Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Task complexity and location specific changes of cortical thickness in executive and salience networks after working memory training

Metzler-Baddeley, Claudia, Caeyenberghs, Karen, Foley, Sonya and Jones, Derek K. 2016. Task complexity and location specific changes of cortical thickness in executive and salience networks after working memory training. NeuroImage 130 , pp. 48-62. 10.1016/j.neuroimage.2016.01.007

[img]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview

Abstract

Novel activities and experiences shape the brain's structure and organisation and, hence, our behaviour. However, evidence from structural plasticity studies remains mixed and the neural correlates of learning and practice are still poorly understood. We conducted a robustly designed study into grey matter plasticity following 2 months of working memory training. We generated a priori hypotheses regarding the location of plastic effects across three cognitive control networks (executive, anterior salience and basal ganglia networks), and compared the effects of adaptive training (n = 20) with a well-matched active control group (n = 20) which differed in training complexity and included extensive cognitive assessment before and after the training. Adaptive training relative to control activities resulted in a complex pattern of subtle and localised structural changes: Training was associated with increases in cortical thickness in right-lateralised executive regions, notably the right caudal middle frontal cortex, as well as increases in the volume of the left pallidum. In addition the training group showed reductions of thickness in the right insula, which were correlated with training-induced improvements in backward digit span performance. Unexpectedly, control activities were associated with reductions in thickness in the right pars triangularis. These results suggest that the direction of activity-induced plastic changes depend on the level of training complexity as well as brain location. These observations are consistent with the view that the brain responds dynamically to environmental demands by focusing resources on task relevant networks and eliminating irrelevant processing for the purpose of energy reduction.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Psychology
Subjects: B Philosophy. Psychology. Religion > BF Psychology
Publisher: Elsevier
ISSN: 1053-8119
Date of First Compliant Deposit: 30 March 2016
Date of Acceptance: 5 January 2016
Last Modified: 25 Dec 2017 21:09
URI: http://orca.cf.ac.uk/id/eprint/84411

Citation Data

Cited 18 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics