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Abstract

Derivative spectroscopy is conventionally understood to be a collection of
techniques for extracting �ne structure from spectroscopic data by means of
numerical di�erentiation. In this paper we extend the conventional interpre-
tation of derivative spectroscopy with a view to recovering the continuous re-
laxation spectrum of a viscoelastic material from oscillatory shear data. To
achieve this, the term \spectroscopic data" is allowed to include spectral data
which have been severely broadened by the action of a strong low-pass�lter.
Consequently, a higher order of di�erentiation than is usually encountered in
conventional derivative spectroscopy is required. However, by establishing a link
between derivative spectroscopy and wavelet decomposition, high-order di�er-
entiation of oscillatory shear data can be achieved using specially constructed
wavelet smoothing. This method of recovery is justi�ed when the reciprocal
of the Fourier transform of the �lter function (convolution kernel) is an en-
tire function, and is particularly powerful when the associated Maclaurin series
converges rapidly. All derivatives are expressed algebraically in terms of scaling
functions and wavelets of di�erent scales, and the recovered relaxation spectrum
is expressible in analytic form. An important feature of the method is that it
facilitates local recovery of the spectrum, and is therefore appropriate for real
scenarios where the oscillatory shear data is only available for a �nite range of
frequencies. We validate the method using synthetic data, but also demonstrate
its use on real experimental data.
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1. Introduction

Derivative spectroscopy is conventionally understood to be a collection
of techniques for extracting �ne structure from spectroscopic data by means
of numerical di�erentiation. An informative account of the history, tec h-
niques and scope of the subject may be found in a compendium of seven
articles published in O'Haver et al [1]. A more recent discussion about the
earlier and current applications of derivative spectroscopy can be found in
Anderssen and Hegland [2]. Their paper contains, in Section 2, a review
of the early importance of the di�erentiation of data in terms of the key
observation of Lord Rutherford, a summary of some of the novel applications
of the methodology, as well as a discussion about the popularity of fourth
derivative spectroscopy [3]. In this paper we exploit the power of derivative
spectroscopy to achieve peak sharpening and resolution enhancement ofspectra.

We shall be exclusively concerned with the recovery of the continuous
relaxation spectrum (CRS), H (� ), from measurements of the storage and
loss moduli, G0(! ) and G00(! ). Previous approximations to the CRS have
included contributions by Malkin [4], Stadler and Bailly [5], Stadler [6], Davies
and Goulding [7], Cho [8] and Anderssenet al [9]. References [5], [6] and [8]
are based on cubic spline and polynomial approximations, while references
[7] and [9] base their approximations on exact inversion formulae. Wavelets
were used in [7] and derivative-based approximations were used in [9]. In our
current paper we shall bring together the advantageous properties of both
wavelets and derivatives to provide explicit and computable formulae based
on exact inversion. Our method facilitates local recovery of the CRS, which is
appropriate for real scenarios where the oscillatory shear data are only available
for a �nite range of frequencies.

Recovery of the CRS involves the solution of one or both of the following
Fredholm integral equations of the �rst kind:

G0(! ) = Ge +
Z 1

0

! 2� 2

1 + ! 2� 2 H (� )
d�
�

; (1.1)

G00(! ) =
Z 1

0

!�
1 + ! 2� 2 H (� )

d�
�

: (1.2)

Our starting point is the Fourier convolution form of equations (1.1) and (1.2):

G0(! ) = Ge + 1
2 [1 + tanh(ln ! )] � H (! � 1); (1.3)

G00(! ) = 1
2 sech(ln! ) � H (! � 1); (1.4)

where convolution is with respect to the logarithmic variable and is de�ned by

f (ln ! ) � K (! � 1) = f (x) � k(x) =
Z 1

�1
f (x � y)k(y)dy;
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where k(x) = K (e� x ) and x = ln !: Here it is assumed that f and K are any
pair of functions for which the convolution integral exists. Without los s of
generality, we shall assumeGe = 0 throughout the paper.

The kernel in (1.4) is of the form sech� (x), � > 0. In the theory of wavelets
such kernels are known asscaling functions [see (2.5) below], which act as low-
pass �lters. The kernel in (1.3) can also be reduced to a scaling function by
di�erentiation. Let D denote the di�erential operator

D =
d

d ln !
= !

d
d!

;

then
DG0(! ) = 1

2 sech2(ln ! ) � H(! � 1): (1.5)

It can also be shown that

G00(! ) � D 2G00(! ) = sech3(ln ! ) � H(! � 1); (1.6)

DG0(! ) � 1
4 D 3G0(! ) = 3

4 sech4(ln ! ) � H(! � 1): (1.7)

The sech kernels in equations (1.4)-(1.7) are the key to the applicationof
derivative spectroscopy to the recovery of the CRS. Increasing integer powers
of the sech function, suitably normalized, form a delta sequence; i.e.

� (x) = lim
n !1

� � 1
n sechn (x); where � n =

Z 1

�1
sechn (x)dx: (1.8)

Hence, equations (1.4)-(1.7) give rise to the following sequence of approximations
which, when working with exact data, increase in accuracy as the order of the
highest derivative increases:

H (! � 1) � 2
� G00(! ); (1.9)

H (! � 1) � DG0(! ); (1.10)

H (! � 1) � 2
� [G00(! ) � D 2G00(! )]; (1.11)

H (! � 1) � DG0(! ) � 1
4 D 3G0(! ): (1.12)

The approximation (1.9) is usually attributed to Fuoss and Kirkwood [10]. The
approximations (1.10)-(1.12) were �rst derived by Schwarzl and Staverman [11],
but they did not pursue approximations of order greater than three. Tschoegl
[12], Friedrich [13] and Anderssenet al [9] have studied then-th order formulae
in this sequence. Anderssenet al demonstrated that the Schwarzl-Staverman
sequence converges very slowly. It is not di�cult to show that, working with
exact data, derivatives of order higher than 30 may be required to recover a
peak in the CRS to 99% of its true height. From (1.8), it may be deduced
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that the approximation to H (! � 1) obtained from the n-th order formula in this
sequence is

H (! � 1) � � � 1
n +1 sechn +1 (ln ! ) � H(! � 1):

For example, taking the unimodal test spectrum H (� ) =
2� 2

1 + � 4 studied in [9],

which has unit height, requires a value ofn � 100 in the Schwarzl-Staverman
sequence to recover a height of 0.99.

In this paper, we use a di�erent derivative-based delta sequence which
converges more rapidly than the Schwarzl-Staverman sequence, requiring
derivatives of order 10 or less to recover a peak in the CRS to 99% of its
true height. Di�erentiation is an ill-posed process, the degree of ill-posedness
increasing with the order of di�erentiation. High-order di�erentiat ion of
experimental data is therefore not normally achievable due to excessive noise
ampli�cation. (See, however, the conclusions in [2]). The degree of ill-posedness
in n-th order di�erentiation is of algebraic order n, (see, for example, Davies
and Anderssen [14]), but this is not as severe as in the deconvolution problems
(1.3) and (1.4), which are exponentially ill-posed. Davies and Goulding[7]
have shown that wavelet regularization can be an e�ective method for solving
(1.3) and (1.4) with experimentally measured data. We shall demonstrate
that appropriately constructed wavelet smoothing also makes possible the
high-order di�erentiation of oscillatory shear data.

Derivatives and wavelets are intimately connected, and most of the ideas
developed in this paper emerge from this connection. In Section 2, we review
the method of wavelet regularization proposed by Davies and Goulding [7],
and establish the connection with derivative spectroscopy and deltasequences
in Section 3. In Section 4, we obtain formal series expansions forG0(! ) and
G00(! ) in terms of weighted Gegenbauer wavelets, while in Section 5 we derive
computable inversion formulae for the recovery of the CRS by exploiting the
recursive properties of Gegenbauer polynomials. We validate the use ofthese
inversion formulae in Section 6 using both exact and noisy test data. In Sec-
tion 7, we invert the polybutadiene blend data used by Honerkamp and Weese
[15], and compare the results with previously published results on these data.
Conclusions are drawn in Section 8 .

2. Wavelet regularization

Throughout this section and the next we shall use the symbolx exclusively
to denote ln! , and the hat symbol to denote the Fourier transform:

bf (p) =
Z 1

�1
f (x)e� ipx dx:

We begin with a brief description of the properties of continuous wavelets.
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A wavelet is a function in the shape of a small wave with zero area. We
shall be concerned with real-valued wavelets 2 L 2(R) de�ned by the following
properties:

(i)
Z 1

�1
 (x)dx = 0 ; (the graph of  has zero area); (2.1)

(ii) there exists a constant C such that 0 < C  =
Z 1

0

j b (p)j2

p
dp < 1 : (2.2)

The two properties (2.1) and (2.2) are invariant with respect to dilation and
translation. Suppose� > 0 is a �xed scaling parameter and supposex0 = ln ! 0,
where ! 0 is a �xed reference frequency. Then if  (x) is a wavelet, so is
 (� � 1(x � x0)).

According to a theorem of Calder�on [16], if H (� ) is any function satisfying
Z 1

�1
H 2(� )d ln � < 1 (2.3)

then H (! � 1) may be decomposed into wavelets as follows:

H (! � 1) =
1

C 

Z 1

0
 (s� 1x) � H (! � 1)

ds
s2 :

Here, the wavelet scales, s, range from 0 to1 . For a �xed scale � > 0, Mallat
[17] observes that scaless > � can be collected together into a single term� � (x)
to give the Calder�on-Mallat decomposition

H (! � 1) =
1

C 
� � (x) � H (! � 1) +

1
C 

Z �

0
 (s� 1x) � H (! � 1)

ds
s2 ; (2.4)

where

� � (x) =
Z 1

�
 (s� 1x)

ds
s2 : (2.5)

Equation (2.5) stands as a formal de�nition of a scaling function since

� � (x) = � � 1� 1(� � 1x):

Davies and Goulding show that if � 1 is chosen as� 1(x) = sech(x) then, by
applying (2.4), the CRS may be expressed as

H (! � 1) =
1

��
sech(� � 1x) � H (! � 1) +

1
�

Z �

0
 � (s� 1x) � H (! � 1)

ds
s2 ; (2.6)

where the wavelet � is given by

 � (x) = sech(x)[1 � xtanh(x)]: (2.7)
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In particular, choosing � = 1 and bearing in mind that x = ln ! , it follows from
(1.4) that

H (! � 1) =
2
�

G00(! ) +
1
�

Z 1

0
 � (s� 1x) � H (! � 1)

ds
s2 : (2.8)

Hence the integral term in (2.8) provides an exact wavelet correction for the
Fuoss-Kirkwood approximation (1.9).

Equation (2.6) is equivalent to a decomposition of the Dirac delta in the
form

� (x) =
1

��
sech(� � 1x) +

1
�

Z �

0
 � (s� 1x)

ds
s2 :

An alternative delta sequence to that of (1.8) is therefore given by

� (x) =
1

��
sech(� � 1x) +

1
�

lim
n !1

Z �

n � 1 �
 � (s� 1x)

ds
s2 : (2.9)

Since the inversion of equation (1.4) represents a severely ill-posed problem,
its solution must be regularized to stabilize the ampli�cation of noise in mea-
sured values ofG00(! ). Davies and Goulding propose as a regularization the
removal of small scales in (2.6). For a �xed value of� in the range 0< � < 1,
they choose the regularizationH ! H � , where

H � (! � 1) =
1

��
sech(� � 1x) � H (! � 1) +

1
��

 � (� � 1x) � H (! � 1)

=
1

��
sech(� � 1x)[2 � (� � 1x)tanh( � � 1x)] � H (! � 1): (2.10)

It may be shown that the regularized approximation (2.10) may be represented
in discrete form by

H � (! � 1) �
mX

k=1

ak sech(� � 1ln(
!
! k

)) ; (2.11)

where the unknown coe�cients ak can take on both positive and negative values
to reect the change of sign in the kernel function in (2.10). The nodes! k are
also unknown. The models

G0(! ) � 1
2

mX

k=1

ak [1 + tanh(ln ! )] � sech(� � 1ln(
!
! k

)) ; (2.12)

G00(! ) � 1
2

mX

k=1

ak sech(ln! ) � sech(� � 1ln(
!
! k

)) (2.13)

are then �tted to the experimental data by least-squares to determine the
coe�cients ak and the nodes! k .

6



The parameters � and m in (2.11) act as regularization parameters, and
their optimal values can be found by simple searches. The main computational
challenge is the determination of the nodes! k . We shall see below that deriva-
tive spectroscopy can provide e�ective alternatives to the models (2.11)-(2.13)
which avoids entirely the determination of nodal distributions.

3. Derivatives and delta sequences

In this section, we examine the relationship between the wavelets introduced
in the previous section and derivatives of the sech function. This leads to al-
ternative delta sequences to (2.9) which lay the foundation for the derivative
spectroscopy of the CRS and its e�cient computational implementation in later
sections.

Consider the identity

1 = cosh( �
2 �p )sech(�2 �p ):

The cosh function is an entire function which admits a Maclaurin series which
is everywhere convergent. Replacing the cosh term by its Maclaurinexpansion
gives

1 = sech(�
2 �p ) +

1X

r =1

(
�
2

)2r � 2r

(2r )!
p2r sech(�2 �p ):

Since the inverse Fourier transform of�� sech(�2 �p ) is sech(� � 1x) we obtain a
limit representation of the Dirac delta in the form

� (x) =
1

��
sech(� � 1x) + lim

n !1

1
�

nX

r =1

(� 1)r (
�
2

)2r � 2r � 1

(2r )!
D 2r sech(� � 1x): (3.1)

The derivatives D 2r sech(� � 1x) are all wavelets, and a comparison of (2.9)
and (3.1) establishes the link between them and the wavelets � (s� 1x) in the
previous section. Indeed, Calder�on's theorem tells us that each canbe expressed
in terms of the other. For example, the similarity between � D 2sech(x) and
 � ( 4

3 x) is shown in Figure 1 where plots of the two functions are superposed.
This simple example also serves to illustrate the role of scaling.

Consider the delta sequence obtained by truncating the series in(3.1) to
n + 1 terms. This involves even derivatives from order 0 to to order 2n. It is
informative to compare this sequence with the terms in (1.8) for the same even
orders of derivative. In Figure 2 we compare the �rst four approximations to the
� -function given by the Maclaurin sequence (3.1) with the corresponding even-
order approximations in the Schwarzl-Staverman sequence, i.e.n = 0 ; 2; 4; 6
in (1.8) . We take � = 1 in (3.1) so that the zeroth order approximations
are the same in both cases. For ease of comparison, the Schwarzl-Staverman
sequence is centred atx = � 5 and shown in blue, while the Maclaurin sequence
is centred at x = 5 and shown in red. The approximations in the former are
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always positive, while those in the latter develop small end-oscillations as n
increases. These end-oscillations are a common feature in high-order derivative
spectroscopy and play a key role in increasing the resolving power ofthe
sequence. Sequences which are constrained to be positive have considerably
less resolving power. This phenomenon is explained by a theorem of Wigner in
the context of quantum mechanics. (See Mallat [17], page 142-145). We shall
treat the matter of end-oscillations in Section 7 .

In similar fashion to the above, starting from the identity

1 = ( �
2 �p ) � 1sinh( �

2 �p )( �
2 �p )cosech(�2 �p );

the following limit representation is obtained

� (x) =
1

2�
sech2(� � 1x)+ lim

n !1

1
2

nX

r =1

(� 1)r (
�
2

)2r � 2r � 1

(2r + 1)!
D 2r sech2(� � 1x): (3.2)

This representation approaches the limit more rapidly than its partner in (3.1).
The �rst four approximations in the delta sequences obtained from (3.1) and
(3.2) are shown in Figure 3, the former on the left in red and the latter on the
right in black, both with � = 1.

Taking the convolutions of both (3.1) and (3.2) with H (! � 1), keeping � = 1,
we obtain the following exact inversion formulae for equations (1.4) and (1.5)
in terms of the derivatives of G00(! ) and G0(! ):

H (! � 1) =
2
�

G00(! ) +
2
�

1X

r =1

(� 1)r
� �

2

� 2r 1
(2r )!

D 2r G00(! ); (3.3)

H (! � 1) = DG0(! ) +
1X

r =1

(� 1)r
� �

2

� 2r 1
(2r + 1)!

D 2r +1 G0(! ): (3.4)

These two inversion formulae were derived in a slightly more formal manner
in the paper by Anderssenet al [9]. In that paper they were not implemented
explicitly, but formed the basis for two derivative based algorithms which uti-
lized Gureyev iteration. This approach replaced the calculation of high-order
derivatives with a sequence of convolutions involving second-orderderivatives
only. This meant that the CRS could be calculated numerically, but not ob-
tained explicity in analytic form. In the next two sections we use (3.3) and
(3.4) to derive explicit and computable formulae for the CRS based on weighted
Gegenbauer wavelets.

4. Weighted Gegenbauer wavelets

Consider the function sech� � 1
2 (x), where � � 1

2 is a positive integer. It is a
simple exercise to show that the even order derivatives take the form

D 2r sech� � 1
2 (x) = sech� � 1

2 (x)Pr (tanh2(x)) = (1 � t2)
1
2 ( � � 1

2 ) Pr (t2); (4.1)
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where Pr (t2) is a polynomial of degreer in t2, and t = tanh( x), � 1 � t � 1.

For r � 1, D 2r sech� � 1
2 (x) is a wavelet in x, while sech� � 1

2 (x) is a scaling
function.

Details concerning the Gegenbauer polynomials (ultraspherical polynomi-
als), C( � )

n (t), of order � and degreen, may be found in [20]. They are orthogonal

on the interval [-1,1], with respect to the weight function (1 � t2) � � 1
2 , i.e.

Z 1

� 1
(1 � t2) � � 1

2 C( � )
m (t)C( � )

n (t)dt = 0 ; m 6= n: (4.2)

The normalization constant is

� ( � )
n =

Z 1

� 1
(1 � t2) � � 1

2 [C( � )
n (t)]2dt = 2 1� 2� �

�( n + 2 � )
(n + � )� 2(� )�( n + 1)

: (4.3)

Let us de�ne
 ( � )

n (x) = sech� � 1
2 (x)C( � )

n (tanh( x)) : (4.4)

In terms of t we may write

 ( � )
n (x) = � ( � )

n (t) = (1 � t2)
1
2 ( � � 1

2 ) C( � )
n (t): (4.5)

It follows from (4.2) that
Z 1

� 1
� ( � )

m (t)� ( � )
n (t)dt = 0 ; m 6= n: (4.6)

The set f � ( � )
n (t)g1

n =0 is a complete orthogonal system over [-1,1] with unit
weight.

The values of � which best suit our purpose are the half-integer values� =
3
2 ; 5

2 ; 7
2 , ... . This means that 2� + 1 is an even integer. Throughout the rest of

this paper we shall assume

2� + 1 is an even integer� 4: (4.7)

Under this assumption we shall demonstrate that the function

sech� + 3
2 (x)� ( � )

n (tanh( x)) is a wavelet in the variable x when n � 1. We
shall write this wavelet in the form

 ( � )
n (x) = sech2� +1 (x)C( � )

n (tanh( x)) ; n � 1: (4.8)

Changing the variable in (4.2) from t to x and choosingm = 0 gives
Z 1

�1
 ( � )

n (x)dx = 0 ; n � 1; (4.9)

9



since C( � )
0 (t) = 1. Furthermore, under the assumption (4.7),  ( � )

n (x) can be
expressed as the derivative of a polynomial of degreen + 2 � in tanh(x), i.e.

 ( � )
n (x) = DPn +2 � (tanh( x)) ; n � 1: (4.10)

[See (4.23) below]. Equations (4.9) and (4.10), together with the fact that
 ( � )

n (x) 2 L 2(R), are su�cient to prove that  ( � )
n (x), as de�ned by (4.8), is a

wavelet. [See equations (2.1) and (2.2)].

The maximum value of j ( � )
n (x)j grows very slowly with n. With � = 3

2 , the

two wavelets  ( � )
4 (x) and  ( � )

16 (x) are shown in Figure 4.

We shall refer to the wavelet in (4.8) as a weighted Gegenbauer wavelet.
We have found no references to the existence of this wavelet in the literature.
However, there are many references to other types of wavelet based onGegen-
bauer polynomials (see, for example, [18] and [19].)

We shall now construct a wavelet expansion forG00(! ) in the form

G00
N (! ) =

NX

n =0

a( �;N )
n  ( � )

n (x); x = ln!; (4.11)

which, as N ! 1 , converges toG00(! ) in a weighted L 2-norm, i.e.

lim
N !1

Z 1

�1
sech2(x)jG00(! ) �

NX

n =0

a( �;N )
n  ( � )

n (x)j2dx = 0 : (4.12)

The series (4.11) has the mathematical structure

G00(! ) = scaling function + wavelet series;

a structure which is shared with (3.1) and (3.2). For ease of reference,we shall
refer to the expansion in (4.11) as a wavelet expansion, notwithstanding the
presence of the initial scaling function.

To construct (4.11) we �rst expand G00(! ) as an orthogonal series in the
variable t = tanh( x) on the interval [-1,1]. Let G00(! ) = � (t) and let � be the
half-integer such that � � 1

2 = 2 � + 1. We may then write

� (t) =
1X

n =0

a( � )
n � ( � )

n (t); � 1 � t � 1; (4.13)

where

a( � )
n = [ � ( � )

n ]� 1
Z 1

� 1
� (t)� ( � )

n (t)dt

= [ � ( � )
n ]� 1

Z 1

�1
sech2(x)G00(! ) ( � )

n (x)dx: (4.14)
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Let us truncate the series in (4.13) and write

G00
N (! ) =

NX

n =0

a( � )
n � ( � )

n (t): (4.15)

We can express this in the form

G00
N (! ) =

NX

n =0

a( � )
n sech� � 1

2 (x)C( � )
n (tanh( x)) ; (4.16)

and expand the polynomial C( � )
n (t) in terms of the basis f C( � )

m (t)gn
m =0 , i.e. we

can write

C( � )
n (t) =

nX

m =0

� mn C( � )
m (t); (4.17)

� mn = [ � ( � )
m ]� 1

Z 1

� 1
(1 � t2) � � 1

2 C( � )
n (t)C( � )

m (t):

Hence (4.16) takes the form

G00
N (! ) =

NX

m =0

a( �;N )
m sech2� +1 (x)C( � )

m (tanh( x)) ; (4.18)

where

a( �;N )
m =

NX

n =0

� mn a( � )
n : (4.19)

The equation (4.18) is the same as (4.11), and so our construction is complete.

Note that the coe�cients in (4.11) depend on N , whereas the coe�cients
in (4.15) are independent ofN . This is because the wavelet basis in (4.11) is
not orthogonal, whereas the basis in (4.15 ) is orthogonal. The convergence
property (4.12) follows immediately from the L 2-convergence of the orthogonal
series (4.13):

lim
N !1

Z 1

� 1
j� (t) �

NX

n =0

a( � )
n � ( � )

n (t)j2dt = 0 : (4.20)

In exactly similar fashion we can derive a wavelet expansion forDG0(! ).
The series

DG0
N (! ) =

NX

n =0

b( � )
n � ( � )

n (t)

may be written in the form

DG0
N (! ) =

NX

n =0

b( �;N )
n  ( � )

n (x); (4.21)
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and this expansion too converges toDG0(! ) in the same weighted-L 2-norm as
in (4.12). The corresponding expansion forG0(! ), however, is not a wavelet
expansion. Under the constraint (4.7) it can easily be shown that

G0
N (! ) =

NX

n =0

b( �;N )
n Pn +2 � (tanh( x)) ; (4.22)

where P is the polynomial of degreen + 2 � de�ned by

Pn +2 � (t) =
Z t

� 1
(1 � s2) � � 1

2 C( � )
n (s)ds: (4.23)

We have mentioned inx2 that wavelets remain wavelets under dilation and
translation of the variable x. We shall need to exploit this property if we are to
implement e�ective wavelet smoothing of experimental oscillatory shear data.
To this end, we rede�ne the variable x = ln! as

x = � � 1ln(
!
! 0

); (4.24)

where � > 0, and ! 0 is a reference frequency. The de�nition (4.24) will remain
in force henceforth.

To summarize, the purpose of this section was to derive convergent series
for G00(! ) and DG0(! ) in terms of weighted Gegenbauer wavelets. In the next
section we obtain series for the CRS by accessing the special properties of the
Gegenbauer wavelets.

5. Wavelet expansions for the continuous relaxation spectrum

The nth degree Gegenbauer polynomial of order� may be de�ned by the
Rodrigues formula [see 20]

C( � )
n (t) =

(� 2)n

n!
�( n + � )�( n + 2 � )

�( � )�(2 n + 2 � )
(1 � t2) � � + 1

2
dn

dtn [(1 � t2)n + � � 1
2 ]: (5.1)

Of the many relations shared by these polynomials we shall require thefollowing
two identities:

(1 � t2)
d
dt

C( � )
n (t) = ( n + 2 � )tC ( � )

n (t) � (n + 1) C( � )
n +1 (t); (5.2)

2(n + � )tC ( � )
n (t) = ( n + 1) C( � )

n +1 (t) + ( n + 2 � � 1)C( � )
n � 1(t): (5.3)

In consequence of (4.24) the operatorD can be written

D =
d

d ln !
= � � 1(1 � t2)

d
dt

; t = tanh[ � � 1ln(
!
! 0

)]: (5.4)
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Hence, from (5.2) and (5.3) we can deduce

D ( � )
n (x) = � � 1[An � 1 ( � )

n � 1(x) + Bn +1  ( � )
n +1 (x)]; (5.5)

where An and Bn are constants de�ned by

An =
n(n + 2 � )

2(n + � + 1)
; and Bn = �

n(n + 2 � )
2(n + � � 1)

: (5.6)

Di�erentiating once more, we �nd

D 2 ( � )
n (x) = � � 2[� [1]

n; � 1 ( � )
n � 2(x) + � [1]

n 0 ( � )
n (x) + � [1]

n 1 ( � )
n +2 (x)]; (5.7)

where

� [1]
n; � 1 = An � 1An � 2; � [1]

n 0 = An � 1Bn + An Bn +1 ; ; and � [1]
n 1 = Bn +1 Bn +2 : (5.8)

For r � 1, the corresponding expression forD 2r  ( � )
n (x) is

D 2r  ( � )
n (x) = � � 2r

rX

k= � r

� [r ]
nk  ( � )

n +2 k (x); (5.9)

where the constants� [r ]
nk are computed from the recurrences

� [r +1]
nk = � [r ]

n;k +1 � [1]
n +2 k+2 ;� 1 + � [r ]

nk � [1]
n +2 k; 0 + � [r ]

n;k � 1� [1]
n +2 k � 2;1; (5.10)

for � (r + 1) � k � r + 1 ;

with the constraint that
� [r ]

nk = 0 if jkj > r: (5.11)

The constants � [r ]
nk grow like n2r , which reects the fact that di�erentiation of

order 2r has an associated degree of ill-posedness equal to 2r .

Substituting (5.9) into (4.11) gives

D 2r G00
N (! ) = � � 2r

NX

n =0

rX

k= � r

� [r ]
nk a( �;N )

n  ( � )
n +2 k (x): (5.12)

Finally we may obtain a wavelet expansion for the CRS from (3.3), in the form

HN (! � 1) =
2
�

NX

n =0

1X

r =0

rX

k= � r

� ( �;N )
nrk  ( � )

n +2 k (x); (5.13)

where the coe�cients � ( �;N )
nrk are given by

� ( �;N )
nrk = ( � 1)r

� �
2

� 2r � � 2r

(2r )!
� [r ]

nk a( �;N )
n ; (5.14)
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and it is understood that � [0]
n 0 = 1.

For �xed n, the coe�cients � ( �;N )
nrk decay at a rate no slower than

[(2r )!] � 1(� � 1 �
2 N )2r as r increases, while, for �xed r , they decay like n� 2� as n

increases. It can be shown that the coe�cientsa( � )
n decay at a rate marginally

slower than n� � + 1
2 as n increases. For �xed N , therefore, the series (5.13)

converges. However, the reader should not be deceived by this seemingly
benign attribute. The formula (5.13) is, in e�ect, a high-order di�er entiation
rule, as is evident from (3.3). It carries in its implementation a noise ampli-
�cation factor which grows rapidly with N . We shall return to this in Section 6 .

A discussion of convergence of the series (5.13) in the limitN ! 1 is
beyond the scope of this paper. In working with exact data it is possible to
demonstrate numerical convergence with increasingN . On the other hand, in
working with experimental data, both N and r must be kept �nite. We shall
give further details in Sections 6 and 7.

We may obtain a second wavelet expansion for the CRS from (3.4), in the
form

HN (! � 1) =
NX

n =0

1X

r =0

rX

k= � r

� ( �;N )
nrk  ( � )

n +2 k (x); (5.15)

where the coe�cients � ( �;N )
nrk are given by

� ( �;N )
nrk = ( � 1)r

� �
2

� 2r � � (2 r +1)

(2r + 1)!
� [r ]

nk b( �;N )
n : (5.16)

This expansion also converges for �xedN . Like (5.13), the formula (5.15) is, in
e�ect, a high-order di�erentiation rule with an associated noise ampli�cation
factor.

We have therefore achieved our goal of presenting computable inversionfor-
mulae for the CRS in terms of the coe�cients in the wavelet expansions for
G00(! ) and DG0(! ), where it is not necessary to di�erentiate the data to obtain
the coe�cients for DG0(! ). In the next section we shall validate the series (5.13)
and (5.15) numerically.

6. Numerical validation

We �rst address the question of how to choose the scaling parameter� . In
Section 2 , the wavelet  � (� � 1x) had a single associated scale� , which was
chosen in the range 0< � < 1. However, the wavelet ( � )

n (x) contains multiple
scales ranging from the largest value of� (2� + 1) � 1 to the smallest value of
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approximately � (n+2 � +1) � 1. To account exactly for the asymptotic behaviour
of G0(! ) and G00(! ) as ! ! 0 and ! ! 1 , it is necessary to choose

� (2� + 1) � 1 = 1 : (6.1)

This means that in the context of Gegenbauer wavelets we must choose� � 4
to provide exact asymptotics for G0(! ) and G00(! ). However, when smoothing
experimental data over a limited range of frequencies, exact asymptotics become
marginally less important, and can give way to optimal smoothing and regular-
ization criteria. When working with experimental data, therefore, we relax the
constraint (6.1) a little and allow

0:8 < � (2� + 1) � 1 < 1:2: (6.2)

Once a regularized CRS has been determined, the models forG0(! ) and G00(! )
can be postprocessed using (1.3) and (1.4), and the exact asymptotics restored.

Another important practical consideration is how many derivatives to
include in the series (3.3) and (3.4). Our numerical experiments have shown
that, for �xed N , the series (5.13) converges rapidly with respect tor . The
series (5.15) converges even faster, as should be evident by comparing the
dependence onr of the coe�cients in (5.14) and (5.16). Numerical convergence
is obtainable in (5.13) with r � 5, and is obtainable in (5.15) with r � 4. This
means that derivatives of order greater than 10 are not required in (3.3) and
order greater than 9 in (3.4). We shall adopt these limits on the highest order
of di�erentiation throughout.

A third question concerns the consistency of the two spectra obtained from
(3.3) and (3.4), and implemented via (5.13) and (5.15), respectively. To avoid
confusion we refer to the spectrum obtained from the loss modulus alone, i.e.
from (5.13), as the loss spectrum and that obtained from the storage modulus
alone, from (5.15), as thestorage spectrum. In a perfect scenario, working
with data than can be di�erentiated without error, the two spectra w ould be
in perfect agreement. However this can never be the case, since we must work
with sampled data which is subject to observational or computational error.

Suppose, �rst, that we have determined the loss modulus from (5.13).The
spectrum can be used to recompute (postprocess) bothG0 and G00 from (1.3)
and (1.4). The postprocessedG00 should agree with the original loss modulus
data used to determine the loss spectrum. The postprocessedG0 should also be
consistent with the storage modulus data which was not used in determining
the loss spectrum. The same scenario holds when the storage modulus is
obtained from (5.15). The postprocessedG00should be consistent with the loss
modulus data which was not used in its determination.

The overall consistency of �t to both sets of data is e�ectively optim ized by
taking a weighted average of the loss spectrum and the storage spectrum.The
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choice of weights depends on the relative quality of theG0 and G00-data, the
sampling points, and to some extent the range of frequencies sampled.Let � be
a number between 0 and 1, and consider a weighted average of the storage and
loss spectra in the form

H � = (1 � � )H storage + �H loss :

Let �G0
� and �G00

� denote the storage and loss moduli calculated fromH � , and let K
denote the number of sampled frequencies! k . Following a standard approach,
the weights � and 1� � can be chosen to minimize the combined sum of squared
residuals

KX

k=1

[(1 �
�G0

� (! k )

G0(! k )
)2 + (1 �

�G00
� (! k )

G00(! k )
)2]:

In this section, we look at synthetic data from a known spectrum, namely
the double log-normal spectrum of Honerkamp and Weese [15], given by

H (� ) =
1

2
p

(2� )
f exp[�

1
2

(ln � � ln � 1)2] + exp[ �
1
2

(ln � � ln � 2)2]g; (6.3)

where the two peaks are centred at� 1 = 5 � 10� 2, (ln � 1 = � 2:996) and � 2 = 5,
(ln � 2 = 1 :609), and are of equal height. The spectrum is normalized so that

G0(1 ) =
Z 1

�1
H (� )d ln� = 1 : (6.4)

G0(! ) and G00(! ) are calculated by numerical quadrature to 8 signi�cant
�gures at 30 values of frequency in the range 10� 2 � ! � 103 corresponding to
equal spaced values of ln! in the range � 6:91 < ln ! < 6:91, with a sampling
interval of 0.476. We have chosen exactly the same frequency sampling points
as reported in McDougall et al [21]. We shall refer to this data set asprecision
data since the noise level is less than 5� 10� 9. We shall quote all frequencies
and relaxation times in natural-log values.

The purpose of a reference frequency! 0 is to estimate where the central
point of the recovered spectrum should be. If the central point is ln � 0, then
! 0 should be chosen so that ln! 0 = � ln � 0. If possible we look for extrema in
the G00-data. If there is only one maximum, this gives an indication of where
! 0 should be chosen. Similarly if there is only one minimum. If there are more
than two maxima or minima, the situation is less clear, but some centralpoint
within the range of the outlying extrema should be chose for! 0. Figure 6
shows the exact spectrum for the double log-normal CRS in black points.The
sampled precision data forG0 is shown in blue points, and those forG00 in red
points. When looking at G00(! ) it is obvious that there is a minimum halfway
between the two peaks, i.e. at ln! = 0 :6935. We choose this value for ln! 0.
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We now collect together the steps needed to apply the derivative spec-
troscopy approach we have developed in previous sections. We describe two
simple algorithms, one for recovering the loss spectrum from theG00-data, and
the other for recovering the storage spectrum from theG0-data. It is usually
necessary to implement the loss spectrum algorithm �rst.

The loss spectrum algorithm
Step 1 . ChooseN , � , ln ! 0 and � .
Step 2 . Find the N +1 coe�cients f a( �;N

n )gN
n =0 by least-squares �t of the model

(4.11) to the G00-data.
Step 3 . Compute the loss spectrum from (5.13) withr in the range 0� r � 5.
Step 4 . Test the compatibility of the recovered spectrum HN with both sets
of data G0 and G00, i.e. compute

�G0
N (! ) = 1

2 [1 + tanh(ln ! )] � HN (! � 1); (6.5)
�G00

N (! ) = 1
2 sech(ln! ) � HN (! � 1); (6.6)

and obtain some measure of the discrepanciesG0(! ) � �G0
N (! ) and G00(! ) �

�G00
N (! ).

Step 5 . If the discrepancies in Step 4 are below a chosen tolerance level,stop.
Otherwise return to Step 1 and repeat Steps 1 - 5.
Step 6 . Calculate an estimated value forG0(1 ) using

G0(1 ) �
Z 1

�1
HN (� )dln�: (6.7)

The storage spectrum algorithm
Step 1 . Include an extra datum in the G0-data set, namely the value ofG0(1 )
calculated at the end of the loss spectrum algorithm. This is requiredto achieve
consistency between the values ofG0(1 ) obtained from both algorithms.
Step 2 . ChooseN , � , ln! 0 and � .
Step 3 . Find the N + 1 coe�cients f b( �;N

n )gN
n =0 by least-squares �t of the

model (4.22) to the G0-data.
Step 4 . Compute the storage spectrum from (5.15) with r in the range
0 � r � 4.
Step 5 . Test the compatibility of the recovered spectrum HN with both sets
of data G0 and G00, i.e. compute �G0

N (! ) and �G00
N (! ) from (6.5) and (6.6), and

obtain a measure of the discrepanciesG0(! ) � �G0
N (! ) and G00(! ) � �G00

N (! ).
Step 6 . If the discrepancies in Step 5 are below a chosen tolerance level,stop.
Otherwise return to Step 2 and repeat Steps 2 - 6.

Let 
 represent the set of sampled frequencies. As measures of the discrep-
ancies between the sampled data and their continuous representationby the
models (6.5) and (6.6), we take the two values

� 0
N = max

! 2 

jG0(! ) � �G0

N (! )j and � 00
N = max

! 2 

jG00(! ) � �G00

N (! )j: (6.8)
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For the precision data, we take as an acceptable tolerance level the value
5 � 10� 5 which is 0:01% of the mean value ofG0. Applying the loss spectrum
algorithm to the precision G00-data, we choose� = 4, ln ! 0 = 0 :6935, as
previously discussed, and� = 3

2 . N is increased until the chosen tolerance
level is reached, which occurs whenN = 16 with � 0

N = 1 :5 � 10� 5 and
� 00

N = 5 :4 � 10� 6. The wavelet expansion which representsG00 is shown as the
red curve in Figure 5, a linear plot of the loss spectrumH16 is shown as a
continuous black line in Figure 6, and the corresponding curves for�G0

16 and
�G00

16 are shown in blue and red, respectively, in Figure 6. A log-log plot of the
loss spectrum, compared with the exact spectrum, is shown in Figure 7. The
maximum error in the recovered loss spectrum is 4:8� 10� 4, which is consistent
with a noise ampli�cation factor of about 100. The value of G0(1 ) obtained
from H16 is 0.9994, compared with the exact value of 1.

Normally, a noise ampli�cation factor of 100 would not be sustainable.
However, it is acceptable when� 0 and � 00 are as small as 10� 5 which is the
case with the precision data. With the value ofN as high as 16, the recovered
spectrum is also highly sensitive to small changes in� . When working with
the storage spectrum algorithm, a value ofN = 16 again gives acceptable
results with ln ! 0 = 0.6935 and � = 3

2 , even though the noise ampli�cation
factor is higher, around 300. To achieve plots which are indistinguishablefrom
those in Figures 6 and 7 we need to choose a value of� = 4 :0176, which gives
� (2� + 1) � 1 = 1 :0044, well within the range of (6.2). The wavelet expansion
which representsG0 is shown as the blue curve in Figure 5. The sensitivity
to small changes in� is even greater than previously due to the larger noise
ampli�cation factor.

Fortunately, for smaller values of N , the noise ampli�cation factor can be as
low as O(1). We shall demonstrate this for the noisy data used by McDougall
et al [21], where 4% randomly generated white noise has been added to each
datum for the double log-normal spectrum studied above. (We are gratefulto
these authors for giving us access to their data). The wavelet expansion which
representsG00is shown as the red curve in Figure 8. Figure 9 shows the results
of the loss spectrum algorithm applied to the noisyG00-data. The chosen values
here areN = 6 ; � = 4 :44; ln ! 0 = 0 :6935; and� = 3

2 . The �t to the noisy data
have maximum discrepancies� 0

N = 6 :1 � 10� 2 and � 00
N = 7 :7 � 10� 3, with an

RMS error of �t of 6% for G0 and 4:8% for G00, consistent with the noise level
in the data. The maximum error in the recovered spectrum is 2:2 � 10� 2, with
a noise ampli�cation factor of less than 3. Also, the sensitivity of the recovered
spectrum to small changes in� is much reduced. Finally, the value ofG0(1 )
obtained from H6 is 0.9989, compared with the exact value of 1.

When determining the storage spectrum from theG0-data, two iterations
of the storage algorithm are required. See Figure 8. The choice of parameters
N = 5 ; � = 3 :8; ln ! 0 = 0 :55; and � = 3

2 leads to the results shown in Figure
10. The maximum discrepancy� 0

N is the same as the largest error in the storage
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spectrum, both around 6� 10� 2. This means there is no noise ampli�cation of
signi�cance. The storage spectrum in Figure 10 di�ers from the loss spectrum
in Figure 9, but the �ts to the G0-data and G00-data obtained from it are
virtually unchanged from those determined from the loss spectrum. The value
of G0(1 ) is 1.0107, compared with the exact value of 1. A weighted average of
the two spectra is shown in Figure 11, with a weight of 0.4 given to the loss
spectrum and 0.6 to the storage. The recalculated�G0

N and �G00
N obtained from

this spectrum are shown in Figure 12.

McDougall et al [21] have compared the results of three di�erent methods
for determining this CRS from their noisy G0; G00-data. They compared the
methods of Cho and Park [22] (�xed point iteration); Honerkamp and Weese
[23] (NLREG) and Stadler and Bailly [5] (cubic splines). In the central range of
relaxation times, 0:1 < � < 10, our result in Figure 11 shows greater accuracy
than the three methods quoted by McDougall et al. Outside this range our
result shows comparable accuracy.

7. Working with experimental data: the e�ect of limited sampling.

The sampled synthetic data in the previous example spanned su�cient
frequencies for the CRS to be recovered without any end-e�ects due to a
limited frequency range. In this section we work with a limited range of
experimental data. We use the data published by Honerkamp and Weese [15]
for a polybutadiene blend, which we refer to as PBD1. This choice of data
enables us to compare results generated in this section with published results
obtained by other methods.

The experimental data and their wavelet expansion representations
are shown in Figure 13. There are 17 sampled frequencies, in the range
2:413s� 1 < ! < 1114s� 1, or 0:91 < ln ! < 7:02. The G00-data show a single
maximum in the region of ln ! = 4. The loss spectrum, storage spectrum and
averaged CRS are shown separately in Figure 14. The parameters in determin-
ing the loss spectrum areN = 5 ; � = 3 :4; ln ! 0 = 3 :95 and � = 3

2 , and in
determining the storage spectrum areN = 5 ; � = 3 :64; ln ! 0 = 4 :34 and� = 3

2 .
Both loss and storage spectra show small end-oscillations. The averaged spec-
trum is therefore truncated at a terminal relaxation time of ln � = � 2:6. The
G0- and G00-models calculated from this spectrum shows excellent reproducibil-
ity of the data, as seen from Figure 15. Linear plots are shown in Figure 16.

Previously published results on the PBD1 spectrum may be found in the
papers by Honerkamp and Weese [15] using Tikhonov regularization, Davies
and Goulding [7] using wavelet regularization, and Anderssenet al [9] using
Gureyev iteration. The spectrum in Figure 16, obtained using the algorithms
described in Section 6, is in excellent agreement with the spectra found in
[7] and [9]. All three spectra are non-negative and bimodal with the larger
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peak positioned at a relaxation time � 1 = 1 :7 � 10� 2 in all three cases. To
compare the spectrum of Figure 9 with that obtained by Honerkamp and
Weese, the spectrum needs to be normalized. The comparison is made in
Figure 17. In the Honerkamp and Weese spectrum the position the larger
peak is more di�cult to determine but is clearly quite close to the value
� 1 = 1 :7 � 10� 2 obtained by the three other methods. However, the nature
of the �lter associated with Tikhonov regularization makes the Honerkamp
and Weese spectrum broader than the spectra determined by the other methods.

The theory of sampling localization (see [21] and [24]) tells us that the larger
of the two peaks lies within the reduced reciprocal range of the sampled frequen-
cies. Accuracy, on the other hand, depends on the method of calculation,as is
evident from Figure 14. However, we may accept the existence and position of
the larger peak with con�dence. The situation with regard to the smaller of the
two peaks is not so clear, since it lies outside the reduced reciprocal range of the
sampled frequencies. All four methods determine di�erent values for the posi-
tion of this peak, namely � 2 = 1 :5� 10� 3 in Figures 14 and 16,� 2 = 1 :4� 10� 3 in
[9], � 2 = 1 :2� 10� 3 in [7] and � 2 � 8� 10� 4 in [15]. The accuracy of the smaller
peak can be guaranteed only if the extrapolations of theG0- and G00-data in
Figure 16 are themselves accurate. Since extrapolation must be viewedwith
caution, we cannot accept the accuracy of the smaller peak with con�dence,
even though it provides an excellent �t to the G0- and G00-data in the measured
range.

8. Conclusions

We �rst make some general remarks in way of summary and guidance.

Under certain conditions, a CRS can be expressed as a continuous analytical
function. Under the constraint (2.3), it is always possible to express the CRS
as the in�nite limit of a sequence of �nite series of suitable basis functions.
In general, convergence to the limit can be in a least-squares sense.However,
under further regularity conditions, there will always be a subsequence which
converges pointwise to the CRS almost everywhere.

Throughout the paper, the parameter N governs the number of terms
in the wavelet expansions for G0 and G00. There are N + 1 terms in the
expansion, the initial term being a strictly positive scaling function, and the
remaining terms being wavelets of di�erent scales. In calculating the CRS,
10th order derivatives are used in the loss algorithm and 9th order derivatives
in the storage algorithm. In these algorithms, either an absolute measure
of discrepancy, or a relative measure can be used. In the examples we have
studied, the absolute measure is the more informative, but there isvery little
di�erence in the outcome whichever measure is adopted.
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When either algorithm is repeated, the parameterN , the scaling parameter
� and the reference frequency! 0 should be reset. We have never needed to reset
the order, � , of the Gegenbauer wavelet. A value of� = 3

2 has been optimal
in the examples studied. Best practice is to change one setting at a time. N
requires very little change. If N is too large, the noise ampli�cation will be too
high, and, unless the data is exact, unphysical oscillations will emerge in the
recovered spectrum. The ampli�cation factor can only be calculated when the
noise level is known in advance, as in Section 6. But the information provided
in Section 6 does give a guide for the growth of the ampli�cation factor with N
in general. More details concerning noise ampli�cation can be found in [1]and
[2]. Varying � and ! 0 is straightforward because their values are constrained.
The range for � is given by (6.2), while the optimal ! 0 normally resides
within a decade either side of the central measured frequency. Ifthe range of
frequencies is severely limited, however, the optimal value of! 0 could be close
to the highest measured frequency.

For noisy data, the inclusion of an estimate for G0(1 ) in the G0-data set
improves the statistical correlation between the two wavelet expansions forG0

and G00. The �nal weighted average spectrum acts as a single model, which (i)
delivers full statistical correlation between �G0 and �G00and (ii) generates moduli
which satisfy the Kramers-Kronig relations exactly.

In this paper we have demonstrated that the link between waveletsand
derivatives can facilitate the successful application of high-order derivative
spectroscopy to CRS recovery. In [9], Anderssenet al make the remark \...in
practice, working with experimental data, it would be prohibitivel y challenging
to employ derivative-based formulae of order higher than 2 or 3." Whereasthis
remark is true in general terms, there are circumstances when the challenge is
not prohibitive, as we have shown. In equations (3.3) and (3.4) the contribution
of the r -th derivative is weighted down by a factor (r !) � 1. Thus the contribution
of the 8-th derivative carries a weight of O(10� 5) compared to the weight of
the second derivative, while the 10-th derivative carries a weight ofO(10� 7)
compared to the weight of the second derivative. This, combined withthe
properties of the specially constructed wavelet smoothing, explains why the
application of high-order derivative spectroscopy is not only achievable, but is
also a relatively straightforward approach to CRS recovery.

The method of wavelet regularization and other methods such as cubic
spline regularization depend on a judicious choice of nodes in the numerical
approximation, which can prove a lengthy computational process. One ofthe
advantages of the approach presented in this paper is that the selection ofnodal
distributions is not required. The method of derivative spectroscopy described
in this paper is based on exact inversion formulae for the CRS and depends
on the selection of four key parameters:N , � , ! 0, and � . Furthermore, the
recovered CRS,HN , is expressible in closed analytic form, as are the functions
�G0

N and �G00
N [see (6.5) and (6.6)] which reproduce the analytic curves forG0
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and G00from the spectrum. We have demonstrated that the method presented
in this paper is straightforward in its implementation and has advantages over
other methods in the literature.

The calculations in this paper were performed on a laptop with 4GB
RAM and dual-core processor operating at 1.8GHz. The code was written in
MAPLE, and CPU-time per iteration for the loss and storage algorithms varied
between 5 and 10 seconds.
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9. Figures
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Figure 1: (i) The wavelet � D 2sech(x) ( );(ii) the wavelet  � ( 4
3 x) de�ned by (2.7) ( � � � )

Figure 2: Left: First four even-order approximations in the Schwarzl-Staverman delta-sequence (1.8)
( ); Right: First four approximations in the Maclaurin delta- sequence (3.1); � = 1 ( ).
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Figure 3: Left: First four approximations in the Maclaurin d elta-sequence (3.1); � = 1 ( );
Right: First four approximations in the Maclaurin delta-se quence (3.2); � = 1 ( ).

Figure 4: Two weighted Gegenbauer wavelets  ( � )
n (x) with � = 3

2 : (i) n=4 ( ); (ii) n=16
( ).
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Figure 5: Precision G0; G00� data for double log-normal spectrum, with their wavelet exp ansion representations.
N = 16, � = 3

2 , � = 4.

Figure 6: (i) Linear plot of exact double log-normal spectru m and its recovered loss spectrum, with � = ! � 1 .
(ii) Precision G0-data and �G0 recalculated from loss spectrum. (iii) Precision G00-data and
�G00 recalculated from loss spectrum. N = 16, � = 3

2 , � = 4.
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Figure 7: (i) Log-log plot of exact double log-normal spectr um and its recovered loss spectrum in Figure 6.

Figure 8: Noisy G0; G00� data for double log-normal spectrum, with their wavelet exp ansion representations.
Two iterations required for G0 -representation.
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Figure 9: (i) Linear plot of exact double log-normal spectru m and its loss spectrum recovered from noisy data,
with � = ! � 1 . (ii) Noisy G0-data and �G0 recalculated from loss spectrum. (iii) Noisy G00-data
and �G00 recalculated from loss spectrum. N = 6, � = 3

2 , � = 4 :44.

Figure 10: (i) Linear plot of exact double log-normal spectr um and its storage spectrum recovered from noisy data,
with � = ! � 1 . (ii) Noisy G0-data and �G0 recalculated from storage spectrum. (iii) Noisy
G00-data and �G00 recalculated from storage spectrum. N = 5, � = 3

2 , � = 3 :8.
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Figure 11: Log-log plot of exact double log-normal spectrum and its recovered weighted average spectrum
(40% loss, 60% storage) .

Figure 12: Noisy data for double log-normal spectrum and the ir recalculated moduli from weighted average spectrum in Fi gure
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Figure 13: PBD1 G0; G00� data with their wavelet expansion representations. Two ite rations
required for G0 -representation.

Figure 14: PBD1 data. Storage spectrum, loss spectrum and th eir weighted average (45% loss,
55% storage).

Figure 15: PBD1 data. G0; G00 recalculated from weighted average spectrum in Figure 14.
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Figure 16: PBD1 data. Linear plot of weighted average spectr um in Figure 14, together with recalculated
G0; G00 .

Figure 17: Normalized PBD1 spectrum from Figure 16 compared with Honerkamp & Weese
spectrum (shown with error bars), from [15] .

31


