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Abstract The retrieval of non-rigid 3D shapes is anKimmel [9] proposed a bending invariant 3D embedding
important task. A common technique is to simplify thisof a mesh, named eanonical form The canonical form
problem to a rigid shape retrieval task by producing af a mesh effectively standardises its pose, and therefore
bending invariant canonical form for each shape in thevhen a canonical form is computed for each shape in a
dataset to be searched. It is common for these techniquesdataset the non-rigid retrieval problem becomes a rigid
attempt to “unbend” a shape by applying multidimensionatetrieval problem. This means that any of the wide range
scaling to the distances between points on the mesh, bot rigid shape retrieval methods available are then able to
this leads to unwanted local shape distortions. We instegzerform retrieval on this data. There are two issues with the
perform the unbending on the skeleton of the mesh, anthnonical form method by Elad and Kimmel. The rstis that
use this to drive the deformation of the mesh itself. Thist requires the geodesic distance between all pairs of vertices
leads to a computational speed-up and less distortions tif be computed, which hassaper-quadraticomputational
the local details of the shape. We compare our methocomplexity. The second issue is that the small scale local
against other canonical forms and our experiments show thdetails of the shapes are lost in the canonical form.
our method achieves state-of-the-art retrieval accuracy in a In this paper we address both these issues by applying
recent canonical forms benchmark, and only a small drofhe method by Elad and Kimmel to the skeleton of the
in retrieval accuracy over state-of-the-art in a second recentesh, rather than to the mesh itself. The pose of the mesh
benchmark, while being signi cantly faster. is then deformed by the pose of the resulting canonical
. . skeleton. This is far more ef cient because the skeleton
Keywords canonical forms, shape retrieval, skeletons, pose ) . .
invariance. of a mesh contains far fewer vertices than the mesh itself,
resulting in far fewer geodesic distance computations. Less
shape details are distorted, because the method effectively
produces a set of canonical angles at the articulated joints
1 Introduction of the shape, and the shape deformations are localised to

) o ) these joint regions. This leads to an increased retrieval
The task of example based retrieval of non-rigid objects 'ﬁerformance on a recent canonical forms benchmark [21].

both a key problem to solve and a challenging one. There areThe structure of our paper is as follows. Section 2
increasing numbers of 3D shape collections being creategyines the related work in this area, Section 3 describes
so the ability to search these collections is an mcreasmgl%e technical details of our method, Section 4 presents the

|mp.ortant ta-sll<. There haye been many succe;ses in tF@’sults of our experiments, and we make our conclusions in
retrieval of rigid objects, with methods such as view base%ection 5

techniques proving very successful [14]. The problem
is that many of these techniques cannot be applied 8 Related Work

non-rigid shape retrieval. To address this issue Elad and , , i
There are many works which aim to solve the retrieval

problem for rigid shapes, such aght eld descriptors [7]
1 School of Computer Science and Informaticsandspin imageg§12]. We refer readers to [14] and [28] for
Cardiff  University, ~ Cardiff, ~CF24 3AA, UK. E- detailed reviews of this eld of research.
'F?a"f oL ECKS%D@CErﬁ/'Iﬁ'a_C'F‘;E S“;;f(z@csrd'ﬁ'ac'”k' In recent years more research has concentrated on
osin: @ ardiit.ac.ux, artinRR@ Cardiff.ac. uk. the problem of retrieving non-rigid models. Several
Manuscrlpt received: XXXX-XX-XX; accepted: XXXX-XX-XX.
methods extract local features from a mesh to compute a
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2 David Pickupet al.

shape descriptor [6], includingeshSIFT[26], conformal the pose of the shape's skeleton, rather than performing
factors [3], area projection transformg10] and heat the computation on the mesh vertices. This causes less
kernal signatures[27]. Computing histograms of local distortion to the local shape details compared with other
features has proven to perform very well in recent retrievamethods, whilst providing a practical level of ef ciency.
benchmarks [18, 20].

Graphs have also been used as shape descriptors.dﬂilg§ Method

al. [11] used multiresolution Reeb graphto match the T describe the workings of our method, we rst give
topology between 3D shapes, and S kasl.[23] proposed  an overview of the canonical form work by Elad and
formulating a graph based on conformal factors [3]. Kimmel [9] in Section 3.1 as our work builds from this

Matching global information of 3D shapes has alsoapproach. We then detail our novel skeleton-based approach
proved successful. Reutet al. [22] demonstrated that the jn Section 3.2.

Laplace-Beltrami spectra can be used as a shape descriptor,

which they nam&hapeDNAVarious global descriptors can 3.1 Background

also be extracted from the geodesic distance matrix of a Our method extends the canonical form work by Elad

mesh, as shown by Smeetisal. [25]. and Kimmel [9]. Their method transforms the mesh so
For a more detailed review of the latest non-rigidthat the geodesic distance between all pairs of vertices are

retrieval methods, we refer the reader to the recent SHRE®apped to Euclidean distances. To accomplish this they

benchmarks [18, 20]. rst compute the geodesic distance between all pairs of
The use of canonical forms to normalise the pose of normesh vertices using thiast marching methodil3]. Next

rigid shapes was rst proposed by Elad and Kimmel [9].they use multidimensional scaling to calculate a new set

They usemultidimensional scalingo map the geodesic of vertex positions, where the Euclidean distance between

distances of a mesh into 3D Euclidean distances. Sever@fch pair of vertices is as close as possible to the already

variations to this method have been proposed. Shamnai computed geodesic distances. They show results with three

al. [24] accelerate the classical MDS procedure using thefdifferent multidimensional scaling techniques, but the one

proposedNystidbm Multidimensional Scalindramework. which tends to provide the best results, and which we use in

Lian et al. [17] attempt to preserve the features of a mestour work, solves the multidimensional scaling problem by

by segmenting the original mesh and transforming eachninimising the following least squares functional:

segment to its location in the canonical mesh computed _ KX o ) )

using Elad and Kimmel's method, thus correcting some of S(X) = wij Cij o dig (X)% 1)

the local shape distortions. Wang and Zha [29] speed up the . =L j=i . I
. . ; .where N is the number of verticesyw;; are weighting
canonical form computation by only computing geodesic . : - ' .
. . . E;oef cients, j; is the geodesic distance between vertices
distances between all pairs of a set of detected feature points, . - . . .
. . <’;[ll’ldj of the original mesh, and; is the Euclidean distance
and unbending the mesh by creating target axes used {0

align sets of geodesic contours. Pic | [19] also use between verticesand] of the resulting canonical mesh.

feature points, but restrict their number to the square root 6I]:h|s functional is minimised using fBMACOR(scaling by

the number of mesh vertices. They maximise the distancrgammsmg a cgnvex functlpn) algorithm [.4]'
This method is computationally expensive to compute, as

between pairs of these feature points whilst preserving tht% desic dist lculate®iN 2 loa N fi
mesh's edge lengths. Boscagtial. [5] proposed a method € geodesic distances are calculate®{N “logN ) time

. - . 2
which assigns a repelling electrical charge at each vertex 8_‘Pd each iteration of the SMACOF algorithm G(N )

. time. As this method works on the vertices of the mesh,
the mesh to form a canonical form. They are also able tg ) . L
it deforms the details of its shape as well as normalising its

correct certain very small localised topological errors in the h detail be i tant wh vsing th
mesh, by cutting parts of the mesh which are likely to hav&2>¢: ese detalls may be important when analysing the

been incorrectly joined. Their method is faster than Elaghape of the object.
and Kimmel's, but still suffers from distorting local shape3.2 Skeleton Canonical Forms

details. There is also work on parallelising or speeding Tpe purpose of computing a canonical form is to

up the computation of geodesic distances [8, 31]. ReceRfymalise the pose of a 3D object. The pose of an object

benchmarks [15, 18] have shown that using canonical formgyy pe de ned as the articulation of the object's skeleton.
along with the view-based shape retrieval method by B@an Thjs |eads us to our method, which normalises the pose

al. [16] performs very competitively compared with other ot 4 opject by transforming it so that its skeleton is in a

non-rigid retrieval_ approaches. ~ normalised pose. The stages of our method are depicted
Our method differs from those above by normalising, Figure 1. We rst extract the skeleton of the mesh

@& -
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Skeleton-based canonical forms for non-rigid 3D shape retrieval 3

(a) Extract the skeleton from the mesh. (b) Compute the canonical skeleton. (c) Deform the mesh using the skeleton.

Fig. 1 Outline of our method.

(Section 3.2.1), then transform the skeleton into a canonicélllly automatic, does not require any vertex weights to be
form (Section 3.2.2), and nally deform the mesh accordingassigned, and does not have any parameters which require
to the skeleton transformation (Section 3.2.3). training or manual-tuning. This works by rst assigning
3.2.1 Skeleton Extraction each triangle to a bone of the original skeleton, and then
We rst extract the mesh's skeleton using the methooca_IC_UIating the trar_usformation of each bone _between the
by Au et al. [1]. This method works by rst contracting original and canonical skeletons. A sparse linear system

the mesh to a zero-volume skeletal shape using Laplacidh then solved, W,h'Ch transforms each ”'a”,g'e accord{ng
smoothing. The mesh is then converted to a 1D curv&o the transformation of its assigned bone whilst preserving

skeleton by removing all the mesh faces while preservinaqe mesh's connectlylty. For the full details of this method,
the skeletal topology please refer to the original paper.
The skeleton is then re ned by merging junctions with Yan et al's method takes into account the translation,

neighbouring joints, if the merged junction has a bettefotation and scaling of the skeleton when deforming the

“centeredness”. A junction is de ned as a joint attachec{neSh' but we ignore scaling and translation as we only

to three or more bones. The centeredness of a junction fare about transforming the articulation of the mesh, and

de ned as the standard deviation of the distances betweelt do not want any stretching of the skeleton caused by

the junction's position and the position of each verte>Jhe canonicalisation to be transfgrrgd to. the mesh. We
assigned to that junction during the skeleton extractioﬁ1IS0 use our own method for as&gmng triangles to bones,
process. A junction is merged with a neighbour ff < because the method by Ym alrequires tha_lt the ends of
0:9 ,where %and are the centeredness of the merged aane skeleton protrude outside the mesh, v_vhl_ch is not_ true for
original junctions respectively. Finally the skeleton jointsOur skeletons, and pecause we can retain mformgﬂon from
are repositioned to better centre them in the mesh. the skeleton extraction procedure to make th.IS assignment.
Please see the original paper for the full details. An The skgleton ext.ra.cnon method results |n. each vertex
example of the resulting skeleton is shown in Figure 1(a). pemg assigned tg aJc,)"?t ofthe skeleton [1]. This aSS|gnment
. is based on which joint each vertex was collapsed into
3.2.2  Skeleton Transformation during the skeleton extraction method. We use these
Next we apply the canonical form method by Elad andhssignments to assign each triangle to a bone of the skeleton,
Kimmel [9] to the skeleton. We use Dijkstra's algorithm t0 a5 required by Yart al's deformation method. For each
compute the geodesic distances between all the joints of th&int we nd all the triangles which have at least one vertex
skeleton, and then use Equation 1 for the multidimensiong|ssigned to that joint. Each triangle is then assigned to one
scaling. An example of this is shown in Figure 1(b). Thisgf the bones connected to that joint. To determine which
still has a high time complexity, but it is related to theof these bones a particular triangle is assigned to, we rst
number of joints in the skeleton instead of the numbega|cylate a plane which bisects each pair of bones that meet
of mesh vertices. In practice this number is signi cantlyat the joint. A triangle is assigned to a particular bone if
smaller, and therefore computing the canonical form of &yo or more of its vertices lie on that bone's side of all
skeleton has a signi cantly shorter runtime. the bisection planes between it and the other bones. This
3.2.3 Mesh Deformation is illustrated in Figure 2. If a triangle does not meet the
Finally we deform the mesh according to the canonica®Ssignment criteria for any of the bones, then one of its
transformation of its skeleton using the method by ¥an neighbours is randomly selected and it is given the same
al. [30]. We use this method as it is simple to implementbone assignment as that neighbour. This is outlined in

& -
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4 David Pickupet al.

Algorithm 1.

Algorithm 1 Algorithm for assigning triangles to bones.
Input: mesh, skeleton, assignment of vertices to joints.
Output: each triangle is assigned to a bone.
for all jointsj in skeletondo

bisectionPlanes;
for all boneshl connected t¢ do
for all bonesh2 connected t¢, wherebl 6 b2 do
bisectionPlanes plane bisectindpl andb2

end for (2) Two neighbour example.
end for

for all trianglest with a vertex assigned fodo

for all bonesh connected t¢ do
if 2 vertices oft fall on b's side of all bisectionPlanes
then

assigrnt tob

end if

end for

if t is unassignethen
randomly select a neighbouring triangieof t

. o
copy bone assignment ofto t
end if (b) Three neighbour example.
end for
end for Fig. 2 Two dimensional illustration of the assignment regions for bone

assignment. The separation planes are shown in red, and the assignment regions
) ] ) _are illustrated in the same colour as the corresponding bone. If at least two
An example of a resulting canonical mesh is shown isertices of a triangle fall within an assignment region, the triangle is assigned to

Figure 1(c). As you can see, the mesh has been placed irif§ corresponding bone.
the canonical pose of the skeleton, but with very little shape
distortion, hence preserving the surface details.

4 Experiments

We compare our skeleton canonical forms to several other
methods using the two most recently developed publicly

vailabl tasets for benchmarking. Firstly we present our
a a_ able datasets for benc a 9 . stly we p ese 0"‘%ab. 1 Comparison of methods on the SHREC'15 canonical forms
retrieval performance on the SHREC'15 canonical form%enchmark [21] using a view-based retrieval method [16]. Original meshes
benchmark [21] in Section 4.1. Secondly we present thefers to performing retrieval without using canonical forms. Our method
results of our experiments on the SHREC'15 non_rigioachlevesthe highest retrieval score on three of the four measures.

retrieval benchmark [18] in Section 4.2. Finally we show NN  FT ST DCG
some limitations of our method in Section 4.3. Original Meshes 0.50 0.567 0.702 0.753
4.1 SHREC'15 Canonical Forms Benchmark ClassicMDS  0.73 1 0.597 0.741 0.796
Fast MDS 0.66 0.590 0.718 0.789
Our method was recently entered into the SHREC'15 Least Squares MDS 0.75 0.694 0.829 0.838
canonical forms benchmark [21]. The purpose of this Non-Metric MDS 0.77 0.687 0.811 0.836
benchmark was to compare the effectiveness of different GPS 0.72 0.556 0.697 0.783
methods at producing canonical forms for 3D shape Euclidean Random 0.54 0.640 0.783 0.793
retrieval. The dataset used for this benchmark contains Euclidean Normalised 0.61 0.673 0.796 0.816
100 meshes, split into 10 different shape classes. Each Least SquaresMDSB 0.66 0.662 0.788 0.813

shape class contains a mesh in 10 different non-rigidOur method - simpli ed meshes 0.74 0.682 0.791 0.825
poses. The average number of vertices per mesh is 21,141. Our method - full meshes 0.77 0.714 0.824 0.849
The dataset contains models from both the SHREC'11

non-rigid benchmark [15], which provides a wide range

of shape classes, and the SHREC'14 non-rigid humans

@& -
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Skeleton-based canonical forms for non-rigid 3D shape retrieval 5

the top2C closest matches, whet2 is the number of

1
models in the query's class.

X Discounted Cumulative Gain (DCG) This weights

08 = b . . . .
W\ - correct matches more if they are higher in the list

il of retrieved results. The DCG is computed by rst

0s | assigning each mod@; in the retrieved lisG a value
5 of 1if itis a member of the query's class, afdf it is
8 not. An initi?l DCG is then computed as
04 | Gi i=1;
Original Meshes —+— DCG| = I . .
Classic MDS DCG; 1+ Gi=log,(i) otherwise:
Fast MDS —X—
Least Squares MDS ~—f—
02 b Non-Metric MDS i (2)
GPS —6— . .
£y udlidean Random  —@— The nal result where = N, whereN is the number
our method (simpl —ed meshes) of models in the dataset, is divided by the optimal DCG
qur method (full m‘eshes) —V‘— ) D C G
0 0 0.2 0.4 0.6 0.8 1 DCG = P N (3)
Recall 1+ © 1=log (i)'
i=2 2

whereC is the number of models in the query's class.
Fig. 3 Precision-recall curves for each method tested on the SHREC'15

canonical forms benchmark [21] using a view-based retrieval method [16]. Our The original submission of our method gave a very
method achieves the best precision for low and high recall values, falling below .. L. . .
least-squares MDS for mid-range recall values. competitive performance, achieving the third highest

retrieval scores behind the least-squares and non-metric

MDS methods which use the mesh's geodesic distances.

_benchmarr [dZ_O]_’ wher:_e tge detallsh of t(;le Shaﬁej ABur updated result, which uses the full resolution meshes,
Important for distinguishing between them. Our metho Wakises our ranking to achieve state-of-the-art results with

one out of ten methods which took part. All the canonlcalhe highest retrieval performance on three of the four

forms from each methgd Were'lnputto awew-bgsed rejme\/%erformance measures. This performance increase is likely
method [16] to test their effectiveness for non-rigid retrleval.Olue to the full resolution meshes containing important

Here we update our results for this benchmark, as we haY}‘?étails which are lost when the mesh is simplied. This

-rewrltten some of our code to improve the §peed of Ouﬁighlights the importance of being able to ef ciently handle
implementation and therefore no longer require the large eshes with a large number of vertices, and using a

meshes (60,000 vertices) contained in the dataset to b%anonical form method which preserves the local details.

simpl e‘f:_’h_Wh'Ch \(/jvas QOnehfor tge O“?m":]l ben;:hr;:arkWe also show the precision-recall curve [2] of each method
Paper. IS speed-up Is achieved purely through c angﬁ%Figure 3. Our method achieves the best precision for low

to our code, with no alterations to the actual algonthm%nd high recall values, falling below least-squares MDS for

used, Th? MDS baseq methO(_js tested all use simpli eﬂﬂd-range recall values as re ected by the slightly lower
meshes with 2,000 vertices as input, as these methods A& ond tier measure in Table 1

too computationally expensive to compute the canonical o _
forms of the full resolution meshes in a reasonable amout2 SHREC'15  Non-Rigid ~ Shape  Retrieval

of time. All the other methods use the full resolution meshes Benchmark

as input. The retrieval results are shown in Table 1. Allthe The SHREC'15 non-rigid benchmark [18] contains a
performance measures produce a value in the intdval  far |arger number of 3D models, and therefore we also
and are de ned as: perform experiments on this dataset. The purpose of this
Nearest Neighbour (NN) The fraction of closest matches P€nchmark was to compare the state-of-the-art methods
which are members of the query model's class. in non-rigid shape retrieval. This dataset contains 1,200
meshes, split into 50 different shape classes. Each
First Tier (FT) The fraction of models which are membersshape class contains a mesh within 24 different non-rigid
of the query model's class that appear within the®p poses. Four meshes in each shape class contain topological
closest matches, whef@ is the number of models in errors, such as disconnected components, or unwanted
the query’s class. connections (Figure 9). The average number of vertices

Second Tier (ST) The fraction of models which are per.mesh is 9’607_' We compare our canoni(.:al forms
members of the query model's class that appear withifgainst those submitted to the SHREC'15 canonical forms

fan §
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6 David Pickupet al.

(a) Original meshes (b) Classic MDS
(c) FastMDS (d) Least Squares MDS
A %
(e) Non-Metric MDS (f) GPS
(g) Euclidean Random (h) Euclidean Normalised

¥ o

(i) Our method

Fig. 4 Example canonical forms for each method tested on the SHREC'15 non-rigid dataset [18].

@ TRINGHUA &) Springer



Skeleton-based canonical forms for non-rigid 3D shape retrieval

(a) Original meshes

(b) Classic MDS

(c) Fast MDS

(d) Least Squares MDS

(e) Non-Metric MDS

(f GPs

(9) Euclidean Random

(h) Euclidean Normalised

(i) Our method

Fig. 5 Example of six canonical forms of the same mesh for each method tested

on the SHREC'15 non-rigid dataset [18].

benchmark [21], as we have their implementations. We
leave out the least squares MDS B method, as it is simply
the same as the least squares method, but with an early
termination from the MDS algorithm which has shown to
decrease the quality of the canonical forms [21].

Figure 4 shows two example meshes and their associated
canonical forms produced using each method. It is
noticeable that the GPS method and the MDS based
methods severely distort the local shape details. The
Euclidean canonical form methods cause slightly less shape
distortions, but sometimes fail to completely stretch out the
limbs of the shape. Our skeleton method achieves a similar
pose to the MDS based methods, but with the least shape
distortions of all the methods.

Figure 5 shows the canonical forms for six meshes from
the “armadillo” shape class of the SHREC'15 non-rigid
dataset, for each of the methods. Our method produces a
similarly consistent pose to least squares MDS, but with
less shape distortions. Our method however does exhibit
some extra inconsistency with respect to the pose of the
head of the armadillo. The classic MDS, Fast MDS, and
GPS methods distort the shape so much it becomes almost
unrecognisable. The Euclidean-based methods distort the
shape details less than all methods except ours, but do not
produce as consistent a canonical pose.

Some of the meshes contained within this dataset have
topological errors to increase the dif culty of the retrieval
challenge. One type of error present in some objects is
that the mesh is disconnected into two or three different
components. The Euclidean distance based methods by
Pickupet al.[19] do not require any modi cation for this,
but all the other methods fail on these meshes. For the
MDS and GPS methods, we therefore delete all but the
largest component. For our skeleton method, we test two
different solutions. The rstis to join the separate skeletons
for each component by merging the closest joints between
components, and the second method is identical to the
solution for the MDS and GPS methods. Figure 6 shows
an example of this problem, where the mouse's head is
disconnected from its body. The methods which only keep
the largest component therefore produce canonical forms
without the presence of the mouse's head. The Euclidean
distance based methods separate out the head and the body,
as there are no edge connections keeping them together. Our
method which connects the skeletons, places the head in an
odd position. This is because, although the skeletons are
connected, the method has no mesh connections to preserve
between the head and the body.

All the canonical forms from each method were input to
a view-based retrieval method [16] to test their effectiveness
for non-rigid retrieval. The retrieval results are shown
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(a) Original mesh (b) Classic MDS (c) Fast MDS (d) Least Squares MDS

(e) Non-Metric MDS (f) GPS (g) Euclidean Random (h) Euclidean Normalised

(i) Our method (join skeletofj) Our method (delete smallest
components) components)

Fig. 6 Canonical forms for a mesh with disconnected components.



Skeleton-based canonical forms for non-rigid 3D shape retrieval 9

Tab. 2 Comparison of methods on the SHREC'15 non-rigid benchmark [18]
using a view-based retrieval method [16]. Original meshes refers to performing
retrieval without using canonical forms. Our method achieves the third highest
retrieval performance, behind two much more computationally expensive
methods.

NN FT ST DCG
Original Meshes 0.984 0.732 0.841 0.927
Classic MDS 0.969 0.731 0.833 0.922
Fast MDS 0.944 0.649 0.766 0.884
Least Squares MDS 0.992 0.863 0.938 0.969
Non-Metric MDS 0.991 0.853 0.929 0.965 "
GPS 0.749 0.453 0.582 0.745 Orginai Meshes 1 '

==

Precision

Euclidean Random 0.975 0.770 0.868 0.936 LS:FM@?
Euclidean Normalised 0.978 0.793 0.884 0.943 02T Noneric DS = i
Our method E_uclidean Ranvdom ——
. 0.986 0.843 0.932 0.963 o method o g CidEon Normlised  ——
(jOIn Skeleton ComponentS) o Ou?me‘(holcllq(ge?ele sgallltles! com;?onen!ls; - )
o) thod ‘ , . 4
urmetnod 4 086 0.844 0.933 0.964 ’ o o o '

(delete smallest components)

Fig. 7 Precision-recall curves for each method tested on the SHREC'15 non-
. . .rigid benchmark [18] using a view-based retrieval method [16]. Our method
in Table 2, and the precision-recall curves are shown iQchieves the third best performance.

Figure 7. Our method achieves the third highest retrieval

performance on this dataset, behind the least squares ahd. 3 Run-time F)f each method on the SHREC"15 non-rig'id benchmark [18].
Ron-Mtc MDS methods. This may be because the detafd, "2 s h second asts e n 1 datael.  Thes
matter less with this dataset, as the difference between
the shape classes is much larger, and therefore keeping
the details may only serve to increase the level of noise
in the result. Using no canonical forms at all achieved
a higher retrieval performance than the classic MDS, fast
MDS and GPS methods, and achieved a higher nearest
neighbour performance than the Euclidean distance based
methods. Such a high performance from a rigid retrieval
method shows that the different shape classes are easily
distinguishable even when the non-rigid nature of the shapes
is ignored. The precision-recall curves show that there is a

noticeable gap in performance between our method, alongrtices. This is because for a single full resolution mesh
with the least squares and non-metric MDS methods, anflese methods take in excess of 20 minutes to compute the
the others. canonical form, and therefore the meshes must be simpli ed

Table 2 shows the performance of both our methodgyr these methods to nish within a reasonable length of
for dealing with disconnected components. We achieve fime. Even with much lower resolution meshes, the MDS
tiny performance increase of 0.001 when only keeping thgased methods are the slowest due to the use of geodesic
largest mesh component. This probably means that this fistances. Our method is the second fastest of all the
a better solution, but as there is only a small proportion ofnethods, being beaten in run-time by the GPS method. The
meshes with this problem (15 out of 1,200), they only makgsps method however performed worst on all our retrieval
a minor impact on the overall performance. experiments.

The timings for each canonical form method on the Our method therefore is signicantly faster than
non-rigid benchmark are shown in Table 3. The methodghe methods which achieved a slightly better retrieval
were run on a Linux PC with an Intel i7-3930K 3.2 GHz performance, and achieves a signi cantly higher retrieval
processor and 32 GB of memory. All methods are primarilyyerformance than the only method which had a faster run-

implemented in Matlab, but with some parts in C++ fortime. We therefore achieve a very good trade-off between
speed. The times for the four MDS based methods afgtrieval accuracy and ef ciency.

for meshes which were simpli ed to approximately 2,000

Single mesh Dataset

Classic MDS* 45 seconds 14 hours, 50 minutes

Fast MDS* 44 seconds 14 hours, 37 minutes
Least Squares MDS* 66 seconds 21 hours, 53 minutes

Non-Metric MDS* 104 seconds 34 hours, 44 minutes

GPS 2seconds 44 minutes

Euclidean Random 23 seconds 7 hours, 37 minutes

Euclidean Normalised 23 seconds 7 hours, 39 minutes
Our method 11 seconds 3 hours, 36 minutes
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(a) Original mesh and skeleton.

(a) Original mesh
(b) Canonical form.

Fig. 8 Example of junctions which have not been correctly joined, and the
impact on the canonical form.

4.3 Limitations

The skeleton re nement step described in Section 3.2.1
does not always merge junctions which are undesirably () FastMDS
separate. An example of this is shown in Figure 8, where
each of the arms and legs of the alligator are connected to
the spine at a different junction. This is likely caused by
the curved pose of the alligator's spine. This leads to the
neck of the alligator not fully straightening out correctly, but
even with this local inaccuracy we still achieve a retrieval
nearest neighbour score of 1 for this mesh. There is room
for future improvement to the skeleton re nement process,
but this is a challenging problem as looser conditions for
junction merging can lead to incorrect merging of junctions
which should be separate.

The SHREC'15 non-rigid benchmark [18] contains some
meshes with topological errors. We have already discussed
meshes which contain multiple components in Section 4.2,
but this dataset also contains meshes where parts of the mesh
are undesirably joined together. Figure 9 shows an example
mesh with this kind of topological error, and the resulting
canonical form produced by each canonical form method we
have tested. It can be seen that the arms of the manikin are
incorrectly fused together along the forearms, which means
that the arms are not correctly separated out by any of the
canonical form methods. There are currently no canonical
form methods that we are aware of which claim to be able
to be able to correct for this level of topological error. The
method by Boscaingt al. [5] proposes a method to handle
errors where the incorrect connections are much smaller.

Our method is designed to work on objects which have
a natural skeletal structure. Figure 10 shows a mesh from
the “paper” class of the SHREC'15 non-rigid dataset. This
mesh does not have a natural skeletal structure, and therefore
our method fails to produce a sensible result. Our method

(e) Non-Metric MDS

10

(b) Classic MDS

(d) Least Squares MDS

(f GPs

(9) Euclidean Random (h) Euclidean Normalised

(i) Our method

Fig. 9 Canonical forms for a mesh with incorrect connections.
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(2]

(4]

(5]

(6]

Fig. 10 Example of a mesh which does not have a natural skeleton structure.

would work for other man-made objects, as long as they
have an obvious skeletal structure.

5 Conclusions [7]

We have presented a novel method for computing the
canonical form of a 3D mesh, which uses the mesh's[g]
skeleton to normalise its pose. We have shown that our
method is able to achieve the same bending invariant pose
as the previous state-of-the-art, whilst causing far less shap@]
distortions than other methods. Our method is not able
to correct for topological errors present in a mesh, angd
therefore there is room for future research in this direction.
The retrieval performance produced using our canonical
forms are competitive with other canonical form methods,
achieving top performance on a recent canonical formg-1]
benchmark. Our method achieves high quality canonical
forms, whilst achieving a signi cantly faster computation
time over the previous state-of-the-art.
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