






(Supplemental Fig. 3). In addition, we demonstrated that Foxp3
mRNA levels in the spleen are reduced in Il27ra2/2 mice
(Supplemental Fig. 3), suggesting that Treg numbers are reduced
in these mice.
Thus, these data indicate that IL-27 inhibits T cell effector

cytokine production in response to C. parapsilosis.

Discussion
In this article, for the first time, to our knowledge, we have
demonstrated that specific Candida spp. induce IL-27 production
in myeloid cells and we have identified an important role for IL-27
in the immune response to C. parapsilosis. We have shown that
C. parapsilosis–induced IL-27 production was dependent on TLR7/
MyD88 and NOD2 signaling. In addition, IL-27 induction was
downstream of IFN-b production, followed by signaling through
IFNAR1; STAT1/2 (Supplemental Fig. 4); and the activation of
IRF1, IRF3, and IRF7. Similar to findings with other infectious
agents, IL-27 inhibits IFN-g and IL-17 responses (28, 58) and
Il27ra2/2 mice demonstrate enhanced clearance of C. parapsilosis,

compared with WT mice. However, in contrast to findings with
other infectious agents, the enhanced IFN-g responses did not result
in severely increased disease in Il27ra2/2 mice. Taken together,
these data indicate that blocking IL-27 during C. parapsilosis in-
fections could expedite clearance of the pathogen.
On the basis of our data, we believe that various factors control

the ability of C. parapsilosis to induce IL-27 and the inability of
C. albicans to induce IL-27. First, we propose that after initial
recognition, phagocytosis of C. parapsilosis is required to facili-
tate activation of a pathway involving TLR7 and NOD2 that
culminates in the production of IL-27. In agreement with previous
findings (52), we show that on a per cell basis, macrophages ingest
more C. parapsilosis cells than C. albicans cells (Fig. 2I, 2J). Our
data also indicate that phagocytosed C. parapsilosis signals
through TLR7 and NOD2. Candida RNA has been shown to
signal through TLR7 (10, 23), and NOD2 was recently shown to
recognize viral RNA (51). Although chitin was also recently
shown to signal through NOD2, TLR9, and CARD9 (12), we have
demonstrated that C. parapsilosis–induced IL-27 is independent

FIGURE 5. Il27ra2/2 mice display enhanced clearance of C. parapsilosis. (A) CFU in the kidneys of WT (■) and Il27ra2/2(:) mice 1, 3, and 6 wk after

i.v. infection with 1.5 3 107 CFU C. parapsilosis. Graphs are the cumulative result of two independent experiments. *p , 0.05 (Student t test on

transformed data). Each symbol represents an individual mouse. (B) Number of mice that have cleared the infection (,200 CFU/g kidney) (white bar) or

remain infected (black bar) 1, 3, or 6 wk after i.v. infection with 1.5 3 107 CFU C. parapsilosis. *p , 0.05 (Student t test on transformed data). (C) Fungal

growth in representative WT (left panels [320 magnification]) or Il27ra2/2 (right panels [320 magnification]) kidneys 1 and 3 wk after i.v. infection with

1.5 3 107 CFU C. parapsilosis. Kidney sections were stained with periodic acid–Schiff. Scale bars, 20 mm. (D and E) Survival curves (D) and CFU in the

kidneys (E) of WT (■) and Il27ra2/2(:) mice infected i.v. with 1.5 3 105 CFU C. albicans for 30 d. Each symbol represents an individual mouse. Graphs

are the cumulative result of two independent experiments. (D) p = 0.1152 (log-rank test), n = 15.
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of TLR9 and CARD9. Interestingly, TLR9 and NOD2 were shown
to colocalize in response to chitin (12). In our studies, we have
observed that although some basal TLR7 and NOD2 colocalization
occurs, Candida spp. induce TLR7 and NOD2 colocalization sur-
rounding the yeast cells, which was particularly robust around
C. parapsilosis cells. However, further studies are required to deter-
mine what signals cause the colocalization of TLR7 and NOD2 and
what ligand or ligands signal through TLR7 and NOD2.
Second, we have demonstrated that C. parapsilosis induces

IFN-b and subsequently IL-27; however, C. albicans does not in-
duce IFN-b or the resulting IL-27. Candida spp. have recently been
shown to induce IFN-b, although the mechanism remains con-
troversial. Bourgeois et al. (10) reported that C. glabrata induced
significant levels of IFN-b from BMDCs, but not BMDMs,
whereas C. albicans– and C. dubliniensis–induced IFN-b levels
from BMDCs were considerably lower. C. glabrata–induced
IFN-b was produced in a TLR2-, TLR4-, TLR9-, Dectin-1–, and
CD11b-independent manner. IFN-b was produced in a phagocy-
tosis-, TLR7/MyD88-, and IRF1-dependent manner, and the
resulting IFN-b subsequently signaled through IFNAR1 to induce
IRF7 activation, producing a feedback loop resulting in further
IFN-b production. Biondo et al. (50) showed that C. albicans and
S. cerevisae induced IFN-b from DCs in a TLR7/TLR9-
MyD88– and IRF1/3/7-dependent manner. In contrast to the pre-
vious two studies, del Fresno et al. (60) reported that heat-killed
C. albicans or curdlan-induced IFN-b from DCs was Dectin-1,
Dectin-2, Syk, and Card9 dependent. They also showed the
Dectin-1–induced IFN-b was IRF5 dependent and IRF3/7 inde-
pendent. The differences in these studies could be due to the different
ligands or species/strains of Candida used. In our study, we dem-

onstrate a phagocytosis-, TLR7/MyD88-, IFNAR1-, and STAT1/2-
dependent induction of IL-27 downstream of C. parapsilosis that is
reminiscent of the pathway reported by Bourgeois et al. to induce
IFN-b in response to C. glabrata (10). Of note, the previous three
studies observed either no or very little IFN-b production from
BMDMs (10, 50, 60). In contrast, we observed IFN-b produc-
tion from BMDMs in response to C. parapsilosis (Fig. 3F).
C. parapsilosis was not used in the previous studies, which could
explain this discrepancy. In addition, we have observed the
dependence of IL-27 production on NOD2. NOD2 has previ-
ously been linked to the induction of IFN-b production in re-
sponse to Listeria monocytogenes, which involved synergy
with other cytosolic microbial sensors (61). TLR7 and NOD2
are both required for C. parapsilosis–induced IL-27, although
whether this involves synergy between these two receptors re-
mains to be determined.
Third, we found that in addition to not inducing IL-27,

C. albicans actively blocks C. parapsilosis–induced IL-27 production
via a soluble mediator. C. albicans is much more virulent than
C. parapsilosis, and mice infected with C. albicans display in-
creased organ pathological changes compared with mice infected
with C. parapsilosis (data not shown). As IL-27 limits host disease
(28, 29, 31, 32), it is possible that the ability of C. albicans to block
IL-27 production may contribute to the increased pathological
changes observed in mice infected with C. albicans versus those
infected with C. parapsilosis. In addition, although we have not
investigated this further, it is possible that differences in the intra-
cellular fates of C. albicans and C. parapsilosis could affect their
ability to induce IL-27. As mentioned previously, C. parapsilosis is
less pathogenic than C. albicans (4). Although various Candida

FIGURE 6. Inflammatory infiltrates are minimally elevated in Il27ra2/2 mice. (A) Representative WT (left panels [34 magnification]) or Il27ra2/2

(right panels [34 magnification]) kidneys, 1 and 3 wk after i.v. infection with 1.5 3 107 CFU C. parapsilosis. Kidney sections were stained with H&E.

Scale bars, 200 mm. (B) Higher magnification (340 magnification) of boxed areas from (A). Scale bars represent 20 mm. Red arrows indicate neutrophil

infiltration. (C and D) Graphs display percentage of area of inflammation in the kidneys from mice 1 wk (C) or 3 wk (D) after i.v. infection with 1.5 3 107

CFU C. parapsilosis. ■, WT mice; :, Il27ra2/2 mice. (E and F) Graphs display average acute (neutrophilic) and chronic (lymphocytic) clinical scores from

the cortex and medulla of kidneys from mice 1 wk (E) or 3 wk (F) after i.v. infection with 1.5 3 107 CFU C. parapsilosis stained with H&E. Graphs are the

cumulative result of two independent experiments. Each symbol represents the average score from cortex and medulla for an individual mouse.
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spp. can promote intracellular survival through modulation of
phagosome maturation (62, 63), C. albicans can also escape
from the phagosome and cause host cell lysis (63–65). It is possible
that the increased length of time spent by C. parapsilosis in the
phagosome through modulation of phagosome maturation (52)
may promote sustained activation compared with that in
C. albicans. Taken together, these data suggest that following
phagocytosis, C. parapsilosis signals through TLR7 and NOD2,
resulting in IFN-b production, which subsequently leads to IL-27
production.
The role of the IL-27R during infectious diseases is complex and

has been the subject of numerous investigations in recent years.
IL-27R was reported to be critical for resistance to Trypanosoma
cruzi and Leishmania major infections in mice (48, 66); however,
other studies reported enhanced clearance of infections and sub-
sequent development of lethal disease in Il27ra2/2 mice, which
highlights the complex roles of IL-27 during infection. During the
L. major infection model Il27ra2/2 mice displayed increased Th2
cell cytokines and reduced Th1 cell responses, whereas during the
T. cruzi infection model Il27ra2/2 mice displayed increased Th2
and Th1 cytokines (48, 66). The elevated Th2 cell response to
T. cruzi in Il27ra2/2 mice was responsible for prolonged para-
sitemia in these mice, and the liver disease in Il27ra2/2 mice was
due to the enhanced Th1 cell responses (66). Of interest, reduced
bacterial loads were reported in organs of Il27ra2/2 mice infected
with M. tuberculosis when compared with organs in WT mice.
This finding was accompanied by increased production of proin-
flammatory cytokines (TNF and IL-12p40), CD4+ T cell activa-
tion, IFN-g production, and accelerated death due to chronic
hyperinflammation (28). In a more recent study, Findlay et al. (58)
demonstrated enhanced parasite clearance in a model of Plas-

modium berghei infection associated with elevated accumulation
of IFN-g–producing CD4+ T cells. Il27ra2/2 mice developed
severe liver disease that was prevented by depleting CD4+ T cells,
but not CD8+ T cells. This group recently showed that IL-27R
signaling inhibits the generation of terminally differentiated
KLRG-1+ Th1 cells, thereby limiting IFN-g production from
T cells (67). Similarly, during a model of T. gondii infection,
Il27ra2/2 mice displayed enhanced Th1 cell responses and they
developed a lethal inflammatory disease that was rescued by the
depletion of CD4+ T cells, but not CD8+ T cells (29). This group
also demonstrated that IL-27 is important for the development of
specialized Tregs that control Th1 cell responses at local sites of
inflammation (37). In our study, we demonstrated enhanced
clearance of C. parapsilosis in Il27ra2/2 mice that is associated
with increased production of proinflammatory cytokines in the se-
rum and increased IFN-g and IL-17 production in the spleens. The
adaptive T cell response to C. parapsilosis has not been widely
characterized to date; however, one study in PBMCs demonstrated
that C. parapsilosis induces both Th1 and Th17 responses (68). Our
results clearly demonstrate that Il27ra2/2 mice display an enhanced
inflammatory response, which promotes C. parapsilosis eradication.
Although we have observed enhanced inflammatory responses and
slightly elevated inflammation in the kidneys, these changes have
not resulted in severe or lethal disease. This may be because
C. parapsilosis is mainly nonpathogenic in healthy individuals and
because in our model it induces a CD8+ T cell–biased response
with a much lower CD4+ T cell response.
Taken together, our results identify a previously unrecognized role

for IL-27 in the regulation of C. parapsilosis infections. This is the
first description of IL-27 production in response to any Candida
spp. alone. IL-27 is produced through a complex phagocytosis,

FIGURE 7. Il27ra2/2 mice display increased proinflammatory responses. (A and B) Cytokine levels in the serum of WT (■) and Il27ra2/2 (:) mice

1 wk (A) and 3 wk (B) post infection with 1.5 3 107 CFU C. parapsilosis. Graphs are the cumulative result of two independent experiments. *p , 0.05

(Student t test). Each symbol represents an individual mouse. (C) RNA was isolated from spleen cells 1 wk post infection with 1.5 3 107 CFU

C. parapsilosis; cDNAwas prepared; and Il6, Il10, and Tnf mRNA transcripts were detected by real-time quantitative PCR. mRNA levels were normalized

to Hprt1. Graphs are the cumulative result of three independent experiments. Each symbol represents an individual mouse. **p , 0.005 (Student t test).
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TLR7/NOD2, IFN-b, IFNAR1-STAT1/2 pathway (Supplemental
Fig. 4). The absence of IL-27 signaling promotes enhanced
IFN-g and IL-17 responses that correlate with enhanced clearance
of the pathogen. Therefore, blockade of IL-27 signaling during
C. parapsilosis infections could be considered as a potential therapy;
however, further studies are required to determine whether this
would be beneficial.
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