Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy

Bradley, Josephine, Pope, Iestyn, Masia, Francesco, Sanusi, Randa, Langbein, Wolfgang, Swann, Karl and Borri, Paola 2016. Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy. Development 143 , pp. 2238-2247. 10.1242/dev.129908

[img]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract

Mammalian oocytes contain lipid droplets that are a store of fatty acids, whose metabolism plays a substantial role in pre-implantation development. Fluorescent staining has previously been used to image lipid droplets in mammalian oocytes and embryos, but this method is not quantitative and often incompatible with live cell imaging and subsequent development. Here we have applied chemically specific, label-free coherent anti-Stokes Raman scattering (CARS) microscopy to mouse oocytes and pre-implantation embryos. We show that CARS imaging can quantify the size, number and spatial distribution of lipid droplets in living mouse oocytes and embryos up to the blastocyst stage. Notably, it can be used in a way that does not compromise oocyte maturation or embryo development. We have also correlated CARS with two-photon fluorescence microscopy simultaneously acquired using fluorescent lipid probes on fixed samples, and found only a partial degree of correlation, depending on the lipid probe, clearly exemplifying the limitation of lipid labelling. In addition, we show that differences in the chemical composition of lipid droplets in living oocytes matured in media supplemented with different saturated and unsaturated fatty acids can be detected using CARS hyperspectral imaging. These results demonstrate that CARS microscopy provides a novel non-invasive method of quantifying lipid content, type and spatial distribution with sub-micron resolution in living mammalian oocytes and embryos.

Item Type: Article
Date Type: Published Online
Status: Published
Schools: Biosciences
Medicine
Physics and Astronomy
Publisher: Company of Biologists
ISSN: 0950-1991
Date of First Compliant Deposit: 6 May 2016
Date of Acceptance: 27 April 2016
Last Modified: 23 Jun 2019 22:04
URI: http://orca.cf.ac.uk/id/eprint/90593

Citation Data

Cited 16 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics