Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

The creation and persistence of a misaligned gas disc in a simulated early-type galaxy

van de Voort, F., Davis, Timothy, Keres, D., Quataert, E., Faucher-Giguere, C.-A. and Hopkins, P. F. 2015. The creation and persistence of a misaligned gas disc in a simulated early-type galaxy. Monthly Notices of the Royal Astronomical Society 451 (3) , p. 3269. 10.1093/mnras/stv1217

Full text not available from this repository.

Abstract

Massive early-type galaxies (ETGs) commonly have gas discs which are kinematically misaligned with the stellar component. These discs feel a torque from the stars and the angular momentum vectors are expected to align quickly. We present results on the evolution of a misaligned gas disc in a cosmological simulation of a massive ETG from the feedback in realistic environments project. This galaxy experiences a merger which, together with a strong galactic wind, removes most of the original gas disc. The galaxy subsequently reforms a gas disc through accretion of cold gas, but it is initially 120° misaligned with the stellar rotation axis. This misalignment persists for about 2 Gyr before the gas–star misalignment angle drops below 20°. The time it takes for the gaseous and stellar components to align is much longer than previously thought, because the gas disc is accreting a significant amount of mass for about 1.5 Gyr after the merger, during which the angular momentum change induced by accreted gas dominates over that induced by stellar torques. Once the gas accretion rate has decreased sufficiently, the gas disc decouples from the surrounding halo gas and realigns with the stellar component in about six dynamical times. During the late evolution of the misaligned gas disc, the centre aligns faster than the outskirts, resulting in a warped disc. We discuss the observational consequences of the long survival of our misaligned gas disc and how our results can be used to calibrate merger rate estimates from observed gas misalignments.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Physics and Astronomy
Subjects: Q Science > QB Astronomy
Publisher: Oxford University Press
ISSN: 0035-8711
Funders: STFC
Date of Acceptance: 27 May 2015
Last Modified: 15 Mar 2019 14:45
URI: http://orca.cf.ac.uk/id/eprint/87966

Citation Data

Cited 27 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item