Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Automated highway tag assessment of OpenStreetMap road networks

Jilani, Musfira, Corcoran, Padraig and Bertolotto, Michela 2014. Automated highway tag assessment of OpenStreetMap road networks. Presented at: ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Dallas, Texas, USA, 4-7 November 2014. Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. pp. 449-452.

Full text not available from this repository.

Abstract

OpenStreetMap (OSM) has been demonstrated to be a valuable source of spatial data in the context of many applications. However concerns still exist regarding the quality of such data and this has limited the proliferation of its use. Consequently much research has been invested in the development of methods for assessing and/or improving the quality of OSM data. However most of these methods require ground-truth data, which, in many cases, may not be available. In this paper we present a novel solution for OSM data quality assessment that does not require ground-truth data. We consider the semantic accuracy of OSM street network data, and in particular, the associated semantic class (road class) information. A machine learning model is proposed that learns the geometrical and topological characteristics of different semantic classes of streets. This model is subsequently used to accurately determine if a street has been assigned a correct/incorrect semantic class.

Item Type: Conference or Workshop Item (Paper)
Status: Published
Schools: Computer Science & Informatics
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Last Modified: 04 Jun 2017 09:01
URI: http://orca.cf.ac.uk/id/eprint/89576

Citation Data

Cited 21 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item