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Sensor node acceleration signatures and electromyography in 

synchronisation and sequencing analysis in sports: a rowing 

perspective 

Sian Armstrong, Leonard DM Nokes 

Abstract 

Following a review of the key determinants of successful rowing, a wireless body sensor network 

(BSN) was developed to monitor boat and body segment acceleration, and surface 

electromyography in major muscles recruited during the rowing stroke cycle. Its design was 

optimised to yield maximum information about the rowing stroke cycle from fewest sensors, and 

minimise the power consumption of the nodes. The system was validated against the Qualisys 

motion capture and high speed camera system with most Pearson correlation coefficients in excess 

of r=0.8. 

On land ergometer experimentation allowed muscle recruitment over the stroke cycle to be 

studied, with multiple experiments combined using correlation of the acceleration signatures of 

back and thigh nodes (r=0.95). It was demonstrated that it was possible to identify one of the 

common rowing errors of “shooting-the-slide” from the data collected, and that a marked decrease 

in correlation of good-to-bad technique over the drive phase of the stroke (0.95 reducing to 0.34 

in the experiment undertaken) could be used to indicate the presence of this error. 



Extension of the wireless BSN to encompass boat and two oarsmen was demonstrated, allowing 

correlation of their rowing signatures to be studied, indicating their cohesion as a crew. 
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Introduction 

Understanding the factors which can influence sporting performance and allow identification both 

of promising sporting candidates and to coach them to reach maximum potential is vital to success 

1. Miniaturisation and integration of sensors and electronics has facilitated the observation and 

analysis process allowing multiple variables, including body kinematics and biometrics, to be 

scrutinised to determine their effect upon performance. Furthermore, the adoption of wireless 

sensor networks (WSN) allows for greater flexibility in the collection of data, leaving the athlete 

unencumbered by wires, moving beyond simply the idea of telemetering (transmitting the data to 

a remote datalogger), to the collection and exploitation of data from multiple unconnected sensors 

2. Such advances lead to greater monitoring in the natural environment of the sport, thus removing 

the limitations and influences of laboratory measurement, and allowing for the capture of metrics 

that cannot be determined by the more traditional video analysis methods 3. 

The choice and location of sensors is dependent upon what analyses are desired, and thus 

determined by the sport itself, and the factors and metrics that indicate or influence success and 

achievement in that sport. An excellent example with which to demonstrate the benefits of Body 

WSNs is Rowing. This includes many of the characteristics for which synchronous and wireless 



measurement at multiple sites benefits; an all body sport requiring specific sequencing of limb 

involvement, a cyclic action, a natural environment that does not facilitate observation and 

analysis, and that cannot accurately be mimicked on dry land, and (in multi-oarsman boats) a 

requirement for synchrony within the crew.  

This study identifies sensors and node placement that allows the study of the stroke cycle in 

rowing, both on land ergometers and in-boat, enabling the optimisation of the rowing stroke to 

yield an improvement in performance. Through the use of an acceleration signature to identify 

the stroke cycle, and muscle activity measurement, variance in the rowing stroke from recognised 

good technique can be highlighted, with a view to providing feedback to the oarsman.      

Key determinants of successful rowing 

The time taken to row a set distance is clearly the key determinant of successful rowing, leading 

to boat velocity (for a given boat type) being the gold standard 4. However this reveals nothing 

about the technique or physiology of the oarsman, and where improvements might be made. Boat 

velocity is not constant, and varies over the stroke cycle 5, and thus manner and degree with which 

the boat velocity varies over the course of a stroke will affect the final boat velocity. Minimising 

this variation will minimise drag on the hull of the boat 6, and ultimately minimise the energy 

expenditure of the oarsmen 7. What causes this variation in velocity over the stroke cycle is the 

biomechanics 8, timing 9 and balance 10 of the oarsman, all of which affect the run of the boat and 

the water drag.  



Maximum force application towards the velocity production of the boat is achieved through 

timing and sequencing of the power application to overcome boat drag forces 6. The measurement 

of force has been undertaken by a number of researchers at different locations upon the boat: oar 

force, both at pin (where the oar engages with the boat) and oar handle, and foot stretcher force 

11, 12, whilst others have attempted to analyse forces at the spoon of the oar 13, 14. Such analyses 

have led to opposing views with regard to the importance of the catch and finish of the rowing 

stroke in the generation of maximum boat velocity. Kleshnev states that hydrodynamic lift forces 

of the spoon (at the catch) contributes greater propulsive force (56% compared to 44%) than that 

of drag forces (which the oarsman levers against when the oar is perpendicular to the boat). 

However transverse forces, greatest at the catch and finish, produce a yaw affect which can 

detrimentally affect the balance and velocity of the boat 11.  

The sequencing of force application within the stroke cycle thus goes beyond the ratio of drive 

(oar spoon in the water) and recovery, leading to the naming of four accepted rowing styles: 

Rosenberg, Grinko, DDR and Adam 15, the first two being of a sequential style, the latter two a 

simultaneous approach. No consensus has yet been agreed on the preferred approach, with 

Kleshnev concluding that the sequential style results in greater power, and the simultaneous 

approach being more biomechanically efficient. In more recent research, Kleshnev indicates the 

importance of analysing the muscle contributions of the oarsman 16. Such body centric 

measurements are also important to show the different physiological effects of the different 

rowing styles 17, with blood lactic acid concentration and VO2 measurements in oarsmen with 

different rowing styles indicating elevated levels of both in those with a steeper power increase 



at the beginning of the stroke. Further on-body analysis has been used to analyse the rowing stroke 

with a view to greater understanding and prevention of injury 18.  

Finally, extension of on-body measurement to include multiple oarsmen (a crew) and the boat 

itself should yield greater information about sequencing and performance correlations 19, 20. 

Monitoring the synchronisation of limb sequencing and force application, in conjunction with 

boat performance might ultimately yield to a tangible measure for the “swing” effect, described 

by US Rowing Nomenclature as “a hard-to-define feeling when near-perfect synchronisation of 

movement occurs in a shell, enhancing the performance and speed of the crew” 21. 

 

Method 

A rationale of minimising the number of sensors per node whilst maximising potential 

information collection, and common functionality throughout the network was taken to allow for 

greatest flexibility of placement of the nodes with minimal set-up and calibration on-body. 

Emphasis was also placed upon minimising power requirements, through minimising the ON time 

of the wireless module, notably the transmit time of data from slave nodes to the coordinator. 

Both these approaches minimise node size – an important factor with nodes placed upon the body.  

Sensor choice, node placement rationale 

Instrumentation upon the boat to measure oar and stretcher force, oar angle and boat acceleration 

have been staples of rowing stroke analysis for some time 13, 22, and attempts have also been made 

to study body segment acceleration and velocity, notably by Kleshnev who used this to study 



what he describes as the micro-phases of the rowing stroke cycle 23, and the sequenced application 

of work by legs, trunk and arms, though these measurements were made by unwieldy cable 

position transducers.  

Micro-electro-mechanical systems (MEMS) accelerometers (measuring linear acceleration and 

vibration) and gyroscopes (measuring angular velocity) have become increasingly popular in 

handheld and wearable devices for the purposes of gesture, movement and positional information 

due to their small size and low power. More recently inertial measurement units (IMUs) combine 

these in one sealed and calibrated package, often with additional magnetometers (magnetic field 

sensor) to potentially deliver up to six degrees of freedom (DOF) positional information (three 

degrees translational, three degrees rotational). The fusion of up to nine IMU data inputs yields 

greater accuracy, though this brings with it complex processing and until very recently a hefty 

price-tag, but show promise for the future.  

Current literature in rowing and wider sporting and health monitoring fields demonstrate 

increasing research exploiting MEMS technology. Early on-body accelerometer research 

employed single-axis accelerometers for body posture identification 24. Subsequent research 

combined information from integrated MEMS tri-axial accelerometers and gyroscopes to yield 

an estimate of limb orientation 25, 26 and joint angle 27-29. These latter groups additionally applied 

anatomical constraints of the joint (e.g. the knee) to further improve the estimation. In rowing, 

accelerometers and gyroscopes have been used both in wired systems upon the boat and oars 30 

to determine stroke rate and drive-to-recovery ratio, and wirelessly upon the body during 

ergometer rowing in the laboratory 31 to analyse rotation in the lower back and femur to study the 



relation to back injury. A couple of groups, both within and outside the study of rowing, have 

used solely multi-axis accelerometers in novel physical arrangements to determine rotation and 

translation through computation 32, 33, thus demonstrating the possibility of determining angular 

displacement without the zero drift errors of gyroscopic techniques. 

Another on-body measurement that would allow analysis of the application of force, and 

specifically limb sequencing in rowing is that of surface Electromyography (sEMG), and in an 

article in 2010, Kleshnev makes a departure from his discussions of boat kinetics and kinematics 

of rowing to consider biomechanical analysis through EMG, publishing a pilot study looking at 

the sequencing of muscle activation during the rowing stroke 16. Some earlier studies had taken 

place, often analysing asymmetry in muscle recruitment in rowing 34, 35, but subsequently to 

Kleshnev’s article a number of studies have employed sEMG data loggers (wired devices that 

allow multiple muscles to be monitored) to monitor rowing 36-41, often comparing rowing 

ergometer rowing and on-water rowing. 

Combining the flexibility and potential of MEMS sensors with the biomechanical possibilities of 

sEMG allows their combined data to yield information on sequencing of the rowing stroke, and 

synchronicity of a rowing crew. With a view to keeping dataset size and computation at a 

minimum for purposes of node optimisation, it was determined that tri-axial accelerometers 

would be employed upon the wireless nodes, thus also affording the possibility of a hull-mounted 

node to measure the acceleration of the boat itself. 

Initial experimentation was performed upon a rowing ergometer to determine the optimum 

minimum placement of the nodes that would allow both an acceleration ‘signature’ of the node 



site to be captured, to be used for the identification of the stroke cycle, and measurement of a 

pertinent muscle. Whilst a large number of node placements were used over the course of 

experimentation, allowing the measurement of many muscles, a minimum measurement of thigh 

acceleration with biceps femoris sEMG, and upper back acceleration with trapezius sEMG were 

chosen to illustrate the rowing stroke. Monitoring acceleration at the thigh and the upper back 

allows an acceleration signature to be captured at two sites which can best inform upon the phases 

of the rowing stroke regardless of which of the four accepted rowing styles was adopted by the 

oarsman. Additionally, since acceleration measured upon an oarsman in-boat takes place within 

an accelerated system 42, the signature is different upon a rowing ergometer than in-boat. 

However, the measured signature at these two sites yields nevertheless a defined shape that allows 

the transition of one stroke to the next to be identified. The influence of boat acceleration upon 

oarsmen within the same boat is equal.   

Connection between sEMG electrode sites and the node itself were kept short to minimise cable 

movement artefacts 43, but whilst still allowing the electrodes to be placed slightly distant from 

the node itself. This allowed for example a single node position to measure both biceps and rectus 

femoris muscles of the thigh.  

System optimisation 

System optimisation can be performed both at the hardware design stage and in the firmware. A 

Microchip PIC microcontroller with extreme low power functionality was used within the node 

architecture providing space-saving on-chip peripherals (sensor data digitisation, timers, on-board 

memory, etc). Whilst the MEMS accelerometers require minimal external circuitry prior to 



sampling and digitisation, further consideration was made with regards to the sEMG circuitry. 

sEMG measurements can yield a number of interesting parameters including muscle activation 

timing, activation shape (e.g. variance) and frequency distribution of the signal. Commercial 

electromyography systems sample in excess of 1000Hz to allow frequency information up to 

500Hz to be faithfully captured (Delsys Inc.). An impact of high frequency sampling is data 

processing complexity, increased power consumption and high data storage requirements. 

Primary parameters of interest in this study were muscle activation timing during the stroke and 

inter-muscle sequencing, not requiring frequency distribution information. Thus a small addition 

to the hardware circuitry, to perform an extraction of the linear envelope of the muscle data was 

made. This firmware to hardware trade-off allowed for a significantly lower sample rate (50-

60Hz) thus minimising the data that needed to be processed, stored, and most importantly 

transmitted, by the sensor node.   

A wireless Body Sensor Network (BSN) was developed through integrating Zigbee radios into 

these nodes, with the coordinating node interrogating the slave (measurement) nodes for data at 

regular intervals (each node was allocated a personal interrogation-upload window upon joining 

the network), but allowing the slave node radios to be only active for a fraction of the node 

operation time to upload data and to wake for broadcasts of important cross-network information 

(e.g start/stop logging data, synchronisation messages). Minimising the number of sensors per 

node, and sample rate of data minimises the data that needs to be transmitted, and thus the time 

that the radios need to be in transmit mode, the mode with the highest power consumption. Data 

analysis was performed off-line in Mathworks® Matlab, but through minimisation of data to 

minimise processing requirement it is envisaged in future that some feature extraction could take 



place at the slave node, with further analysis at the coordinator node for real-time feedback to the 

rower.    

Experimentation 

System validation and individual oarsman analysis 

System validation was performed by simultaneous measurement using the Qualisys motion 

capture high speed camera system to capture positional and acceleration information from three 

reflective markers placed upon the nodes sited on the right shank, thigh and central upper back 

during ergometer rowing. Motion analysis systems employing passive markers and cameras such 

as Qualisys are regularly used in land-based rowing experimentation 44-46. Additionally, two 

Delsys sEMG sensors were synchronised to the Qualisys motion capture system to monitor 

muscle activity upon the left shank and thigh; as ergometer rowing is symmetrical, the left and 

right side of the body can be expected to demonstrate similar (though not identical) muscle 

activity. Electrode placement was made with reference to Gray’s Anatomy 47 and the SENIAM-

project 48. The wireless BSN nodes (xyz lowercase axes notation) were aligned to the Qualisys 

reference system (XYZ uppercase axes notation: X-axis pointing horizontally in the direction of 

motion along the slide, and the Z-axis vertically upward) when the oarsman is sat upright at rest 

at backstops (figure 1). 



 

Figure 1. Node placement, and sEMG measurement site.  

Node placement over three experiments, with black nodes/electrodes indicating node in common position 
across the three experiments. 

 

Correlation between the acceleration data captured by the wireless BSN data and the Qualisys 

system was calculated using Pearson’s correlation coefficient 49, first by interpolating the wireless 

BSN data such that the datasets were of equal size, and then plotting the datasets against each 

other for visual interpretation prior to calculation of the correlation coefficient (figure 2).  As the 

motion capture system measures only inertial acceleration, the changing gravitational 

contribution to the acceleration signature measured by the wireless BSN (as it rotates with the 

oarsman’s movement) introduces nonlinearities to the correlation. The stroke cycle was therefore 



sub-divided into phases of drive, recovery and hands-away/rock-over and showed good 

correlation: The thigh acceleration in the axis parallel to the ergometer slide (X-axis) was highly 

correlated with values of r=0.85, 0.88 and 0.87 for drive, recovery and hands-away respectively. 

The acceleration in the axis perpendicular to the ergometer slide (Z-axis) can achieve a whole 

stroke correlation of r=0.89. Correlation of the node placed upon the back achieves r=0.82 over 

the whole stroke for the parallel axis (X-axis), and for the perpendicular (Z-axis) it achieves high 

correlation of r=0.79 for both drive and hand-away/rock-over, and moderate correlation of r=0.54 

for the recovery (this has a slowly changing gravitational component which makes the correlation 

less easy to interpret). Muscle activity correlation showed high correlation of r=0.85 for the 

gastrocnemius muscle in the shank, and moderate for the biceps femoris, r=0.54. This concurs 

with visual inspection of the captured measurements against time; the sEMG signal level upon 

the thigh node was low, yielding loss of sensitivity of the measurement, indicating possibly less 

than optimum placement or adhesion of the electrodes; additional differences can be attributed to 

varying placement/physiology/force application between left and right limbs.  



 

Figure 2. System Validation, comparing upper back and thigh acceleration, and left and right 

lower limb muscle activity, and examples of correlation scatterplot analysis   

 

With confidence that the system accurately captured information, and that nodes were 

synchronous across the network, further experimentation was then made on-land and in-boat.  

The acceleration signature can be used to align the strokes of multiple experiments (performed at 

the same stroke rate) where at least one node remains unmoved between experiments. This allows 

the number of measurements to greatly exceed the number of sensors or wireless nodes available. 

Figure 1 shows the node positions over 3 ergometer experiments which were aligned using the 

acceleration signatures of back and thigh nodes which remained in a common position throughout. 



The correlation index between the acceleration signatures used in the aligning process was 

calculated to be r=0.95. Additionally the Variance Ratio (VR) of sensor readings was calculated 

to determine the oarsman’s stroke consistency. The VR optimality criterion was developed by 

Hershler and Milner 50 to measure repeatability of a signal over a given number of identical 

footsteps in gait analysis, which they stress is suitable for determination of repeatability of any 

repetitive signal (VR=0 for completely reproducible signals, and VR=1 for completely 

irreproducible signals). The oarsman displayed excellent VR values for acceleration signatures 

and sEMG signals at all nodes, varying from best 0.03 to worst 0.21. Since back and thigh 

acceleration signatures were used to align the three experiments, it is noted that the VR values of 

back and thigh acceleration in the axes of interest were 0.06 and 0.1 respectively.  



 

Figure 3. Overlaid muscle activity measurements and acceleration measurements.  

The three experiments aligned by thigh and upper back acceleration data to allow analysis of sEMG data 

from multiple muscles during the rowing stroke; shaded area indicates drive phase. 



 

Figure 4. Thigh and Upper back acceleration and sEMG signatures during normal (blue) and 

“shooting-the-slide” (red) rowing, indicating a marked difference in the drive phase.  

 

The results of combining the three experiments are shown in figure 3, showing the major muscle 

recruitment over the rowing stroke during the drive and recovery phases, and agrees with muscle 

recruitment description given by Mazzone 51 of the kinesiology of the rowing stroke.  Thus it is 

interesting to compare measurements using this system of a ‘good’ rowing stroke with one that 

displays one of the common rowing ‘errors’. One such common error is that of “shooting-the-

slide”. This error consists of driving with the legs such that the seat leads the back in the drive 

phase rather than leg and back drive acting as one phase. Figure 3 compares the normal rowing 

stroke with the oarsman simulating the shooting-the-slide error. Both thigh and back acceleration 



signatures demonstrate clear differences during the drive phase; the thigh signature indicating that 

the drive to backstops is achieved over a shorter time at the beginning of the drive phase, and the 

back signature demonstrates late recruitment into the drive phase. Interestingly, whilst thigh 

sEMG data also corroborates the short impulsive force in the leg drive, the muscle recruitment of 

the back during shooting-the-slide indicates greater and earlier activation, possibly due to the back 

being in extension due to the early drive of the legs. Pearson’s correlation coefficient could be 

used to highlight to the oarsman when his stroke is indicative of shooting the slide, particularly if 

the drive and recovery phases are compared separately (since it is the drive phase that deviates 

from ‘normal’ signature, with the recovery phase remaining largely unaffected). The thigh 

acceleration data compared in figure 4 demonstrates coefficients of r=0.94 for the recovery, but 

with correlation for the drive phase dropping from r=0.95 to just r=0.34 when normal and 

shooting-the-slide are compared. A threshold could thus be set whereby a single numerical score 

or audible feedback could be produced to feedback in real time to the oarsman. The identification 

of such non-distracting, real-time feedback has been the focus of a number of studies in sports 

training and rehabilitation, both in rowing and other sports 52, 53.  

Crew analysis  

Data collection across distributed wireless nodes was extended to a double sculling boat crew, 

thus allowing simultaneous monitoring of both oarsmen (at thigh and upper back) in conjunction 

with the acceleration of the boat. The oarsmen were both club rowers, of similar build, height and 

rowing experience (Stroke: 38yrs, 187cm, 96Kg, Bow: 34yrs, 187cm, 107Kg). On river 

measurement took place on a 1km stretch of river, both upstream and downstream, after an initial 



warm-up row. Oarsmen were instructed to row at 20-22spm, moderate intensity. Figure 5 shows 

data from the two oarsmen overlaid for comparison. Figure 5(a) demonstrates in-boat 

measurement, and figure 5(b) demonstrates ergometer measurements made immediately 

afterwards with no node placement or electrode change in a simulated double scull arrangement 

with Bow continuing to take timing cues from Stroke. Data transmission failure occurred in the 

back node of the Stroke oarsman in the on-river measurement but was successful in the subsequent 

ergometer measurement. 

 

Figure 5. Simultaneous data collection upon two oarsmen in a double-scull, and simulated 

double-scull upon ergometer. 

Back and thigh acceleration, trapezius and biceps femoris sEMG data. Green and blue shaded areas 

indicate catch and drive respectively. 

 



Correlation coefficients of r=0.91 and r=0.80 are achieved between thigh signatures of the two 

oarsmen in-boat and on ergometer respectively, and r=0.97 for the ergometer back signature. 

Analysis can be made between muscle recruitment of the biceps femoris thigh muscles of the two 

oarsmen, with bow sustaining a steady muscle input over the drive phase and stroke demonstrating 

a more peaked muscle recruitment over the drive phase. The activation time of the muscle is 

however very similar. Interestingly, the trapezius muscle recruitment of the two oarsman 

measured by the back nodes is different, with Stroke’s muscle recruitment peaking at the catch 

and then being sustained throughout the drive, and contrastingly Bow demonstrating a build in 

muscle activity through the drive phase. This could indicate a difference in technique, different 

physiology, or a combination of both between the two oarsmen, or highlight the difficulty in 

matching electrode placement in the large muscle of the back. The acceleration signature of the 

back node between the two oarsmen indicates that Bow, who follows Stroke, is consistently 

slightly late at the catch (about 0.05s) but their finishes are matched perfectly. This might 

corroborate a difference in technique in muscle recruitment in the back. 

Discussion and Further work 

The experimentation described demonstrates the feasibility and potential of wireless BSN both 

for analysis of limb and muscle recruitment sequencing in a single oarsman, and to analyse the 

synchrony between multiple oarsmen in a boat. Acceleration signatures can be used to identify 

the stroke cycle and used both to analyse variance between strokes, and to allow alignment of 

data between multiple experiments. Such data can be analysed in conjunction with acceleration 

data from the boat itself, with a view to maximising the positive acceleration phase of the boat 



(‘A’ in figure 5(a)), and minimising the boat deceleration (‘B’), thus maximising the performance 

of the boat. Optimisation of the system reduces the processing, storage requirements and wireless 

transmission overhead, thus minimising power consumption and battery longevity, and overall 

node size and complexity. 

With further wireless nodes, such crew experimentation could be extended to monitor more sites 

across the body, or larger crews. In particular, it would be interesting to analyse multiple muscles 

in thigh and back to analyse differences in muscle recruitment and technique between oarsmen, 

and to more closely analyse the muscle recruitment of oarsmen adopting the 4 recognised rowing 

techniques. Muscle recruitment variation and timing at different rowing intensities and stroke 

rates could be analysed in conjunction with the boat acceleration to further study the correlation 

between technique and performance.  

Further study is required to determine the best methods to feedback performance to the oarsmen 

in real time, both of the choice of metric to convey, and in the method of communicating it. 
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