ELECTROPHYSIOLOGICAL ON AND OFF RESPONSES IN AUTOSOMAL
DOMINANT OPTIC ATROPHY

Enyam Komla A. Mornya; Tom H. Margraina; Alison M. Binnsb; Marcela Votrubaa,c

a- School of Optometry and Vision Sciences, Cardiff University, Cardiff
b- Division of Optometry and Visual Sciences, City University, London
c- Eye Unit, University Hospital of Wales, Cardiff

Corresponding Author: Marcela Votruba, School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK.
Email: votruM@cardiff.ac.uk

ABSTRACT

\textbf{Purpose:} To assess the effect of autosomal dominant optic atrophy (ADOA) on ON and OFF retinal ganglion cell (RGC) function by evaluating the ON and OFF components of the photopic negative response (PhNR).

\hspace{1cm}\textbf{Methods:} Twelve participants from 6 families with \textit{OPA1} ADOA and 16 age matched controls were recruited. Electrophysiological assessment involved pattern electroretinograms (PERG), focal (20\textdegree) and full-field long duration (250msec) flash ERGs using a red light emitting diode flash on a rod saturating blue background, and full-field brief (300 \textmu sec) xenon flash ERGs using a red filter over a continuous rod saturating blue background. Amplitudes and implicit times of the ERG components were analyzed and the diagnostic potential of each electrophysiological technique was determined by generating receiver operating characteristic (ROC) curves.
Results: Mean amplitudes of the N95 and all PhNRs, except the full-field PhNR$_{ON}$, were significantly reduced in participants with ADOA (p<0.01). Subtraction of the group averaged focal ERG of ADOA participants from that of controls showed an equal loss in the focal PhNR$_{ON}$ and PhNR$_{OFF}$ components, while in the full-field ERG the loss in the PhNR$_{OFF}$ was greater than that in the PhNR$_{ON}$ component. The Areas Under the ROC Curve (AUC) for the focal PhNR$_{ON}$ (0.92), focal PhNR$_{OFF}$ (0.95) and full-field PhNR$_{OFF}$ (0.83), were not significantly different from that of the PERG N95 (0.99).

Conclusions: In patients with ADOA, the PhNR$_{ON}$ and PhNR$_{OFF}$ components are nearly symmetrically reduced in the long duration ERG suggesting that ON- and OFF-RGC pathways may be equally affected.
Introduction

Autosomal dominant optic atrophy (ADOA) is a hereditary optic neuropathy characterized by variable bilateral loss of vision in early childhood, optic nerve pallor, centrocoecal visual field scotoma and color vision defects. It is the commonest hereditary optic neuropathy with a prevalence between 1 in 50,000 to 1 in 8,000.

ADOA is caused primarily by mutations in the autosomal nuclear gene, OPA1, a key player in mitochondrial dynamics, controlling mitochondrial fusion, amongst other key roles. Histopathological studies in humans and mouse models show that ADOA is principally characterized by the degeneration of the retinal ganglion cells (RGC).

In a mouse model of ADOA, generated in our laboratory, the defect is first evident as a dendritic pruning of RGCs in B6:C3-Opa1Q285STOP mutant mouse which appears to be ON-center specific. This selective vulnerability of ON-center RGCs may reflect their higher energy demands in comparison to their OFF-center counterparts, since OPA1 mutations are thought to curtail mitochondrial energy output. This new finding has however not been investigated in humans with ADOA.

The functional integrity of RGCs can be evaluated by assessing the photopic negative response (PhNR) of the flash ERG. The PhNR is a negative potential seen after the b-wave in a photopic ERG elicited by a brief flash. The PhNR is believed to primarily originate from spiking activity in RGCs and their axons with contributions from amacrine cells and possible involvement of associated glial cells/astrocytes of
the retina $^{24-27}$. When a long duration flash is used to evoke the ERG, the PhNR is seen once after the b-wave (PhNR$_{ON}$) and again as a negative going potential after the d-wave (PhNR$_{OFF}$). Furthermore, it has been demonstrated that the ERG obtained in response to a long duration red flash of moderate intensity provides optimal delineation of the PhNR$_{ON}$ and PhNR$_{OFF}$ components$^{24, 27, 28}$.

The brief flash PhNR is attenuated in patients with ADOA29 and in the $Opa1^{Q285STOP}$ mutant mouse30. In the mouse model, the defect is seen prior to any changes in visual acuity on optokinetic drum testing and prior to morphological changes on retinal histology. This suggests that retinal connectivity may be affected before RGC somal loss impacts on RGC function23. Thus the PhNR deficit could serve as a marker for early disease. These early changes in RGC function may be reversible and need to be defined as markers for targeted therapies in any forthcoming therapeutic trials.

Miyata et al (2007) and Barnard et al (2011) highlight the diagnostic potential of the PhNR in ADOA, however, the investigators used a brief white flash (broadband stimulus) to evoke the PhNR, which provides a poor signal to noise ratio compared to monochromatic stimuli27, and cannot distinguish ON and OFF components. Furthermore, the studies elicited full-field (global) PhNRs which, in contrast to the focal PhNR, are less sensitive in detecting focal retinal lesions such as those seen in early to moderate glaucoma$^{31, 32}$. As ADOA results in localized centrocoecal visual field defects2, it might be expected that a focal stimulus presented to this region would enhance the sensitivity of the PhNR to early disease-related changes.
The aim of this study was to assess the relative effect of ADOA on the PhNR\textsubscript{ON} and PhNR\textsubscript{OFF} components elicited using focal and full-field long duration red flashes on a rod suppressing blue background. An additional aim was to compare the diagnostic potential of the long duration PhNRs to responses which have previously been shown to be affected by ADOA; the full-field brief flash PhNR 29,30 and the N95 amplitude of the pattern electroretinogram (PERG) 33, which also reflects spiking activity of the RGCs 34.

Methods

Participants

Twelve participants (aged 18 – 61 years) from six families with documented \textit{OPA1} mutations and 16 healthy age matched controls (aged 19 – 61 years) were recruited for the study (see Table 1 for characteristics of all 12 participants). Detailed information about the clinical characteristics of nine of the participants have been reported elsewhere2. The study conformed to the Declaration of Helsinki and was approved by the National Health Service Research Ethics Committee for Wales as well as the ethics committees of the School of Optometry and Vision Sciences, Cardiff University, and the Division of Optometry and Visual Science, City University, London. All participants provided their written consent after receiving a participant information sheet and having the opportunity to ask questions. Nine participants with ADOA (ID numbers 1010-1017, 1021) were examined in Cardiff and the rest at City University London by the same investigator.

Electroretinograms
All ERGs were recorded monocularly using a DTL fiber active electrode (Unimed Electrode Supplies, Ltd, Surrey, UK) and a contralateral reference. The DTL fiber was placed in the lower fornix to maximize stability during recording and the loose end fastened using medical tape at the inner canthus (Blenderm, Viasys Healthcare Ltd., Warwick, UK). A silver-silver chloride 10mm diameter touch-proof skin electrode (Unimed Electrode Supplies, Ltd, Surrey, UK), placed at the mid-frontal forehead position was used as ground electrode.

ERG responses were obtained using an evoked potential monitoring system (Medelec EP, Oxford Instruments PLC, Surrey, UK [Cardiff site]; Espion, Diagnosys LLC, Cambridge, UK [City University site]). Responses were bandpass filtered from 1 – 100 Hz and digitally averaged. Signals were recorded in blocks of 10 - 20 responses, with a total of 40 – 60 averaged per trace. Between 4 and 6 traces were obtained for each stimulus condition. The traces were superimposed to confirm signal repeatability and averaged off-line into a single averaged trace containing 160 – 300 responses. An automatic artefact rejection system removed signals contaminated by large eye movements and blinks.

Transient PERG stimuli (4 reversals per second; check size = 1°) were generated on a computer monitor at 98% contrast. The screen was masked with a black opaque cardboard with a 13 x 13 cm square cut-out at the center so that it produced a 20° x 20° field at a viewing distance of 36cm.

Long duration ERGs were recorded using a red flash stimulus (peak output 660nm, 250msec duration, 3.33 log phot td, 2Hz) on a rod saturating blue background (peak
output 469nm, 3.49 scot log td) produced by a hand-held miniature Ganzfeld light emitting diode (LED) stimulator (CH Electronics, Kent, UK). Focal stimulation was produced by mounting the miniature Ganzfeld LED tube into the middle of a light box (44 cm x 44 cm x 10 cm) such that the circular stimulus subtended 20° diameter at a viewing distance of 15.6 cm. The 20° stimulus size was chosen to encompass as much of the central field as possible while avoiding the optic disc which starts about 12°-15° nasal to the fovea. In order to minimize the effect of stray light stimulating the peripheral retina (i.e. the area outside the stimulus area) the light box contained a strip of white LEDs (Super Bright InGan) passed through a blue filter (Lee Filter 068 Sky Blue, Lee Filters, Hampshire, UK) to produce a desensitizing blue surround of 3.73 scot log td (field size = 109° x 109° field). Cross hairs centered in the middle of the stimulus served as the fixation target. Full-field ERGs were recorded by holding the stimulator head, fitted with a diffusing cap, directly to the eye.

Full-field brief (flash) ERGs were elicited by a Ganzfeld stimulator (GS2000, LACE Elettronica, Italy) presenting a xenon flash stimulus (1.76 log td.s, 300 μsec maximum flash duration, 4Hz). Filters were used to obtain a red stimulus (Lee Filter “Terry Red”, Lee Filters, Hampshire, UK, transmittance <5% at wavelengths shorter than 575 nm, and above 85% from 625–700 nm) over a continuous rod saturating 3.39 scot log td blue background (Schott Glass filter BG28, Schott AG, Mainz, Germany, peak transmittance 454 nm). All stimulus backgrounds were of sufficient scotopic illuminance to saturate the rods35.

All ERGs were recorded by the same investigator using the same protocol at both sites. Long duration ERGs (focal and full-field) were generated by the same
miniature Ganzfeld LED stimulator at both sites. PERG and full-field brief flash data were only obtained from participants attending Cardiff University, in order to ensure consistency. All stimuli were calibrated using an ILT 1700 radiometer with SED033/Y/R luminance detector (Able Instruments and Controls, Reading, UK) assuming a 7 mm pupil with no correction for the Stiles-Crawford effect. The wavelength of the light sources were measured using a Specbos 1201 spectro-radiometer (Horiba Jobin Yvon Ltd, Middlesex, UK).

Procedures

All participants underwent a comprehensive ophthalmic examination which included best corrected visual acuity (ETDRS), contrast sensitivity (Pelli-Robson), visual field assessment (24-2 SITA-FAST, Humphrey Visual Field Analyzer), slit lamp biomicroscopy, optical coherence tomography (OCT; Topcon 3D-OCT 1000), fundus photography, color vision (D-15 desaturated test) and auto-refraction. In order to target earlier stage ADOA, the eye with the better visual field mean deviation score was selected for ERG recording, with the dominant eye chosen in the case of equal scores between the two eyes.

PERGs were always recorded first with natural pupils and near refractive correction when necessary. Pupils were then dilated using 1% tropicamide to a minimum of 7mm and flash ERGs were recorded in the following order: focal long-duration, full-field long duration and full-field brief flash ERG.

Signal Analysis
PERGs and focal ERGs were Fourier analyzed to remove high frequency noise above 30Hz and 50Hz respectively. The method for measuring the amplitude of the various sub-components is described in Figure 1. The PhNR$_{ON}$ (PhNR for brief flash ERG) and PhNR$_{OFF}$ amplitudes were measured from the pre-stimulus baseline and voltage at stimulus offset respectively to a fixed time point in their respective troughs. When determining the most appropriate fixed time point at which to measure the PhNR$_{ON}$ and PhNR$_{OFF}$ responses, the group averaged ERG of ADOA participants was subtracted from the group averaged ERG of the controls to obtain a difference ERG. The implicit time of the greatest discrepancy between the two was identified for the PhNR$_{ON}$ and PhNR$_{OFF}$ responses and was used as the fixed time point for all measurements. The fixed times at which the PhNR amplitudes were measured were as follows: focal PhNR$_{ON}$ at 95 msec after onset, focal PhNR$_{OFF}$ at 97 msec after offset, full-field PhNR$_{ON}$ at 83 msec after onset, full-field PhNR$_{OFF}$ at 102 msec after offset and full-field brief PhNR at 72 msec after onset. The identification of all peaks and troughs was determined objectively using Microsoft Excel i.e. as the minimum/maximum voltage within a fixed time window.

Statistical Analysis

Data expressed on a logarithmic scale (i.e. visual acuity, contrast sensitivity and visual field mean deviation) were converted (anti-logged) into a linear scale to calculate mean and standard deviation (SD) values. The mean and SD values were then converted back to log units. The distribution of the ERG data was checked for normality using the Shapiro-Wilk test. Where data were normally distributed, independent samples t-tests (2-tailed) were used to compare controls and participants with ADOA; the Mann-Whitney U test was used where data were non-
normally distributed. In order to minimize Type 1 errors due to the number of
comparisons made (n = 35), we applied a Bonferroni adjustment to the alpha level
(0.05) and report observations as significant when p ≤ 0.0014. Receiver Operating
Characteristic (ROC) curve analysis was used to calculate the area under the curve
(AUC) to assess the diagnostic potential of the various ERG components. The
comparison between AUCs were made using the method described by Hanley and

Results
The clinical characteristics of all 12 ADOA participants from 6 families are shown in
Table 1. The means and standard deviation for visual acuity, contrast sensitivity and
mean deviation were 1.10 ± 1.07 logMAR, 1.30 ± 1.26 log units and -7.39 ± 7.09 dB
respectively. The visual field defects were mostly central or centrocecal and color
vision defects were variable but participants from the same family had similar
defects. More details regarding the relationship between the clinical characteristics
and ERG data in ADOA participants is to be the subject of a future manuscript.

Pattern ERGs
PERGs recorded from 9 ADOA participants are shown superimposed on the group
averaged trace of 16 controls in the left hand column of Figure 2A. It shows that the
negative N95 component is reduced in amplitude for all participants with ADOA,
beyond the 95% confidence intervals for the control data. The P50 amplitudes in
ADOA participants were also below the lower 95% confidence intervals except for
one participant. The middle column of Figure 2A and the data in Table 2
demonstrate that the mean P50 and N95 amplitudes were significantly reduced in ADOA participants compared to controls. The mean N95:P50 ratio in ADOA participants of 1.05 was significantly reduced compared to 1.73 in controls (Table 2). Although there was evidence of P50 and N95 loss in people with ADOA, the difference plot in the right hand column of Figure 2A is dominated by a negative going signal corresponding to the loss of the N95 component.

Focal Long Duration Cone ERGs

Focal long duration cone ERGs recorded from 12 participants with ADOA are shown superimposed on the group averaged trace of 16 controls in the left column of Figure 2B. The typical ERG responses were characterized by the a-wave, b-wave, PhNR_{ON}, d-wave and PhNR_{OFF}. The PhNR_{ON} was reduced in amplitude below the lower 95% confidence limit of the control data in almost all ADOA participants except one. Notably, the waveform after stimulus offset varied considerably between ADOA participants. For instance in participants with ADOA, the most prominent positive peak after stimulus offset, assumed to be the d-wave, was delayed and had a broad peak whose maximum amplitude occurred at highly variable times (Figure 2B, right and middle columns). In comparison, this prominent peak was highly consistent between control participants with respect to implicit time and was reflected in the much smaller standard deviation of the d-wave implicit time in controls than in participants with ADOA (Table 2).

The difference plot (Figure 2B, right) was dominated by two negative going waves representing the PhNR_{ON} and PhNR_{OFF} components affected by ADOA. The
difference plots of the ON and OFF components had similar profiles and amplitudes 2.80 µV and 2.88 µV respectively.

Long Duration Full-field Cone ERG

The long duration full-field cone ERGs in Figure 2C were recorded from the same ADOA participants (thin lines) and controls (group averaged thick black line) as the focal cone ERGs in Figure 2B. The form of the long duration ERG was similar under focal and full-field conditions with one exception. There were two positive peaks immediately after light offset in the full-field ERG; the first being the d-wave24,37. The mean amplitude of the PhNR\textsubscript{OFF}, but not the PhNR\textsubscript{ON}, was significantly reduced in participants with ADOA (Table 2). On the difference plot (Figure 2C, right) the amplitude of the PhNR\textsubscript{OFF} difference (8.76 µV) was more than twice the amplitude of the PhNR\textsubscript{ON} difference (3.42 µV) when measured.

Once again, the OFF components showed greater variability than ON components for participants with ADOA. In fact, in at least 6 participants with ADOA, there was a third positive peak (3PP) after light offset not seen in controls (Figure 2C, left). There was no obvious pattern to the presence or absence of the 3PP in ADOA participants. The amplitude and implicit time of the 3PP measured from the ADOA group averaged trace was 13.34 µV and 75 msec after light offset respectively.

Comparatively, none of the control traces displayed the 3PP prominently, although on close visual inspection, a kink corresponding in time with the 3PP was observed in some individual control traces.

Comparison of Focal and Full-field Long Duration ERGs
The waveform of the focal and full-field long duration ERGs was further compared by normalizing the group averaged ERGs to their respective b-wave amplitudes (Figure 3). The focal and full-field ERGs of controls (Figure 3A) and participants with ADOA (Figure 3B) had similar profiles although implicit times of the b-wave, PhNRON and d-wave were significantly delayed in the focal ERG (p ≤0.01, data not shown). The most prominent positive peak of the focal ERG after light offset coincided with the 2PP of the full-field ERG in the control traces while in the ADOA group, the broad peak of the focal ERG after offset described a curve that roughly matched the profile of the 2PP and 3PP of the full-field ERG.

In controls, the PhNRs are proportionally greater in the focal ERG than in the full-field ERG (Figure 3A). The losses in amplitudes of the PhNRs were also greater in the focal ERG than the full-field ERG in participants with ADOA (Figure 3B and 3C).

The Brief Full-field ERG

Brief full-field ERG recorded from 7 ADOA participants are shown in Figure 2D. Typical ERG responses had a-wave, b-wave, i-wave and PhNR components. The PhNR amplitude was reduced significantly in people with ADOA compared to controls (Figure 2D and Table 2). The difference plot in the right hand column of Figure 2D indicates that the greatest deficit in ADOA corresponds to the timing of the b-wave and the PhNR. An i-wave was recorded for all participants (controls and ADOA). Although it appeared more prominent in ADOA participants, there was no statistical difference in amplitude or implicit time between control and ADOA participants (Table 2).
Specificity and Sensitivity of the Different ERGs

Receiver operating characteristics (ROC) curves were used to determine the effectiveness of the N95 and long duration focal and full-field PhNRs at discriminating participants with ADOA from controls for 9 participants with ADOA and 16 controls for whom PERG and long duration focal and full-field ERG data were available (Figure 4). The AUC, sensitivity, specificity and cut off value which produced an optimal sensitivity while maintaining minimum specificity of ~90% are shown in Table 3. The N95 amplitude had the greatest diagnostic power. However, a comparison of the AUCs of the focal and full field PhNRs with the N95 amplitude, using the method described by Hanley and McNeil (1983) showed that the N95 amplitude was only significantly more sensitive than the full-field PhNR\textsubscript{ON} amplitude (z = 2.12). Therefore, considered in terms of their diagnostic ability, the focal PhNRs and N95 component were not significantly different.

Discussion

Effect of ADOA on ON and OFF Retinal Ganglion Cells

In this study we sought to determine whether the PhNR\textsubscript{ON} was preferentially affected in ADOA as might be predicted based on the study by William et al. Our findings however showed that in human patients, the PhNR\textsubscript{ON} and PhNR\textsubscript{OFF} amplitudes were equally reduced in the focal ERG, while in the full-field ERG, there was a greater reduction in the PhNR\textsubscript{OFF} amplitude than the PhNR\textsubscript{ON} amplitude. What then might explain this apparent contradiction?
In the study by William et al (2010), evidence for the preferential loss of ON-RGCs was based on mouse retinal flat mounts showing significant dendritic pruning of ON- but not OFF-RGCs. The experiment reported here however assessed the effect of ADOA on the ON- and OFF-RGCs by evaluating the PhNR amplitude of the human ERG, a functional measure. The role of the RGCs as primary originators of the PhNR has been demonstrated by Frishman and colleagues24-27, 34. In experiments using long duration full-field ERGs, they showed that that PhNR\textsubscript{ON} and PhNR\textsubscript{OFF} components were both reduced or eliminated after experimental glaucoma and intravitreal injection of tetrodotoxin (TTX) (an agent that blocks generation of sodium dependent spikes in retinal neurons) in macaque, as well as in patients with glaucoma. Although, the origins of the PhNR\textsubscript{ON} and PhNR\textsubscript{OFF} have not been conclusively traced to the ON- and OFF-RGCs respectively, Luo and Frishman34 showed that the PhNR\textsubscript{ON} (and b-wave) component but not the PhNR\textsubscript{OFF} (or d-wave) was eliminated after injecting 2-amino-4-phosphonobutyric acid (APB) into the macaque retina to block synaptic transmission from photoreceptors to ON-bipolar cells and hence ON-RGCs. Injecting TTX after APB then removed the PhNR\textsubscript{OFF} but not the d-wave thereby linking the PhNR\textsubscript{ON} and PhNR\textsubscript{OFF} components (although indirectly) to the ON and OFF pathways respectively.

Previous human31, 38, 39 and animal24, 30 studies (including our mouse model) have shown that the PhNR amplitude is very susceptible to RGC damage with severe attenuation of PhNR amplitude recorded even when morphologic and other functional parameters were within normal range i.e. in early stage disease. It is possible that the PhNR\textsubscript{ON} pathways may be selectively compromised at an earlier stage of the disease process than that studied here. A similar study in pre-
symptomatic people with the \textit{OPA1} mutations or in people with ADOA at a much earlier stage of the disease (e.g. children with ADOA) could provide additional insights.

Our findings may also be a reflection of the heterogeneous nature of ADOA. There are over 200 \textit{OPA1} mutations15, 16 which cause ADOA with wide phenotypic variations both within and between affected families2, 40. Genotype-phenotype correlations have been difficult to establish in previous studies3, 41 and the number of patients in each family of \textit{OPA1} mutations (except Family E) was insufficient to reliably explore such correlations. In the mouse model, the mutant mice (>10 months old) were genetically homogenous and disease severity correlated with age.

Participants studied here were from 6 families, with a different mutation in each family (Table 1), and at different stages of the disease. This may have diluted observations that would have been made from a homogenous cohort.

\textbf{Comparison of Focal and Full-field PhNRs}

The long duration focal and full-field ERGs in this study were recorded using the same stimulus parameters, which were comparable to the parameters recommended by Kondo et al42 for eliciting focal responses. Although the waveforms of the focal and full field ERGs were similar, they were not identical (Figure 3A-B). There was a greater contribution of PhNR\textsubscript{ON} and PhNR\textsubscript{OFF} components to the focal ERG than to the full-field ERG (Figure 3A) which reflects the decreasing proportion of RGCs to other retinal cells with eccentricity43. The focal PhNRs were more severely affected than their full-field counterparts by ADOA and this was reflected in the larger AUCs found for the focal signals. These findings were consistent with the central field...
defects recorded in ADOA participants in this study and in others²,⁶,⁴⁴. In addition, whereas the focal PhNRs were both significantly reduced (p<0.001), only the full-field PhNR_{OFF} was significantly reduced in the full-field ERG (Table 2). Although the N95 and focal PhNR amplitudes were highly discriminatory for ADOA, it should be noted that the participants in this study had relatively late stage disease.

The symmetrical loss in the focal PhNR_{ON} and PhNR_{OFF} amplitudes (Figure 2B right column and Figure 3C) may reflect the 1:1 ratio of ON- to OFF-RGCs in the macula, while the greater loss in the full-field PhNR_{OFF} amplitude than the PhNR_{ON} amplitude (Figure 2C right column and Figure 3C) may reflect the nearly 1:2 ratio of ON- to OFF-RGCs in the peripheral retina⁴⁵-⁴⁷. The broadening of the d-wave peak in the focal ERG and the presence of the 3PP in the full-field long ERG in participants with ADOA may be due to contributions from the cone receptor potential (CRP) and/or depolarizing OFF-bipolar cell responses after light offset which were unmasked in the relative absence of the negative going PhNR_{OFF}⁴⁸-⁵⁰. The 2PP may be the i_{OFF}-wave described by Horn et al (2011)⁵¹, although in contrast to their results, this study did not record a significant difference in amplitude between controls and participants with ADOA.

Comparison to other Electrophysiological Studies in ADOA

Miyata et al⁵² reported a significant reduction in the full-field brief PhNR, but none in the a- or b-wave amplitude, in ADOA patients using white-on-white stimulus. Similar results were obtained by Barnard et al⁵² in the mouse model. In this present study, we show similar results using a red on blue stimulus. The flash luminance used in this study was adopted from a previous study in this laboratory⁵² and was...
comparable to the flash luminance used by Miyata et al29. This supports findings that
the red-on blue stimulus is effective for clinical evaluation of RGC function.

Holder et al33 reported a significant reduction in N95 amplitude and the N95:P50 ratio
of the PERG participants with ADOA. We obtained similar results and showed that
the focal PhNRs and N95 amplitude were equally effective at discriminating controls
from participants with ADOA. The focal ERG could therefore be used as an
alternative to the PERG.

In this study, as well as in that of Holder et al33, the P50 amplitude was significantly
reduced. This may indicate that bipolar cell function is compromised in ADOA as has
been put forward by Reis et al53. However, a reduction in P50 amplitude is also seen
when only RGCs are compromised34, therefore the P50 reduction observed in this
study could be due to dysfunction of bipolar cells, RGCs or both.

\textbf{Conclusion}

This study showed there was a nearly symmetrical reduction in the PhNR\textsubscript{ON} and
PhNR\textsubscript{OFF} amplitudes in participants with ADOA with no evidence of a preferential
ON-pathway loss. This suggests that ON- and OFF-RGCs may be equally affected in
patients. In addition, in terms of their diagnostic potential, the focal PhNR-ON and -
OFF amplitudes were better than their full-field counterparts and were not
significantly different from the N95 amplitude of the PERG.

\textbf{Acknowledgement}
EM is funded by the Ghana Education Trust Fund. We acknowledge Fight for Sight Small Grants Award (MV), for their contribution to genotyping.
REFERENCES

52. Mortlock KE, Binns AM, Aldebsay HI, North RV. Inter-subject, inter-ocular and inter-session repeatability of the photopic negative response of the electroretinogram recorded using DTL and skin electrodes. *Doc Ophthalmol* 2010;121:123-134.

Figure 1. Representative ERG traces of the (A) PERG, (B) full-field long-duration ERG and (C) full-field brief flash ERG showing their components and how their amplitudes were measured (double headed arrows). The amplitudes of the P50, N95 (A), a-wave (a) and b-wave (b) (B-C) were measured as recommended by the International Society of Clinical Electrophysiology of Vision (ISCEV)1. The d-wave (d) amplitude was measured from the point of light offset to the peak of the d-wave. The PhNR\textsubscript{ON} (PhNR in brief flash) and PhNR\textsubscript{OFF} amplitudes were measured from the pre-stimulus baseline and voltage at stimulus offset respectively to a fixed time point in their respective troughs (see main text for details). The focal long duration ERG had the same profile as the full-field long duration except that in the focal ERG there was only one prominent positive peak after light offset, the d-wave.

Table 1. Clinical Characteristics of Participants with ADOA

<table>
<thead>
<tr>
<th>Participant ID/Gender</th>
<th>Family</th>
<th>Age</th>
<th>Visual Acuity, logMAR</th>
<th>Contrast Sensitivity, log units</th>
<th>Mean Deviation, dB</th>
<th>Color Vision</th>
<th>OPA1 Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>RE</td>
<td>LE</td>
<td>RE</td>
<td>LE</td>
<td>RE</td>
</tr>
<tr>
<td>1010/F</td>
<td>A</td>
<td>49</td>
<td>1.34</td>
<td>1.32</td>
<td>0.35</td>
<td>0.40</td>
<td>-27.03</td>
</tr>
<tr>
<td>1011/F</td>
<td>B</td>
<td>55</td>
<td>1.64</td>
<td>1.62</td>
<td>0.00</td>
<td>0.00</td>
<td>-17.65</td>
</tr>
<tr>
<td>1012/F</td>
<td>C</td>
<td>58</td>
<td>0.80</td>
<td>1.00</td>
<td>1.15</td>
<td>1.05</td>
<td>-8.68</td>
</tr>
<tr>
<td>1013/F</td>
<td>C</td>
<td>61</td>
<td>1.10</td>
<td>0.64</td>
<td>NA</td>
<td>NA</td>
<td>-12.47</td>
</tr>
<tr>
<td>1014/M</td>
<td>D</td>
<td>33</td>
<td>1.40</td>
<td>1.32</td>
<td>0.30</td>
<td>0.45</td>
<td>-13.84</td>
</tr>
<tr>
<td>1015/F</td>
<td>D</td>
<td>31</td>
<td>1.02</td>
<td>0.98</td>
<td>1.05</td>
<td>1.05</td>
<td>-13.98</td>
</tr>
<tr>
<td>1016/F</td>
<td>E</td>
<td>18</td>
<td>0.80</td>
<td>0.80</td>
<td>1.65</td>
<td>1.35</td>
<td>-7.08</td>
</tr>
<tr>
<td>1017/F</td>
<td>E</td>
<td>27</td>
<td>0.82</td>
<td>0.80</td>
<td>1.65</td>
<td>1.65</td>
<td>-5.14</td>
</tr>
<tr>
<td>1018/F</td>
<td>E</td>
<td>59</td>
<td>0.86</td>
<td>0.96</td>
<td>0.90</td>
<td>0.75</td>
<td>-9.55</td>
</tr>
<tr>
<td>1019/F</td>
<td>E</td>
<td>49</td>
<td>0.72</td>
<td>1.20</td>
<td>1.50</td>
<td>1.50</td>
<td>-5.99</td>
</tr>
<tr>
<td>1020/M</td>
<td>E</td>
<td>46</td>
<td>0.98</td>
<td>1.20</td>
<td>1.65</td>
<td>1.20</td>
<td>-10.15</td>
</tr>
<tr>
<td>1021/M</td>
<td>F</td>
<td>39</td>
<td>0.02</td>
<td>0.00</td>
<td>1.65</td>
<td>1.65</td>
<td>-1.31</td>
</tr>
</tbody>
</table>
Figure 2. ERG traces of the (A) PERG, (B) focal long duration ERG, (C) full-field long duration ERG and (D) full-field brief flash ERG recorded from participants in this study. Left column: individual traces of participants with ADOA (thin lines) superimposed on the group averaged ERG of 16 controls (thick lines) for each type of ERG recorded. The number of participants with ADOA in A, B, C and D are 9, 12, 12 and 7 respectively. Dotted lines represent 95% confidence intervals. Middle column: comparison between group-averaged traces of controls (thick black line) and ADOA participants (thick red line). Right column: difference plots generated by subtracting the group-averaged ADOA ERG from the control ERG.
Table 2. Means of Amplitudes and Implicit Times in Controls and Participants with ADOA

<table>
<thead>
<tr>
<th>ERG TYPE</th>
<th>Component</th>
<th>ADOA Mean Values</th>
<th>Control Mean Values</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P50</td>
<td>A, µV</td>
<td>1.92 ± 0.81</td>
<td>3.18 ± 0.81</td>
<td>0.0011*</td>
</tr>
<tr>
<td></td>
<td>T, msec</td>
<td>49.03 ± 3.67</td>
<td>53.16 ± 3.28</td>
<td>0.0082</td>
</tr>
<tr>
<td>N95</td>
<td>A, µV</td>
<td>2.12 ± 1.31</td>
<td>5.20 ± 0.87</td>
<td>0.0000*</td>
</tr>
<tr>
<td></td>
<td>T, msec</td>
<td>101.67 ± 11.21</td>
<td>99.77 ± 7.76</td>
<td>0.6212†</td>
</tr>
<tr>
<td>N95:P50 Ratio</td>
<td></td>
<td>1.05 ± 0.31</td>
<td>1.73 ± 0.47</td>
<td>0.0009**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Focal ERG</th>
<th>Component</th>
<th>ADOA Mean Values</th>
<th>Control Mean Values</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a-wave</td>
<td>1.76 ± 0.94</td>
<td>2.22 ± 0.61</td>
<td>0.1301</td>
</tr>
<tr>
<td></td>
<td>T, msec</td>
<td>23.00 ± 1.72</td>
<td>23.75 ± 1.74</td>
<td>0.2534</td>
</tr>
<tr>
<td></td>
<td>b-wave</td>
<td>5.29 ± 2.08</td>
<td>6.76 ± 1.74</td>
<td>0.0524</td>
</tr>
<tr>
<td></td>
<td>T, msec</td>
<td>46.25 ± 3.14</td>
<td>49.81 ± 4.88</td>
<td>0.0271</td>
</tr>
<tr>
<td>PhNR_{ON}</td>
<td>A, µV</td>
<td>1.02 ± 0.97</td>
<td>3.81 ± 1.74</td>
<td>0.0000*</td>
</tr>
<tr>
<td></td>
<td>T, msec</td>
<td>109.25 ± 7.16</td>
<td>104.50 ± 8.49</td>
<td>0.1299</td>
</tr>
<tr>
<td></td>
<td>d-wave</td>
<td>2.81 ± 1.52</td>
<td>3.12 ± 1.04</td>
<td>0.5290</td>
</tr>
<tr>
<td></td>
<td>T, msec</td>
<td>321.92 ± 13.80</td>
<td>302.41 ± 5.92</td>
<td>0.0004*</td>
</tr>
<tr>
<td>PhNR_{OFF}</td>
<td>A, µV</td>
<td>-1.97 ± 1.52</td>
<td>0.93 ± 1.23</td>
<td>0.0000*</td>
</tr>
<tr>
<td></td>
<td>T, msec</td>
<td>138.08 ± 9.94</td>
<td>113.09 ± 14.64</td>
<td>0.0000**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Full-field Long ERG</th>
<th>Component</th>
<th>ADOA Mean Values</th>
<th>Control Mean Values</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a-wave</td>
<td>A, µV</td>
<td>15.87 ± 4.44</td>
<td>18.84 ± 4.45</td>
<td>0.0917</td>
</tr>
<tr>
<td>T, msec</td>
<td>22.50 ± 1.09</td>
<td>23.16 ± 1.70</td>
<td>0.2537</td>
<td></td>
</tr>
<tr>
<td>b-wave</td>
<td>A, µV</td>
<td>33.57 ± 10.67</td>
<td>41.29 ± 11.18</td>
<td>0.0768</td>
</tr>
<tr>
<td>T, msec</td>
<td>41.83 ± 2.86</td>
<td>42.16 ± 2.47</td>
<td>0.7515</td>
<td></td>
</tr>
<tr>
<td>PhNR_{ON}</td>
<td>A, µV</td>
<td>12.26 ± 3.95</td>
<td>15.68 ± 4.36</td>
<td>0.0430</td>
</tr>
<tr>
<td>T, msec</td>
<td>96.18 ± 9.16</td>
<td>92.72 ± 4.15</td>
<td>0.2471</td>
<td></td>
</tr>
<tr>
<td>d-wave</td>
<td>A, µV</td>
<td>15.11 ± 6.20</td>
<td>12.84 ± 4.89</td>
<td>0.2866</td>
</tr>
<tr>
<td>T, msec</td>
<td>274.67 ± 1.15</td>
<td>273.47 ± 1.02</td>
<td>0.0075†</td>
<td></td>
</tr>
<tr>
<td>2nd positive peak</td>
<td>A, µV</td>
<td>15.48 ± 4.87</td>
<td>16.10 ± 7.55</td>
<td>0.8064</td>
</tr>
<tr>
<td>T, msec</td>
<td>302.50 ± 8.35</td>
<td>298.19 ± 2.00</td>
<td>0.1054†</td>
<td></td>
</tr>
<tr>
<td>PhNR_{OFF}</td>
<td>A, µV</td>
<td>-8.31 ± 5.69</td>
<td>0.45 ± 5.74</td>
<td>0.0005*</td>
</tr>
<tr>
<td>T, msec</td>
<td>178.33 ± 27.02</td>
<td>132.19 ± 17.30</td>
<td>0.0000**</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Full-field Brief ERG</th>
<th>Component</th>
<th>ADOA Mean Values</th>
<th>Control Mean Values</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a-wave</td>
<td>A, µV</td>
<td>20.60 ± 3.79</td>
<td>25.73 ± 5.91</td>
<td>0.0480†</td>
</tr>
<tr>
<td>T, msec</td>
<td>17.50 ± 0.69</td>
<td>17.22 ± 0.76</td>
<td>0.4133</td>
<td></td>
</tr>
<tr>
<td>b-wave</td>
<td>A, µV</td>
<td>59.75 ± 14.58</td>
<td>77.88 ± 18.17</td>
<td>0.0302</td>
</tr>
<tr>
<td>T, msec</td>
<td>35.39 ± 1.51</td>
<td>35.38 ± 1.26</td>
<td>0.9767</td>
<td></td>
</tr>
<tr>
<td>i-wave</td>
<td>A, µV</td>
<td>14.00 ± 8.37</td>
<td>16.19 ± 7.58</td>
<td>0.5420</td>
</tr>
<tr>
<td>T, msec</td>
<td>58.04 ± 2.04</td>
<td>57.61 ± 2.37</td>
<td>0.6844</td>
<td></td>
</tr>
<tr>
<td>PhNR</td>
<td>A, µV</td>
<td>12.93 ± 3.38</td>
<td>22.39 ± 6.17</td>
<td>0.0011*</td>
</tr>
<tr>
<td>T, msec</td>
<td>72.75 ± 4.13</td>
<td>70.59 ± 6.40</td>
<td>0.4244†</td>
<td></td>
</tr>
</tbody>
</table>

Data are expressed as mean ± standard deviation.
A – Amplitude; T – Implicit time from stimulus onset
* – Value is significant at p < 0.0014 level; † – data was non-uniformly distributed and Mann-Whitney U test was used for statistical comparison.
Figure 3. A comparison of the long duration focal (dashed lines) and full field (solid lines) group-averaged ERGs for (A) controls, (B) participants with ADOA and (C) difference plots. ERGs have been normalised to the b-wave amplitude of their respective control group-averaged ERG.

Table 3. Sensitivity, Specificity and Area Under Curve of ROC Analysis for ERG Components

<table>
<thead>
<tr>
<th>Test Variable</th>
<th>Area (95% CI)</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Cut Off Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N95</td>
<td>0.99 (0.97 - 1.00)</td>
<td>93.80</td>
<td>100.00</td>
<td>4.12 µV</td>
</tr>
<tr>
<td>N95:P50</td>
<td>0.92 (0.81 - 1.00)</td>
<td>81.30</td>
<td>89.90</td>
<td>1.44</td>
</tr>
<tr>
<td>Focal PhNR_{ON}</td>
<td>0.92 (0.81 - 1.00)</td>
<td>81.30</td>
<td>100.00</td>
<td>2.62 µV</td>
</tr>
<tr>
<td>Focal PhNR_{OFF}</td>
<td>0.95 (0.87 - 1.00)</td>
<td>81.30</td>
<td>100.00</td>
<td>0.24 µV</td>
</tr>
<tr>
<td>Full-field PhNR_{ON}</td>
<td>0.78 (0.60 - 0.97)</td>
<td>50.00</td>
<td>100.00</td>
<td>16.99 µV</td>
</tr>
<tr>
<td>Full-field PhNR_{OFF}</td>
<td>0.83 (0.73 - 0.99)</td>
<td>62.50</td>
<td>89.90</td>
<td>0.35 µV</td>
</tr>
</tbody>
</table>

Figure 4. Receiver Operating Characteristic (ROC) curves derived using (A) N95 component and N95:P50 ratio of the PERG, (B) focal PhNR_{ON} and PhNR_{OFF} amplitudes and (C) full-field PhNR_{ON} and PhNR_{OFF} amplitudes. Diagonal dashed line is the reference line.