Independent Component Analysis (ICA) of GRACE-derived Australian Hydrological Signals

E. Forootana, J. Awangeb,c, J. Kuschea and B. Heckb

Motivation

GRACE twin satellites are continuously providing valuable hydrological information highlighting its spatio-temporal mass variations and redistributions within the Earth system. This is achieved through:

1. The removal of the effect of the constant long-term gravity field.
2. Separation of the contribution of the atmosphere and the ocean to time variable gravity field using physical models.

Problems inherent to the use of gravity for sensing of hydrological variation using the approach above are:

- From the data alone, one cannot separate signals that are caused by different physical processes.
- The problem with these physical models is that they are not perfect considering the accuracy of the GRACE products.
- The integral scheme of the GRACE mass signals (related to the different comportments, e.g., atmosphere, ocean, Earth’s surface and its interior) also makes the meaningful signal extraction procedure a challenging signal separation problem.

This therefore necessitates the need for new methods for pattern extraction that are essential to explore the concepts of physical processes and also to monitor water resources, which is the focus in this study. Using a simulation and also real GRACE, hydrological processes and also to monitor water resources, which is the focus in this study. Using a simulation and also real GRACE, hydrological processes and also to monitor water resources, which is the focus in this study.

Methods

Principle Components Analysis (PCA)

PCA method seeks a set of optimal orthogonal base-functions to explain a maximum amount of variance in the data set based on eigenvalue decomposition of the co-covariance matrix of a centered data set (Lorenz, 1956).

\[\overline{X}(t) = \overline{P} \overline{e} \]

\(\overline{P} \): the temporal components (PCs),

\(\overline{e} \): the spatial eigenvectors (EOFs), normalized to unit length in its columns.

Independent Component Analysis (ICA)

ICA incorporates more information from the probability density function (pdf) underlying data (Forootan and Kusche, 2011-sub):

1. The removal of the effect of the constant long-term gravity field.
2. Separation of the contribution of the atmosphere and the ocean to time variable gravity field using physical models.
3. Problems inherent to the use of gravity for sensing of hydrological variation using the approach above are:
 - From the data alone, one cannot separate signals that are caused by different physical processes.
 - The problem with these physical models is that they are not perfect considering the accuracy of the GRACE products.
 - The integral scheme of the GRACE mass signals (related to the different comportments, e.g., atmosphere, ocean, Earth’s surface and its interior) also makes the meaningful signal extraction procedure a challenging signal separation problem.

This therefore necessitates the need for new methods for pattern extraction that are essential to explore the concepts of physical processes and also to monitor water resources, which is the focus in this study. Using a simulation and also real GRACE, hydrological processes and also to monitor water resources, which is the focus in this study. Using a simulation and also real GRACE, hydrological processes and also to monitor water resources, which is the focus in this study. Using a simulation and also real GRACE, hydrological processes and also to monitor water resources, which is the focus in this study. Using a simulation and also real GRACE, hydrological processes and also to monitor water resources, which is the focus in this study. Using a simulation and also real GRACE, hydrological processes and also to monitor water resources, which is the focus in this study.

Results

The synthetic example shows that the north of Australia exhibits only an annual signal while the west, east and southern regions present a superposition of a weaker annual signal and a linear trend. In order to reconstruct the synthetic data set one should multiply the spatial pattern (left) to the temporal components (right).

ICA truly recovered the predefined signals. The results indicate that rotating the PCA’s base-functions towards independency helps to solve the signal separation problem in the superposition case.

Application of ICA to the Australian Hydrology

- ICA decomposition of the WGHM data set
- ICA decomposition of the TRMM data set
- ICA analysis of GRACE:
 - IC1: Annual hydrological signal over the northern Australia.
 - IC2: Indicating the annual monsoonal rainfall effect.
 - IC3: Mass loss over the northwestern Australia, whose cause is uncertain.
 - IC4: Inter-annual fluctuations along with recent flood trend over the east and northeast.
 - IC5: Annual cycle mainly over the northeastern region, mainly originated from the ocean.
 - IC6: Mass changes over the southeast showing a significant loss in 2005-2006 due to drought.
 - IC7: S2 aliasing effect.
 - IC8: Mass loss over the west and gain in central regions.
 - IC9: The effect of recent floods over the ocean in the east.
 - IC10: Mass changes mainly over the lower Murray-Darling basin.

ICA Analysis of WGHM:

- IC1 and IC2: Annual mass change over the north and south Australia.
- IC3: Water loss over the northwestern and lower Murray-Darling basin.
- IC4: Inter-annual fluctuations over the east and northeast regions.

ICA Analysis of TRMM:

- IC1, IC2 and IC3: Main annual rainfalls over the northern regions.
- IC4: Decreasing the amount of precipitation over the west increasing mainly during 2005 and the years after 2006.
- IC5 and IC6: Recent increasing of the precipitation mainly over the eastern Australia.

Discussion and Conclusion

- Using a simulation we showed how incorporating non-Gaussian statistical information in the frame of ICA improves the decomposition of the GRACE time variable signals.
- ICA showed more localized patterns and significantly reduced the PCA’s mixing problem.
- The suitability of ICA for processing the weaker hydrological signals of Australia is also proved with providing physically interpretable components.
- The presented algorithm was also successful to isolate the oceanic signal from the land.
- The impact of the 2006-2007 drought on Australian water resource is clearly identified in the southern-Australia, Murray Darling Basin and the Western Australia regions, whereas the eastern part of Australia shows mass gain from 2010 which would be related the current flood in the region.
- The comparison of the GRAVE ICA components with WGHM and TRMM showed a good agreement.
- WGHM, except for the northern dominant annual cycle, underestimated the magnitude of the hydrological signal. This is evident in the IC4, IC5 and IC6 of the GRAVE products.
- Based on the derived results, we recommend investigating the presented ICA algorithm for other hydrological case studies.

Data sets

- Three sets of the GRACE DK2 (Kusche et al. 2009) filtered products. The data is converted to 1×1 degree, gridded total water storage (TWS) fields using all available solutions of the GFF (October 2002 to May 2011), CSR (October 2002 to May 2011) and ITG2010 (August 2002 to August 2009) Bonn centers.
- Water Gap Hydrological model (WGHM), 0.5×0.5 degree TWS products from 2000 to 2010.
- Tropical Rainfall Measuring Mission (TRMM) level 3B, 0.25×0.25 degree re-analysed rainfall products from January 2002 to May 2011.

References