Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Chromophore-labelled, luminescent platinum complexes: syntheses, structures, and spectroscopic properties

Stacey, Oliver J., Ward, Benjamin D., Coles, Simon J., Horton, Peter N. and Pope, Simon J. A. 2016. Chromophore-labelled, luminescent platinum complexes: syntheses, structures, and spectroscopic properties. Dalton Transactions 45 , pp. 10297-10307. 10.1039/C6DT01335J

[img]
Preview
PDF - Accepted Post-Print Version
Download (963kB) | Preview

Abstract

Ligands based upon 4-carboxamide-2-phenylquinoline derivatives have been synthesised with solubilising octyl hydrocarbon chains and tethered aromatic chromophores to give naphthyl (HL2), anthracenyl (HL3) and pyrenyl (HL4) ligand variants, together with a non-chromophoric analogue (HL1) for comparison. 1H NMR spectroscopic studies of the ligands showed that two non-interchangeable isomers exist for HL2 and HL4 while only one isomer exists for HL1 and HL3. Supporting DFT calculations on HL4 suggest that the two isomers may be closely isoenergetic with a relatively high barrier to exchange of ca. 100 kJ mol−1. These new ligands were cyclometalated with Pt(II) to give complexes [Pt(L1–4)(acac)] (acac = acetylacetonate). The spectroscopically characterised complexes were studied using multinuclear NMR spectroscopy including 195Pt{1H} NMR studies which revealed δPt ca. −2785 ppm for [Pt(L1–4)(acac)]. X-ray crystallographic studies were undertaken on [Pt(L3)(acac)] and [Pt(L4)(acac)], each showing the weakly distorted square planar geometry at Pt(II); the structure of [Pt(L3)(acac)] showed evidence for intermolecular Pt–Pt interactions. The UV-vis. absorption studies show that the spectral profiles for [Pt(L2–4)(acac)] are a composite of the organic chromophore centred bands and a broad 1MLCT (5d → π*) band (ca. 440 nm) associated with the complex. Luminescence studies showed that complexes [Pt(L2–4)(acac)] are dual emissive with fluorescence characteristic of the tethered fluorophore and long-lived phosphorescence attributed to 3MLCT emission. In the case of the pyrenyl derivative, [Pt(L4)(acac)], the close energetic matching of the 3MLCT and 3LCpyr excited states led to an elongation of the 3MLCT emission lifetime (τ = 42 μs) under degassed solvent conditions, suggestive of energy transfer processes between the two states.

Item Type: Article
Date Type: Published Online
Status: Published
Schools: Advanced Research Computing @ Cardiff (ARCCA)
Chemistry
Subjects: Q Science > QD Chemistry
Publisher: Royal Society of Chemistry
ISSN: 1477-9226
Last Modified: 04 Jun 2017 09:10
URI: http://orca.cf.ac.uk/id/eprint/91389

Citation Data

Cited 3 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Full Text Downloads from ORCA for this publication

Top Downloads of this item by Country

Monthly Full Text Downloads of this item

More statistics for this item...