Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Delayed triggering of radio Active Galactic Nuclei in gas-rich minor mergers in the local Universe

Shabala, S. S., Deller, A., Kaviraj, S., Middelberg, E., Turner, R. J., Ting, Y. S., Allison, J. R. and Davis, Timothy A. 2017. Delayed triggering of radio Active Galactic Nuclei in gas-rich minor mergers in the local Universe. Monthly Notices of the Royal Astronomical Society 464 (4) , pp. 4706-4720. 10.1093/mnras/stw2536

[img]
Preview
PDF - Accepted Post-Print Version
Download (1MB) | Preview

Abstract

We examine the processes triggering star formation and active galactic nucleus (AGN) activity in a sample of 25 low-redshift (z < 0.13) gas-rich galaxy mergers observed at milliarcsecond resolution with Very Long Baseline Interferometry (VLBI) as part of the mJy Imaging VLBA Exploration at 20 cm (mJIVE-20) survey. The high (>107 K) brightness temperature required for an mJIVE-20 detection allows us to unambiguously identify the radio AGN in our sample. We find three such objects. Our VLBI AGN identifications are classified as Seyferts or low-ionization nuclear emission-line regions (LINERs) in narrow line optical diagnostic plots; mid-infrared colours of our targets and the comparison of Hα star formation rates with integrated radio luminosity are also consistent with the VLBI identifications. We reconstruct star formation histories in our galaxies using optical and UV photometry, and find that these radio AGN are not triggered promptly in the merger process, consistent with previous findings for non-VLBI samples of radio AGN. This delay can significantly limit the efficiency of feedback by radio AGN triggered in galaxy mergers. We find that radio AGN hosts have lower star formation rates than non-AGN radio-selected galaxies at the same starburst age. Conventional and VLBI radio imaging shows these AGN to be compact on arcsecond scales. Our modelling suggests that the actual sizes of AGN-inflated radio lobes may be much larger than this, but these are too faint to be detected in existing observations. Deep radio imaging is required to map out the true extent of the AGN, and to determine whether the low star formation rates in radio AGN hosts are a result of the special conditions required for radio jet triggering, or the effect of AGN feedback.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Physics and Astronomy
Additional Information: PDF uploaded in accordance with publisher's policies at http://www.sherpa.ac.uk/romeo/issn/0035-8711/ (accessed 14.10.16).
Publisher: Oxford University Press
ISSN: 0035-8711
Funders: STFC
Date of First Compliant Deposit: 13 October 2016
Date of Acceptance: 3 October 2016
Last Modified: 05 Jun 2017 14:10
URI: http://orca.cf.ac.uk/id/eprint/95327

Citation Data

Cited 10 times in Google Scholar. View in Google Scholar

Cited 18 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics