Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Supramolecular wiring of Benzo-1,3-chalcogenazoles through programmed chalcogen bonding interactions

Kremer, Adrian, Fermi, Andrea, Biot, Nicolas, Wouters, Johan and Bonifazi, Davide ORCID: https://orcid.org/0000-0001-5717-0121 2016. Supramolecular wiring of Benzo-1,3-chalcogenazoles through programmed chalcogen bonding interactions. Chemistry: A European Journal 22 (16) , pp. 5665-5675. 10.1002/chem.201504328

[thumbnail of Text Revised (002).pdf]
Preview
PDF - Accepted Post-Print Version
Download (4MB) | Preview

Abstract

The high-yielding synthesis of 2-substituted benzo-1,3-tellurazoles and benzo-1,3-selenazoles through a dehydrative cyclization reaction has been reported, giving access to a large variety of benzo-1,3-chalcogenazoles. Exceptionally, these aromatic heterocycles proved to be very stable and thus very handy to form controlled solid-state organizations in which wire-like polymeric structures are formed through secondary N⋅⋅⋅Y bonding interactions (SBIs) engaging the chalcogen (Y=Se or Te) and nitrogen atoms. In particular, it has been shown that the recognition properties of the chalcogen centre at the solid state could be programmed by selectively barring one of its σ-holes through a combination of electronic and steric effects exerted by the substituent at the 2-position. As predicted by the electrostatic potential surfaces calculated by quantum chemical modelling, the pyridyl groups revealed to be the stronger chalcogen bonding acceptors, and thus the best ligand candidate for programming the molecular organization at the solid state. In contrast, the thiophenyl group is an unsuitable substituent for establishing SBIs in this molecular system as it gives rise to chalcogen–chalcogen repulsion. The weaker chalcogen donor properties of the Se analogues trigger the formation of feeble N⋅⋅⋅Se contacts, which are manifested in similar solid-state polymers featuring longer nitrogen–chalcogen distances.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Chemistry
Subjects: Q Science > QD Chemistry
Publisher: Wiley
ISSN: 0947-6539
Date of First Compliant Deposit: 5 April 2016
Date of Acceptance: 22 February 2016
Last Modified: 06 Jan 2024 16:31
URI: https://orca.cardiff.ac.uk/id/eprint/88835

Citation Data

Cited 64 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics