6} M. This compound also increased relaxation and coronary dilation, and inotropism, lusitropism and coronary effects were abolished by NOSs inhibition by L-NAME. Furthermore, the chronic administration of higher doses of such a compound on SHR rats determined a significant reduction of systolic and diastolic pressure.

The acetyl derivative Q2 instead, induced a negative inotropism and lusitropism significant at 10^{-10} M and from 10^{-8} to 10^{-6} M, while it did not modify the coronary pressure.

The obtained results suggest that the substitution of all OH groups present in Q1 molecule with ethyl groups improves the bioavailability and stability of this flavonol. Moreover, the synthesized ethyl derivative Q5 has been shown good antihypertensive properties; therefore, it could represent a
good candidate for clinical use in the presence of hypertension and, thus, warrant further preclinical and mechanistic investigation.

Acknowledgements

This research work is financially supported under research project PON – SPREAD BIO OIL grant no. PON01_00293.

We also acknowledge the support of the Life Science Research Network Wales (Platform Grant), an initiative funded through the Welsh Government’s Ser Cymru program.
References

Miller-Gallacher, J.L., Nehmé, R., Warne, T., Edwards, P.C., Schertler, G.F.X., Leslie, A.G.W., Tate, C.G., 2014. The 2.1 Å resolution structure of cyanopindolol-bound β_{1}-adrenoceptor identifies an intramembrane Na\(^{+}\) ion that stabilises the ligand-free receptor. Plos One 9, e92727.

Figure Captions

Fig. 1. Chemical Structure of Quercetin.

Fig. 2. Q1 docked in the β1 (purple) and β2-adrenergic (blue) receptors.

Fig. 3. Q2 docked in the β2-adrenergic receptor (A). Q3 docked in the β1- (B) and β2-adrenergic (C) receptors. Q5 docked in the β1- (D) and β2-adrenergic (E) receptors. Superposition of the β2 (blue) and β1 (purple) active sites (F).

Fig. 4. Dose-dependent response curves of Q2 \((10^{-10} \text{ M} – 10^{-6} \text{ M})\) on LVP, HR, \((LVdP/dT)\)max, \((LVdP/dT)\)min, RPP and CP, on Langendorff perfused rat heart preparations. Percentage changes were evaluated as means ± SEM of 7 experiments. Significance of difference from control values was evaluated by one-way ANOVA; \(P= 0<0.05\).

Fig. 5. Dose-dependent response curves of Q3 \((10^{-10} \text{ M} – 10^{-6} \text{ M})\) on LVP, HR, \((LVdP/dT)\)max, \((LVdP/dT)\)min, RPP and CP, on Langendorff perfused rat heart preparations. Percentage changes were evaluated as means ± SEM of 7 experiments. Significance of difference from control values was evaluated by one-way ANOVA; \(P= 0<0.05\).

Fig. 6. Dose-dependent response curves of Q4 \((10^{-10} \text{ M} – 10^{-6} \text{ M})\) on LVP, HR, \(LVdP/dT\) max, \(LVdP/dT\) min, RPP and CP, on Langendorff perfused rat heart preparations. Percentage changes were evaluated as means ± SEM of 7 experiments. Significance of difference from control values was evaluated by one-way ANOVA; \(P= 0<0.05\).

Fig. 7. Dose-dependent response curves of Q5 \((10^{-10} \text{ M} – 10^{-6} \text{ M})\) on LVP, HR, \(LVdP/dT\) max, \(LVdP/dT\) min, RPP and CP, on Langendorff perfused rat heart preparations. Percentage changes were evaluated as means ± SEM of 7 experiments. Significance of difference from control values was evaluated by one-way ANOVA; \(P= 0<0.05\).

Fig. 8. Dose-dependent response curves of Q6 \((10^{-10} \text{ M} – 10^{-6} \text{ M})\) on LVP, HR, \(LVdP/dT\) max, \(LVdP/dT\) min, RPP and CP, on Langendorff perfused rat heart preparations. Percentage changes
were evaluated as means ± SEM of 7 experiments. Significance of difference from control values was evaluated by one-way ANOVA; \(P = 0.05 \).

Fig. 9. Effects of Q5 (100 nM) before and after treatment with the NOSs inhibitor L-NAME (10 \(\mu \)M) on LVP, LVdP/dT max, LVdP/dT min, and CP, on Langendorff perfused rat heart preparations. Percentage changes were evaluated as means ± SEM of 5 experiments. Significance of difference from control values was evaluated by t-test; \(P = 0.05 \).

Scheme Captions

Scheme 1. Reagents and reaction conditions for Q1 derivatives synthesis.