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Abstract. We describe the PyCBC search for gravitational waves from compact-

object binary coalescences in advanced gravitational-wave detector data. The search

was used in the first Advanced LIGO observing run and unambiguously identified

two black hole binary mergers, GW150914 and GW151226. At its core, the PyCBC

search performs a matched-filter search for binary merger signals using a bank of

gravitational-wave template waveforms. We provide a complete description of the

search pipeline including the steps used to mitigate the effects of noise transients in

the data, identify candidate events and measure their statistical significance. The

analysis is able to measure false-alarm rates as low as one per million years, required

for confident detection of signals. Using data from initial LIGO’s sixth science run, we

show that the new analysis reduces the background noise in the search, giving a 30%

increase in sensitive volume for binary neutron star systems over previous searches.

PACS numbers: 04.30.-w,04.25.-g
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1. Introduction

The detection of the binary black hole mergers GW150914 and GW151226 by the

Laser Interferometer Gravitational-wave Observatory (LIGO) has established the field

of gravitational-wave astronomy [1, 2, 3]. Advanced LIGO [4, 5] will be joined by the

Virgo [6, 7] and KAGRA [8] detectors in the near future, forming an international

network of gravitational-wave observatories. Beyond the expected regular detections of

binary black holes [9], compact-object binaries containing a neutron star and a black

hole or two neutron stars are likely candidates for detection by this network [10, 11, 12].

Collectively, these three types of gravitational-wave sources are referred to as compact

binary coalescences (CBC).

The identification of gravitational-wave candidates in the detector data is a complex

process, which is performed by a search pipeline. The search pipeline is also responsible

for determining the significance of each identified gravitational-wave event. This paper

describes a new pipeline to search for gravitational waves from compact-object binaries

that uses the PyCBC software framework [13] to implement an all-sky search for

compact binary coalescence. The PyCBC search pipeline described here builds upon the

algorithms [14, 15, 16, 17, 18] used to search for compact-object binary coalescence with

the first-generation LIGO and Virgo detectors [19, 20, 21, 22, 23, 24, 25, 26, 27]. This

pipeline incorporates new algorithms that improve the sensitivity of the search and that

reduce its computational cost. We provide a complete description of the search pipeline,

emphasizing the new developments that have been made for the advanced-detector era.

To demonstrate the efficacy of PyCBC, we re-analyze data from Initial LIGO’s sixth

science run and show that the new pipeline can achieve a ∼ 30% increase in sensitive

volume to binary neutron stars, as compared to the pipeline used in the original analysis

of the data [27]. Details of the results of the PyCBC search on the first aLIGO observing

run are given in [28, 12] with the two observed binary black hole mergers discussed in

detail in [1, 2].

This paper is organized as follows: Section 2 provides an overview of the search

pipeline and the methods used to detect gravitational waves from compact-object

binaries in LIGO data. Section 3 gives a description of the developments implemented

in this pipeline. Section 4 compares the performance of the new pipeline to that of the

pipeline that analyzed the sixth LIGO science run and Virgo’s second and third science

runs [27]. Finally, Section 5 summarizes our findings and suggests directions for future

improvements.

2. Search Overview

The purpose of the PyCBC search is to identify candidate gravitational-wave signals

from binary coalescences in the detector data and to provide a measure of their statistical

significance. Since the amplitude of the majority of gravitational-wave sources will

be comparable to the noise background, signal processing techniques are required to



PyCBC search 3

identify the candidate events. The gravitational waveforms for compact-object binaries

can be modeled using a combination of analytical and numerical methods [29, 30].

Consequently, it is natural to use matched filtering to distinguish signals from the

noise background [31]. If the detector output contained only a stationary, Gaussian

noise, the matched filter signal-to-noise ratio (SNR) would suffice as a detection statistic

since its distribution in stationary, Gaussian noise is well known [32]. In practice, the

detector data contains non-stationary noise and non-Gaussian noise transients [33, 34].

Additional steps must therefore be taken to mitigate the effect of these noise transients

and to assign an accurate statistical significance to candidate signals. Even for loud

sources, the statistical significance of candidate detections must be empirically measured

since it is not possible to shield the detectors from gravitational-wave sources and no

complete theoretical model of the detector noise exists [35].

Figure 1 shows the steps that the pipeline uses to find signals and measure their

significance. The input to the pipeline is the detector’s calibrated strain data [36, 37].

In addition to possible signals, the strain data contains two classes of noise: a primarily

stationary, Gaussian noise component from fundamental processes such as thermal

noise, quantum noise, and seismic noise coupling into the detector [5] and non-Gaussian

noise transients of instrumental and environmental origin [38, 34]. To eliminate the

worst periods of detector performance, data quality investigations [39, 40, 41, 33] are

used to characterize detector data into three general classes: (i) the data is polluted

with enough noise that the data should be discarded without being searched, (ii)

the data can be filtered, but candidate events that lie in intervals of poor data

quality should be discarded, or vetoed, due to the presence of a instrumental or

environmental artifacts, or (iii) the data is suitable for astrophysical searches. Data

quality investigations are conducted independently of the search pipeline (by looking

only at detector performance), as well as by determining the effect of instrumental

artifacts on the noise background of the search pipeline. After removing data that is

not suitable for astrophysical searches, the pipeline begins its analysis, following the

remaining steps shown in Figure 1.

We do not a priori know the parameters of gravitational waves in the data,

so a bank of template waveforms is constructed that spans the astrophysical signal

space [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]. If the total mass of a compact-object

binary is lower than M . 12M⊙ [54, 55] and the dimensionless angular momenta of

the compact objects (their spin) are small cS1,2/Gm2
1,2 . 0.4 [56, 57] (as is the case

for binary neutron stars, where m1 and m2 and S1 and S2 are the component masses

and spins respectively), then the detectors are sensitive to the inspiral phase of the

waveform and this can be well modeled using the post-Newtonian approximations (see

e.g. Ref. [29] for a review). For high-mass and high-spin binaries, analytic models

tuned to numerical relativity can provide accurate predictions for gravitational waves

from compact binaries [58, 59, 60, 30, 61]. The template bank is constructed to cover

the space of circular binaries with aligned spins. It is generated so that the loss in

matched-filter SNR due to the discrete nature of the bank is no more than 3%. The
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Detector 1 

Data

Detector 2 

Data

Detector X 

Data
... 

Average PSD over all 
detectors. Create template bank. 

Matched filter data 
with template bank. 
Threshold over SNR 

and cluster to 
generate triggers.

... 

Perform coincidence test in 
time and template parameters. 

Apply data quality vetoes.
Remaining triggers are 

foreground gravitational-wave 
candidates.

Calculate 𝜒2 test 

on SNR maxima 
and use to 
calculate 

reweighted SNR.

... 

Use time shifts to calculate the 
false-alarm rate of coincident 
triggers. Resulting triggers are 

background noise, used to 
estimate the significance
of foreground triggers.

Calculate 𝜒2 test 

on SNR maxima 
and use to 
calculate 

reweighted SNR.

Calculate 𝜒2 test 

on SNR maxima 
and use to 
calculate 

reweighted SNR.

... 
Apply gating 

veto windows to 
remove excursions 

in the data.

Apply gating 
veto windows to 

remove excursions 
in the data.

Apply gating 
veto windows to 

remove excursions 
in the data.

Matched filter data 
with template bank. 
Threshold over SNR 

and cluster to 
generate triggers.

Matched filter data 
with template bank. 
Threshold over SNR 

and cluster to 
generate triggers.

Figure 1. A flowchart indicating the different steps of the search pipeline. Data

from the detectors are averaged to create a power spectral density necessary to place

a bank of templates that cover the search parameter space (blue box). Times when

the detector data contain loud noise transients are removed, or vetoed. The data from

each detector is then matched filtered and triggers are generated by thresholding and

clustering the signal-to-noise ratio time series. A chi-squared test is computed for each

trigger and the trigger’s matched-filter SNR is re-weighted by the value of the chi-

squared statistic to better distinguish between signal and noise (yellow boxes). The

pipeline determines which triggers survive time and template coincidence, discarding

triggers that lie in times of poor data quality (red box). The triggers that pass the

coincidence and data quality tests are labelled candidate events. Finally, multiple

time shifts help generate a noise background realization that is used to measure the

significance of the candidate events (bottom box).
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exact placement of the templates depends on the detector’s noise power spectral density

(PSD) Sn(f). The PyCBC search pipeline places templates using a single noise PSD,

averaged over all of the time and all detectors in the search network. The data from

each detector in the network is matched filtered against this single template bank. We

describe the process of constructing this template bank in Section 3.1.

Since the waveform of the target signals are well modeled, the pipeline uses matched

filtering to search for these signals in detector noise. In the PyCBC pipeline, each

detector’s data is filtered independently. The search templates are restricted to spin

aligned binaries, and only the dominant gravitational wave harmonic [62]. Consequently,

the sky location and orientation of the binary affect only the overall amplitude and phase

of the waveform. These are maximized over when constructing the matched filter by

projecting the data signal against two orthogonal phases of the template h(t), given by

hcos and hsin [17]. The matched filter then consists of a weighted inner product in the

frequency domain used to construct the signal-to-noise ratio (SNR), ρ(t), as:

ρ2(t) =
(s|hcos)

2

(hcos|hcos)
+

(s|hsin)
2

(hsin|hsin)
=

(s|hcos)
2 + (s|hsin)

2

(hcos|hcos)
, (1)

where the inner product is given by

(s|h)(t) = 4Re

∫ fhigh

flow

s̃(f)h̃∗(f)

Sn(f)
e2πift df. (2)

Here s̃(f) denotes the Fourier-transformed detector data, defined by

s̃(f) =

∫ +∞

−∞

s(t)e−2πitfdt, (3)

and h̃(f) denotes the Fourier-transformed template waveform. Sn(f) is the one-sided

PSD of the detector noise defined by

〈s̃(f)s̃(f ′)〉 =
1

2
Sn(f)δ(f − f ′), (4)

where angle brackets denote averaging over noise realizations and δ is the Dirac delta

function. The frequency limits flow and fhigh are determined by the bandwidth of the

detector’s data, and the two phases of the template are related by h̃sin(f) = ih̃cos(f).

Despite extensive data quality investigations, noise transients of unknown origin

still remain after data quality vetoes are applied to the search. To mitigate the effect of

these noise transients, the pipeline identifies excursions in the input strain data s(t)

and then applies a window to the detector data, zeroing out the data around the

time of a noise transient before filtering. This procedure, called gating, is described in

Section 3.2. Having removed these noise transients, the pipeline computes the matched-

filter SNR ρ(t) for each template in each detector. The search identifies the times when

the matched-filter SNR exceeds a predetermined threshold for a given template in a

detector’s data. The pipeline applies a clustering algorithm, which takes the largest
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value within a predefined window of ρ(t) and identifies maxima in the SNR time series.

This process yields a list of times when a signal may be present, which are called

triggers. The matched filtering, thresholding and clustering algorithms are described in

Section 3.3.

Triggers generated by matched filtering the data against the template bank are

subject to a chi-squared test that determines if the time-frequency distribution of

power in the data is consistent with the expected power in the matching template

waveform [16]. To construct this test, the template is split into p frequency bins. These

bins are constructed so that each contributes an equal amount of power to the total

matched-filter SNR. The matched-filter SNR, ρi, is constructed for each of these p bins.

For a real signal, ρi should contain 1/p of the total power. The χ2 statistic compares

the expected to the measured power in each bin according to

χ2 = p

p
∑

i=1

[

(

ρ2cos
p

− ρ2cos,i

)2

+

(

ρ2sin
p

− ρ2sin,i

)2
]

, (5)

where ρ2cos and ρ2sin are the SNRs of the two orthogonal phases of the matched filter.

Lower-mass binary systems, such as binary neutron stars, lose energy to gravitational

waves more slowly than higher-mass systems. Consequently, the waveforms of lower

mass systems are longer, having more gravitational-wave cycles in the sensitive band

of the detector. The PyCBC pipeline allows the number of bins to be specified as a

function of the intrinsic parameters of the template. This allows the search to use more

bins in the chi-squared test for longer templates, making the test more effective. In

previous analyses, the chi-squared test was the most computationally costly part of

the pipeline [18]. The PyCBC pipeline uses a more efficient algorithm for computing

the chi-squared statistic, which vastly reduces the computational cost. Details of the

chi-squared test are given in Section 3.4.

For a trigger of given matched-filter SNR, larger values of χ2 indicate a higher

likelihood of a noise transient origin as opposed to a signal. For signals, the reduced

chi-squared, χ2
r = χ2/(2p− 2), should be near unity. To down-weight triggers caused by

noise transients, the matched-filter SNR is re-weighted [27, 18] according to

ρ̂ =

{

ρ
/

[(1 + (χ2
r)

3)/2]
1
6 , if χ2

r > 1,

ρ, if χ2
r ≤ 1.

(6)

Having computed the re-weighted SNR for each trigger, the pipeline discards all triggers

that lie below a pre-determined re-weighted SNR threshold.

The search requires that signals are observed with consistent parameters in the

detector network. First, any triggers that occur during times of instrumental or

environmental artifacts, as determined by the input data quality metadata, are vetoed.

To be considered a candidate event, triggers must be observed with a time of arrival

difference less than or equal to the gravitational-wave travel time between detectors,

with an additional window to account for uncertainty in the measurement of the time of
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arrival. The triggers must also be observed with the same template in both detectors.

Triggers that survive the time and parameter coincidence test are referred to as candidate

events. Details of the coincidence tests are presented in Section 3.5.

The quadrature sum of the reweighted SNR ρ̂ in each detector is the pipeline’s

detection statistic which ranks the likelihood that a trigger is due to a gravitational-wave

signal. To assign a statistical significance to detection candidates, the pipeline measures

the false-alarm rate of the search as a function of the detection-statistic value ρ̂c. Since

it is not possible to isolate the detectors from gravitational waves, it is impossible to

directly measure the detector noise in the absence of signals. This, together with the

non-stationary and non-Gaussian nature of the noise, means that the false-alarm rate

of the search must be empirically measured. This is done by applying a time shift to

the triggers from one detector relative to another. The minimum time-shift offset is

chosen to be larger than the time-coincidence window used to determine if signals are

observed with consistent parameters in the network. Events in the time-shifted analysis

therefore cannot be due to the coincidence of the pair of triggers produced by a real

gravitational-wave signal. Many time shifts create a large background data set which

are used to approximate the background noise and estimate the search’s false-alarm

rate.

Since different templates in the bank can respond to detector noise in different

ways, the search background is not uniform across the template bank. To maintain

the sensitivity of the search to signals over a wide range of masses under this non-

uniform background distribution, the search sorts both candidate events and background

events into different classes. The false-alarm rate of the search in each class is used to

assign a p-value to the candidate events; a given candidate event is compared to the

background events from the same class. To account for having searched multiple classes

whose response is not completely independent [63], the significance of candidate events

is decreased by applying a trials factor equal to the number of bins, nbins to obtain a final

p-value which describes the statistical significance of a candidate event. This procedure

is described in Section 3.6.

3. Search Description

In this section we describe the methods and algorithms used in the PyCBC search

pipeline introduced in Section 2. In particular, we focus on the parts of the PyCBC

search that improve upon the ihope pipeline described in Ref. [18].

3.1. Template Bank Placement

Methods for creating template banks of non-spinning and aligned-spin waveform filters

for a given parameter space have been extensively explored in the literature [42, 43, 44,

45, 46, 47, 48, 49, 50, 51, 52, 53, 64]. Here we use the method presented in [53]. The

density of templates across the parameter space depends upon the noise power spectrum
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of the detectors.

The PyCBC search generates a template bank covering the four dimensional space

of mass and aligned spin of the two components. The pipeline uses a single template

bank for all detectors and over the entire duration of the search. Using a common

template bank for all templates allows us to require coincident events to be observed

in the same template in different detectors, as discussed in Section 3.5, which improves

the sensitivity of the pipeline.

To generate an appropriate bank, we must compute a noise PSD estimate averaged

both over time and over detectors. We have explored several different methods to

create a single noise PSD that is valid for the duration of the analysis period [65] and

find that the harmonic mean provides the best estimate for placing the template bank.

Specifically, we measure the noise PSD every 2048 seconds over the observation period,

independently in each detector, using the median method of Ref. [17]. We then obtain

Ns power spectra Sn for each detector in the network. We first construct the harmonic

mean PSD for a single detector, defined by averaging each of the fk frequency bins

independently according to

Sharmonic
n (fk) = Ns

/

Ns
∑

i=1

1

Si
n(fk)

. (7)

We then use the same method to compute the harmonic mean of the resulting PSDs

from each detector in the network.

The PSD estimate, and hence the bank itself, only needs to be re-generated when

there are significant changes in the detector’s noise PSD. This typically only happens

when significant physical changes occur in the detectors. Using a single PSD estimate

for an extended period of time allows the efficient use of template banks that include

compact-object spin, as demonstrated in Ref. [28]. In Section 4, we compare the

sensitivity and the computational cost of using a single template bank constructed

with an averaged PSD and that of using regenerated template banks with shorter PSD

samples.

3.2. Removal of Non-Gaussian Noise Prior to Filtering

Transient noise in the detectors’ data streams can produce high SNR triggers, even

when the transients do not resemble the templates. Data quality investigations and

vetoes [41, 33] remove many, but by no means all, of these loud transients which

can affect the astrophysical sensitivity of the search. Although short-duration, loud

transients (or glitches) that survive data-quality investigations are suppressed by the chi-

squared test, they can reduce search sensitivity through two mechanisms: dead time due

to the clustering algorithm and ringing of the matched filter; both of these mechanisms

are related to the impulse response of the matched filter. In this section, we explain the

origin of these features and describe the methods used by the pipeline to reduce their

effect on the search’s sensitivity.
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Figure 2. The effect of gating on a loud noise transient. Both lines show the detector

strain, which has been rescaled by a factor of 1021 prior to filtering. On this scale,

the transient has a peak magnitude over 5,000. The blue line shows the data before

applying the Tukey window, the red line shows the data after.

The impulse response of the matched filter is obtained by considering a delta-

function glitch in the input data s(t) = δ(t− tg), where tg is the time of the transient.

Although not all types of glitches are of this nature [66], many loud noise transients are

well approximated as s(t) = n(t)+ δ(t− tg). For example, Figure 2 shows a typical loud

transient glitch from LIGO’s sixth science run. As loud noise transients occur frequently

in detector data, most glitches are not individually investigated. Although the cause

of this glitch is unknown, it likely comes from an instability in the detector’s control

systems. For such a glitch, the matched-filter SNR given by Eq. (1) will be dominated

by

ρ2(t) ≈ I2cos(t− tg) + I2sin(t− tg), (8)

where

Icos,sin(t− tg) = 4Re

∫ fhigh

flow

h̃cos,sin(f)

Sn(f)
e2πif(tg−t) df (9)

is the impulse response of each of the two phases of the matched filter. This is equal to

the convolution of the template, hcos,sin(t) with the inverse Fourier transform of inverse

power spectral density, 1/Sn(f). To ensure that the impulse response of the filter is

of finite duration, the inverse PSD is truncated to a duration of 16 seconds in the

time domain before filtering [17]. The inverse PSD truncation serves to smear out very

sharp features in the PSD: using a 16-second window provides sufficient resolution of
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Figure 3. Response of the pipeline to a loud glitch. The matched-filter SNR of

the triggers generated is shown as a function of time. Black circles show the triggers

generated immediately after filtering without gating applied to the input data. Blue

triangles show the triggers that remain after the re-weighted SNR is computed for each

trigger and a threshold of ρ̂ > 5.5 is applied. Although the significance of these triggers

is suppressed by the re-weighted SNR, many triggers still remain which can increase

the noise background of the search. The red crosses show the triggers produced by

the search after gating is applied and the SNR is reweighted. The large majority of

triggers caused by the glitch in the ±8 seconds around the transient are absent.

these features, while minimizing the length of the impulse response. The length of the

template can be on the order of minutes, leading to very long impulse response times

for the matched filter, although the template amplitude is quite sharply peaked near

merger.

Figure 3 shows the result of filtering the glitch in Figure 2 through a template bank

and generating triggers from the matched-filter SNR time series. The black circles show

the triggers generated by the ringing of the filter due to the glitch. The largest SNR

values occur close to the time of the glitch and are due to the impulse response of the

template h. The shoulders on either side of this are due to the impulse response of

the inverse power spectrum 1/Sn(f). This leads to the two effects described above: an

excess of triggers around the time of the glitch which can increase the noise background

of the search and a window of time containing multiple noise triggers that can make it

difficult to distinguish signal from noise. In Figure 3, we also plot the triggers that have

a re-weighted SNR above the threshold ρ̂ > 5.5. Although the use of the chi-squared

veto to construct the reweighted SNR suppresses the significance of these triggers, it
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does not completely remove them from the analysis and an increased trigger rate around

the time of the glitch remains.

The PyCBC pipeline identifies non-stationary transients and removes them from

the data, a process called gating. The data around short-duration noise transients is set

to zero prior to matched filtering. To zero the data, the input data s(t) is multiplied

by a window function centered on the time of the peak. A Tukey window is applied to

smoothly roll the data to zero and prevent discontinuities in the input data. The Tukey

window used has a shape parameter of α = 0.5, where α is the fraction of the window

inside the cosine tapered region. The effect of this gating on the strain data is shown

in Figure 2 where the input data is zeroed for 1 second around the time of the glitch.

Figure 3 shows the output of the search when run on the gated data. In addition to

removing the loud triggers with SNR ∼ 1000 at the time of the glitch, gating removed

the additional triggers with SNR ∼ 10 generated by the impulse response of the filter

before and after the glitch. This improves search sensitivity by reducing the amount

of data corrupted by the glitch to only the windowed-out data, and reduces the overall

noise background by removing noise triggers that could possibly form coincident events.

Gating is typically only applied to short-duration transients length of order 1 s. Longer

duration transients that are identified by data quality investigations are removed prior

to analysis by the pipeline.

This process requires the identification of the time of noise transients that will be

removed by gating. These times can be determined by either data quality investigations

or by a separate search for excess power in the input strain data (typically with a high

SNR threshold) [67, 68]; this method was used in Ref. [1]. Alternatively, short-duration

glitches that are not flagged by data quality investigations can be identified by the

pipeline. To do this, the pipeline measures the power spectral density of the input

time series. The data is Fourier transformed, whitened in the frequency domain, and

then inverse Fourier transformed to create a whitened time-series. The magnitude of

the whitened strain data is computed and times exceeding a pre-determined threshold

are identified. Peaks that lie above the threshold are identified by the time-clustering

algorithm of Ref. [17]. The data around these times is then gated using the procedure

described above.

3.3. Matched Filtering

A core task of the search pipeline is to correlate the detector data against a bank of

template waveforms to construct the matched filter signal-to-noise ratio. The matched

filtering used in our search pipeline is based on the FindChirp algorithm developed

for use in the Initial LIGO/Virgo searches for gravitational waves from compact

binaries [17]. In this section we describe two improvements to the FindChirp algorithm:

changes to the noise power spectral density estimation and a new thresholding and

clustering algorithm that identifies maxima in the signal-to-noise ratio time series.

The matched filter in Eq. (2) is typically written in terms of continuous quantities,
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e.g. s(t), h(t), and Sn(f). In practice, the pipeline works with discretely sampled

quantities, e.g. sj ≡ s(tj), where sj represents the value of s(t) at a particular time

tj. Similarly, Sn(fk) represents the value of the noise power spectral density at the

discrete frequency fk. The input strain data is a discretely sampled quantity with a

fixed sampling interval, typically ∆t = 1/4096 s. Fourier transforms are computed using

the Fast Fourier Transform (FFT) algorithm in blocks of length TB = 256 seconds. For

this block length, the number of discretely sampled data points in the input time-series

data sj is N = TB/∆t = 256× 4096 = 220. The discrete Fourier transform of sj is given

by

s̃k =
N−1
∑

j=0

sje
−2πijk/N , (10)

where k = fk/(N∆t). This quantity has a frequency resolution given by ∆f = 1/(N∆t).

To construct the integrand of the matched filter, the discrete quantities h̃k, s̃k,

and Sn(fk) must all have the same length and frequency resolution. The most

straightforward way to do this is to couple the computation of s̃k and Sn(fk), by using the

same length of data to compute both. An average PSD is then computed by averaging

(typically) 15 overlapping blocks of data [69, 17, 18], leading to a large variance in the

estimated PSD.

The PyCBC pipeline decouples the computation of Sn(fk) and s̃k, allowing many

more averages to be used to compute Sn(fk). As discussed in Section 3.2, the inverse

PSD is truncated to 16 seconds to reduce the length of the filter’s impulse response:

thus, it is natural to estimate the PSD using 16-second time-domain blocks. An input

filter length of 2048 seconds allows for 127 such blocks, leading to significantly less

variance in the PSD estimate. The resulting PSD is then linearly interpolated to

match the resolution of the data. Finally, the interpolated Sn(fk) is inverted, inverse

Fourier transformed, truncated to a fixed length of 16 seconds in the time domain [17],

and then Fourier transformed to the frequency domain for use in the matched filter.

Implementation of the matched filtering algoritm in PyCBC can be performed using

either single-threaded or parallel FFT engines, such as FFTW [70] or the Intel Math

Kernel Library. The choice of single- or multi-threaded filtering is made at runtime, so

that the fastest implementation (one multi-threaded process, or several single-threaded

processes) can be made depending on the architecture used.

Once the matched-filter SNR time series ρ2j has been computed, the final step of the

filtering is to generate triggers. These are maxima where the SNR time series exceeds a

chosen threshold value. For either signals or noise transients, many sample points in the

SNR time series can exceed the SNR threshold. Since a real signal will have a single,

narrow peak in the SNR time series, the pipeline applies a time-clustering algorithm to

keep local maxima of the SNR time series that exceed the threshold.

The PyCBC pipeline divides the 256-second SNR time series into equal 1-second

windows and then identifies the maximum of the time series within each window.

As the maximization within each window is independent from other windows, the
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clustering for each window can be parallelized for efficiency on multi-core processing

units. If the desired clustering window is greater than 1 second, then the initial list of

maxima—potentially one for each window within the segment—is further clustered: a

candidate trigger in a window is kept only if it has a higher SNR than both the window

before and after it, ensuring that it is a local maximum in the SNR time series. This

clustering algorithm is more computationally efficient than the running maximization

over template length described in Ref. [17]. Furthermore, it reduces the clustering

window, thereby increasing the search sensitivity.

3.4. Signal Consistency Tests

The chi-squared signal-consistency test introduced in Ref. [71] and developed in Ref. [16]

is a powerful way to distinguish between signals and noise in searches for gravitational

waves from compact-object binaries. The PyCBC search allows the number of bins p in

Eq. (5) to be varied as a function of the parameters of the template [28]. This results

in an improvement in search sensitivity, as demonstrated in Section 4.

The chi-squared statistic can be computationally intensive to calculate, however.

For every FFT operation required to compute the SNR time series, the chi-squared

statistic requires an additional p FFT operations, one for each frequency bin of Eq. (5).

The PyCBC pipeline instead calculates the chi-squared test only at the time samples

corresponding to clustered triggers in the matched-filter SNR time series. To do this,

the pipeline uses an optimized integral over frequency, rather than computing the FFT.

If data quality is poor and the number of triggers in a FFT block is large, the FFT

method becomes more efficient. We quantify this cross-over point below.

To compare the computational cost of the two methods, we consider the calculation

of the p matched filters for the näıve chi-squared test implementation. Computation of

the ρ2i for each of the p bins requires an inverse complex FFT. For a data set containing

N sample points the number of operations is p × 5N log(N). ‡ If we instead calculate

the chi-squared value only at the peaks, we must evaluate

χ2 + ρ2

p
[j] =

p
∑

i=1

ρ2i [j], (11)

at the set of points [j] identified as triggers. We can re-write Eq. (11) as

χ2 + ρ2

p
[j] =

p
∑

i=1





kmax
i
∑

k=kmin
i

q̃ke
2πijk/N





2

, (12)

where kmin,max
i denote the frequency boundaries of the p bins and are given by kmin,max

i =

fmin,max
i /∆f , and q̃k is the kernel of the matched filter, defined as [69]

q̃k =
s̃(f)h̃(f)

Sn(f)
. (13)

‡ Since the FFT dominates the operations count, we have neglected lower-order terms that do not

significantly contribute to the computational cost.
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We can further reduce the computational cost of the chi-squared by noting that the

exponential term requires the explicit calculation of e2πijk/N at kmax = N/2 points.

This can be reduced to a single computation of the exponential term by pre-calculating

e2πij/N once and then iteratively multiplying by this constant to obtain the next term

needed in the sum. To do this, we write Eq. (12) in the following form:

χ2 + ρ2

p
[j] =

p
∑

i=1





kmax
i
∑

k=kmin
i

q̃ke
2πij/N(e2πij/N)k−1





2

. (14)

This reduces the computational cost of each term in the sum to two complex

multiplications: one to multiply by the pre-computed constant e2πij/N and one for

the multiplication by q̃. Computing the right hand side of Eq. (14) then requires the

addition of two complex numbers for each term in the sum. The total computational

cost to compute the chi-squared test for NP points is then 14kmax ×NP = 7N ×NP .

For small numbers of matched-filter SNR threshold crossings, this new algorithm

can be significantly less costly than calculating the chi-squared statistic using the FFT

method. However, if the number of threshold crossings NP is large, then the FFT

method will be more efficient due to the logN term. The crossover point can be

estimated for p chi-squared bins as

Np =
p× 5N log(N)

14kmax

=
5

7
p log(N), (15)

although this equation is approximate because the computational cost of an FFT is

highly influenced by its memory access pattern. For a typical LIGO search where

N = 220, the new algorithm is more efficient when the number of points at which the χ2

statistic must be evaluated is Np . 100. For real LIGO data, the number of times that

the χ2 statistic must be evaluated is found to be less than this threshold on average, and

so this method significantly reduces the computational cost of the pipeline. However,

there are still periods of time where the data quality is poor and the FFT method is

more efficient. Consequently, the pipeline described here computes NP and uses either

the single-trigger or FFT method, depending on the threshold determined by Eq. (15).

For a typical analysis configuration that only identifies triggers once every second, this

threshold is never exceeded, and the single-trigger method is faster even where the data

quality is poor.

3.5. Coincidence Test

To reduce the rate of false signals, we require that a candidate event is seen with

consistent parameters in all of the detectors in the network. The pipeline enforces

this requirement by performing a coincidence test on triggers produced by the matched

filter. This test is performed after triggers occuring during times affected by known

instrumental or environmental artifacts have been discarded. The PyCBC pipeline

requires consistency of arrival time and template parameters (masses and spins) between



PyCBC search 15

different detectors. Here, we only consider a two-detector network, but the extension of

this coincidence test to more than two detectors is straightforward.

For the two-detector LHO-LLO network, signals must be seen in both detectors

within a time difference of 15ms: 10ms maximum travel time between detectors

and 5ms padding to account for timing errors. Since the same waveform should be

observed in all detectors, the pipeline requires consistency of the parameters of the

best-fit template between detectors. Previous searches used a metric-based coincidence

test [72] that checked the consistency of the template parameters and arrival times of

triggers between detectors, but did not require template parameters to be the same.

The PyCBC pipeline requires an exact-match coincidence. The same template bank is

used to filter data and produce triggers from each detector. In addition to enforcing

coinsistent arrival times, the intrinsic parameters (masses and spins) of triggers in each

of the detectors must be exactly the same. The exact-match coincidence test is useful

in cases where there is no simple metric to compare gravitational waveforms, such as

template waveforms for binaries with spinning neutron stars or black holes [73] or for

high-mass waveforms where a stochastic template placement algorithm is used [53, 28].

As demonstrated in Section 4, the use of exact match coincidence leads to a measurable

improvement in the search sensitivity, even when a metric-based coincidence test is

available.

Triggers that survive the coincidence test are considered coincident events. These

candidates are then ranked by the quadrature sum of the reweighted SNR in each

detector; for a two-detector network, we have

ρ̂c =
√

ρ̂21 + ρ̂22. (16)

The choice of coincidence test has implications for the number of single-detector

triggers that must be stored. In previous searches, triggers were clustered over the entire

template bank [72, 18] prior to generating coincident events. However, applying such

clustering in conjunction with exact-match coincidence leads to unacceptable reductions

in search sensitivity, as random noise causes the highest-SNR template to vary between

detectors for quiet simulated signals. Thus, we keep all triggers from the bank before

testing for coincidence.

3.6. Candidate Event Significance

The final step of the pipeline is to measure the false-alarm rate of the search as a function

of the detection statistic, ρ̂c, and use this to assign a statistical significance to candidate

events. The rate and distribution of false alarms in the search, i.e. coincident triggers

due to noise, depends on the pipeline’s response to unpredictable, non-Gaussian and

non-stationary detector noise and must be measured empirically. The PyCBC pipeline

measures the false-alarm rate using time shifts. In this section, we describe the method in

detail, again restricting attention to the two detector case. Generalisations to additional

detectors are relatively straightforward.
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Triggers from one detector are shifted in time with respect to triggers from the

second detector, then the coincidence test is re-computed to create a background data

set that does not contain coincident gravitational-wave signals. Repeating this procedure

many times on a sufficiently large duration of input data produces a large sample of false

coincidences that are used to compute the false-alarm rate of the search as a function

of the detection statistic. Under the assumptions that the times of transient noise

artifacts present in the data streams are not correlated between different detectors and

that gravitational-wave signals are sparse in the data set, this is a sufficiently accurate

approximation of the background to support detection claims.

Our significance calculation requires that candidate events are statistically

independent; however, both noise transients and signals can generate many triggers

across the template bank, potentially yielding several correlated coincident events within

a short time (. 1 second). To generate independent candidates, the pipeline performs a

final stage of clustering: if more than one coincident event occurs within a time window

of fixed duration, typically 10 seconds, only the event with the highest detection statistic

value An identical clustering operation is also performed on the events in each time-

shifted analysis.

Each candidate event is assigned a p-value that measures its significance. For

a candidate event with detection statistic ρ̂c, its p-value pb is the probability that the

there are one or more coincident noise events (false alarms) that have a detection statistic

value greater than or equal to ρ̂c. We calculate p-values under the null hypothesis that

all triggers seen are due to noise. While this hypothesis might be unrealistic in the

presence of loud signals, note that we can never determine with complete certainty from

gravitational-wave data alone that any given trigger is due to signal rather than noise.

In order to claim detection it is necessary to show that the statistic values of events

actually obtained in the search are highly improbable under such a null hypothesis: i.e.

that the p-value is very small. As demonstrated in [74], including all search triggers in

the background calculation results in a self-consistent significance, i.e. small p-values are

assigned to random noise candidate events with the expected frequency; the procedure

also does not adversely affect the efficiency of the search compared to other methods

which aim to remove likely signal triggers before calculating the significance of search

events.

Using the distribution of coincident events from the time shifts, we can measure

how many noise background events nb are louder than a given candidate event. We thus

determine the function nb(ρ̂c) which gives the number of background events having a

higher detection-statistic value than ρ̂c. The probability that one or more noise events

as loud as a candidate event with detection-statistic value ρ̂∗c occurs in the search, given

the duration of observing time T and the amount of background time constructed from

the time shifts Tb, is

p(≥ 1 above ρ̂∗c |T, Tb)0 = 1− exp

[

−T (1 + nb(ρ̂
∗

c))

Tb

]

. (17)

A detailed derivation of this result is given in Appendix A.
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To account for the search background noise varying across the target signal space,

candidate and background events are divided into three search classes based on template

length. The significance of candidate events is measured against the background from

the same class. This binning method prevents loud background events in one class

from suppressing candidates in another class. For each candidate event we compute

the p-value pAb inside the class A, pAb (ρ̂c) = 1− exp
[

−T (1 + nA
b (ρ̂c))/Tb

]

, where nA
b (ρ̂c)

is the number of noise background events in the class A above the candidate event’s

re-weighted SNR value ρ̂c. To account for having searched multiple classes which could

all give rise to false alarms, the significance is decreased by a trials factor equal to the

number of classes nC [63]; the final significance of a candidate found in class A is given

by

pb(ρ̂c;A) = 1− exp

[

−nCT (1 + nA
b (ρ̂c))

Tb

]

. (18)

Equivalently, we may consider the quantity nC(1+nA
b (ρ̂c))/Tb as a rate of false positive

events more significant than such a candidate, when summed over the search as a whole.

The observation time used in the search Tobs is determined by two considerations.

The maximum length of the observation time is set by the requirement that the data

quality of the detectors should not change significantly during the search. If the time-

shifts mix data from periods of substantially different data quality (i.e. higher- or lower-

than-average trigger rates), the noise background may not be correctly estimated. The

minimum length of the observation time is set by the false-alarm rate necessary to

claim the detection of interesting signals. The smallest false-alarm rate that the search

can measure scales is achieved by performing every possible time shift of the two data

streams. While the length of data analyzed in any given time shift will vary, the total

amount of background time analyzed will equal Tb = T 2/δ, where δ is the time-shift

interval. § Thus, the minimum false-alarm rate scales as δ/T 2
obs. In a two-detector

search using time shifts of 0.1 seconds, approximately fifteen days of coincident data

are sufficient to measure false-alarm rates of 1 in 2 × 105 years, corresponding to a

significance of 5 σ. This is the length of data used in the observation of GW150914 [1].

Two computational optimizations are applied when calculating the false-alarm rate

of the search. The implementation of the time-shift method used does not require

explicitly checking that triggers are coincident for each time shift successively. Instead,

the pipeline takes the triggers from a given template and calculates the offset in their

end times from a multiple of the time-shift interval. It is then possible to quickly find the

pairs of triggers that are within the coincidence window. Furthermore, the number of

background triggers is strongly dependent on the detection-statistic value. For Gaussian

noise, the number of triggers will fall exponentially as a function of ρ̂c. At low detection-

statistic values, it is not necessary to store every noise event to accurately measure the

search false-alarm rate as a function of detection statistic. Instead, the pipeline is given

§ In the case where gaps between consecutive portions of data are a multiple of the time-shift interval

this is exact. This is generally the case in our analyses. If gaps are not multiples of the time-shift

interval, the total analyzed time will be approximately Tb = T 2/δ, but there will be small corrections.
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Figure 4. Sensitivity of the gravitational-wave detectors for the last part of the sixth

science run for LIGO (S6D) and the third VIRGO science run (VSR3). The plot shows

the volume-weighted average distance at which a 1.4, 1.4 BNS would be observed with

an signal-to-noise ratio of 8 for each detector. The two rectangles indicate time intervals

used for this study, corresponding to a week of data from July 2010 and a week of data

from August 2010.

a threshold on ρ̂c and a decimation factor d. Below this threshold the pipeline stores

one noise event for every d events, storing the decimation factor so that the false-alarm

rate can be correctly reconstructed. This saves disk space and makes computation of

the false-alarm rate at given values of the detection statistic faster.

4. Comparison to Initial LIGO Pipeline

In this section, we compare the PyCBC search pipeline to the ihope pipeline used in

the previous LIGO and Virgo searches for compact-object binaries [18]. We focus on

tuning and testing the pipeline to improve the sensitivity to binary neutron star systems,

although we note that use of the pipeline is not restricted to these sources. This pipeline

has been used to search for binary black holes [1, 28, 3], binary neutron stars and

neutron-star black-hole binaries [12] in Advanced LIGO data. Section 4.1 describes

the method that we use to measure the sensitivity of this pipeline and Section 4.2

compares this sensitivity to that of the ihope pipeline. The comparison is performed

using two weeks of data from the sixth LIGO science run [27, 33] shown in Figure 4.

We demonstrate that for binary neutron stars, the PyCBC search can achieve a volume

sensitivity improvement of up to 30% over the ihope pipeline without reducing the

sensitivity to higher mass systems.
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4.1. Measuring Search Sensitivity

As the metric of search sensitivity, we measure the pipeline’s sensitive volume. This is

proportional to the fraction of sources that the pipeline can detect per unit time at a

given false alarm rate F , given by

V (F) =

∫

ǫ(F ;x,Λ)φ(x,Λ)dxdΛ. (19)

Here, Λ are the physical parameters of a signal, x is a spatial co-ordinate, φ(x,Λ) is the

distribution of signals in the universe, and ǫ is the efficiency of the pipeline at detecting

signals with parameters Λ in volume x and with false alarm rate F .

We find the sensitive volume by adding a large number, NI , of simulated signals

to the data and measuring the pipeline’s ability to identify them. If the simulated

signals are drawn from the same distribution as the astrophysical distribution φ, then

the sensitive volume is

V (F) ≈
1

NI

NI
∑

i=1

Θ(F|Fi) ≡ 〈Θ(F)〉 , (20)

where Fi is the false alarm rate associated to simulation i and Θ(F|Fi) is a step function

with Θ(F|Fi) = 1 if Fi ≤ F and zero otherwise. The false alarm rate for a simulation

is calculated using the most significant event within a 1 second window of the arrival

time of the simulated event. If no event is found within this time, the detection statistic

value is set to zero.

For this comparison, we assume an astrophysical distribution φ in which signals

are uniformly distributed in volume, and isotropic in sky location and orientation. ‖

Distributing simulations uniform in volume leads to a majority of signals being injected

at large distances, where almost all will not be detected due to less than optimal sky

position or orientation. For a fixed number of injections, this produces large errors

in the estimate of V . Instead, we generate signals distributed uniformly in distance

between rmin and rmax chosen such that all signals with distance r < rmin will be found,

even at small (. 10−3/yr) false alarm rate thresholds, and all signals with r > rmax

will be missed, even at large (& 102/yr) F . Gravitational waves from more massive

systems have larger amplitudes and can be detected at greater distances than less

massive systems. The amplitude of the emitted signal scales, at leading order, with

the chirp mass of the binary M = (m1m2)
3/5/(m1 + m2)

1/5. If a binary with chirp

mass M0 can be detected at a distance of r0, then a binary with chirp mass M can be

detected at a distance given approximately by

ri = r0(Mi/M0)
5/6. (21)

Consequently, we use mass-dependent bounds rmin,i and rmax,i, scaled as in Eq. (21),

for a simulated signal with chirp mass Mi. The sky locations and orientations of the

‖ At small distances, it is necessary to account for discreteness of galaxies while, at larger distances,

cosmological effects become important.
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simulate population are distributed isotropically. Since the distribution of simulated

signals differs from the assumed astrophysical distribution φ, we must re-weight the

contribution each simulation makes to the sensitive volume as [53]:

V (F) ≈ 4π
1

NI

NI
∑

i=1

[

1

3
r3min,i + r2i∆riΘ(F|Fi)

]

≡ 〈g(F)〉 , (22)

where ∆ri ≡ rmax,i − rmin,i. The error on this estimate is

δV =

√

(〈g(F)2〉 − 〈g(F)〉2)/NI . (23)

To quantify the sensitive volume of each pipeline for this study, we select a

compact-object binary population distributed uniformly over component masses with

1 ≤ m1,2/M⊙ ≤ 7 andm1+m2 ≤ 14M⊙. The parametersΛ are therefore the component

masses of the binary m1,m2 and the orientation and polarization angle of the binary

with respect to the detectors. For data from LIGO’s sixth science run, we find that

rmin = 0.5Mpc and rmax = 30Mpc are suitable choices for a binary with component

masses m1 = m2 = 1.4M⊙.

4.2. Relative Search Sensitivity and Computational Cost

Both the PyCBC and ihope [18] pipelines were used to analyze two weeks of data

from LIGO’s sixth science runs and the sensitive volume of each search, as well as the

computational cost, was compared. Both searches use a template bank designed to

search for compact-object binaries with component masses between 1 and 24M⊙, total

mass m1 + m2 ≤ 25M⊙ and zero spins, as shown in Fig. 5. In the literature it is

generally assumed that the noise power spectral density is invariant, which is not the

case for real data. In searches of initial LIGO and Virgo data, the time-dependence of the

detector PSDs was addressed by recomputing the template bank on regular intervals of

around an hour [18]. Since PyCBC’s templates include both mass and spin parameters,

regenerating the bank so often is not computationally feasible; instead, the use of a

single, pre-generated bank is required, as described in Section 3.1.

The PyCBC analysis was configured as described in detail in Sections 2 and 3. The

chi-square test uses p = 100 bins for templates with a chirp mass M ≤ 1.74M⊙ and

p = 16 for higher masses. To estimate the noise background of the search, an 0.2 s

time-shift interval is used, and events are divided into two classes: one class contains

triggers with M ≤ 1.74M⊙, a second triggers with 1.74 < M/M⊙ ≤ 6.1, and templates

outside these bins are ignored in the search.

The ihope analysis was configured as for the S6-VSR2/3 search for low-mass

binaries [27]. To reduce computational cost, the ihope pipeline has two stages of matched

filtering, where the computationally costly chi-square test is performed at the second

stage on only those triggers found in coincidence (and time-shift coincidence). When

large numbers of time shifts are performed, the majority of triggers appear in coincidence
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Figure 5. Mass-ranges for software injection, shown in the m1 −m2 mass-plane. The

template bank used to search for these injections is indicated by hatched regions and

the injection set by the red shaded region. The black dashed lines show chirp masses

of 3.48M⊙ and 6.1M⊙, the boundaries between the mass bins used. Triggers from

templates with chirp masses larger than 6.1M⊙ are discarded in post-processing.

in at least one time shift and there is little benefit to the two-stage analysis. Thus, to

investigate sensitivity at low false alarm rates, we also run the pipeline with a single

stage of matched filtering where the chi-squared test is performed on every trigger.

Figures 6 and 7 compare the sensitivity of the two pipelines, using a week of data

from July 2010 and a second week from August 2010. The data from July had larger

fluctuations in the overall sensitivity, but relatively few noise transients while the August

data had a consistent range but more glitches [33]. Using these two different weeks allows

us to test the pipelines under various conditions. Figure 6 restricts to low mass binary

coalescence signals (M ≤ 3.48M⊙) while Figure 7 displays higher masses. The figures

show that the sensitive volume of the new pipeline is greater than or equal to that of

the ihope pipeline for both subsets of signals in both weeks of data.

At a false-alarm rate of 1 in 100 years, the PyCBC pipeline affords a sensitivity

improvement for low-mass systems of 20% for the first week of data and 30% for the

second week of data. The matched-filter SNR of simulated signals does not change

significantly between the old and new pipelines. Furthermore, the chi-squared value,

and hence re-weighted SNR, is also similar for both pipelines. The improvement in

sensitivity of the PyCBC analysis is due to the reduction in the noise background of the

search. Approximately 10% of the improvement in sensitive volume comes from using a

fixed template bank with the exact-match coincidence test. The remaining improvement

is due to reduction in the noise background because of the increased number of chi-

squared bins used in the low-mass region of the search. Both of these improvements

allow us to decrease the number of high significance events caused by noise transients.



PyCBC search 22

10−3 10−2 10−1 100 101 102

False Alarm Rate (yr−1)

35000

40000

45000

50000

55000

V
ol
u
m
e
(M

p
c3
)

S6 Two Stage

Advanced Search

S6 Single Stage

10−3 10−2 10−1 100 101 102

False Alarm Rate (yr−1)

30000

35000

40000

45000

50000

55000

V
ol
u
m
e
(M

p
c3
)

S6 Two Stage

Advanced Search

S6 Single Stage

Figure 6. The sensitive volume for low-mass binary systems, chirp massM ≤ 3.48M⊙,

of the PyCBC and ihope searches as a function of the false alarm rate threshold. The

left plot shows results from a week of data from July 2010 while the right plot uses

data from August 2010. The PyCBC search (red, solid line) is more sensitive over a

broad range of false alarm rates than the ihope single stage (blue, dashed line) and

ihope two-stage (pink dotted line) searches. The error bars for the ihope analyses are

larger than for PyCBC as fewer injections were performed. Since it uses only 100 time

shifts, the two-stage ihope analysis can only determine false alarm rates as low as six

per year in one week of data.
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Figure 7. The sensitive volume for high-mass binary systems, chirp mass M >

3.48M⊙, of the PyCBC and ihope searches as a function of the false alarm rate

threshold. The left plot shows results from a week of data from July 2010 while

the right plot uses data from August 2010. The PyCBC search (red, solid line) is more

sensitive over a broad range of false alarm rates than the ihope single stage (blue,

dashed line) and ihope two-stage (pink dotted line) searches. The error bars for the

ihope analyses are larger than for PyCBC as fewer injections were performed. Since it

uses only 100 time shifts, the two-stage ihope analysis can only determine false alarm

rates as low as six per year in one week of data.
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The improvement is most apparent in the August data as the rate of non-Gaussian

noise transients in that week is larger than in the July data. Consequently, the new

pipeline’s reduction of the noise background has a larger effect on the sensitivity for

the August 2010 data. For high-mass systems, the PyCBC pipeline is marginally more

sensitive than the ihope pipeline, with a 5-10% improvement at a false-alarm rate of 1

in 100 years. The improvement is less pronounced as the number of chi-squared bins

was unchanged at higher masses. A discussion of tuning the pipeline to binary black

hole systems can be found in Ref. [28].

Job Type Two-Stage ihope Single-Stage ihope PyCBC

Template Bank Generation 13.3 13.3 4.7

Matched filtering and χ2 515.4 1431 515.5

Second Template Bank 0.1 - -

Coincidence Test 0.3 8.3 9.9

Total 529.1 1453 530.0

Table 1. The computational costs of different parts of the single-stage and two-stage

ihope search pipelines, and the new PyCBC pipeline. The costs are given in CPU days.

Table 1 shows the computational cost of the pipelines. The cost of the PyCBC

search is comparable to that of the two-stage ihope search, and about one third of the

cost of the single-stage ihope search. However, the two-stage search is unable to compute

false-alarm rates low enough to support a detection claim and is therefore unsuitable

for analysis of advanced detector data.

5. Conclusions

This paper presents a new pipeline to search for gravitational waves from compact

binaries developed in the PyCBC framework. The pipeline includes several new

developments, including: (i) gating to mitigate the effect of loud, non-Gaussian noise

transients in the input data; (ii) the ability to use a single, fixed template bank for the

entire analysis created using the harmonic mean of a large number of noise spectral

density estimates; (iii) decoupling of the matched filtering and noise power spectral

density estimation to improve the performance of the matched filter; (iv) a simpler, more

efficient algorithm for identifying and clustering peaks in the matched-filter SNR time-

series; (v) a computationally-efficient implementation of the chi-squared veto; (vi) the

ability to set the number of bins in the chi-squared veto as a function of the parameters

of the template; (vii) a stricter coincidence test that requires that a trigger is found

with exactly the same template in both detectors; and (viii) improvements to the time-

shift method used to measure the false-alarm rate of the search and assign a p-value

to candidate events. The new pipeline provides an improvement in sensitivity over the

ihope pipeline [18] used in searches of initial LIGO and Virgo data [27], with up to 30%
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increase in sensitivity to binary neutron star sources. The PyCBC pipeline described

here was used in the LIGO Scientific Collaboration and the Virgo Collaboration’s search

for binary black holes in the first science run of Advanced LIGO [28, 3, 12], including

the identification of the binary black hole signals GW150914 [1] and GW151226 [2].

The PyCBC framework provides a modular set of tools and algorithms that can be

used to create flexible, sensitive gravitational wave search pipelines. For comparison

presented in Section 4, we deliberately configured the pipeline to mimic the ihope

analysis as closely as possible. However, the PyCBC infrastructure can be configured

in many different ways. For example, the mass range can be significantly extended

[28, 3], and the choice of template waveform can be varied across the mass space: e.g.

Refs. [1, 28] use post-Newtonian templates for system with a total mass less that 4M⊙

and templates from the Effective One Body family for higher-mass systems [58, 30, 75].

In principle, it is also possible to use the methods described here to implement matched

filtering to detect gravitational waves from modeled transient systems other than

compact-object binaries.

Further improvements to the astrophysical sensitivity of the PyCBC search pipeline

are ongoing. These include the extension of the pipeline to multiple detectors, upgrades

to the detection statistic to include signal amplitude and phase consistency between

detectors and the incorporation of methods to better measure the variation of the

noise event distribution across the template bank. Ongoing advancements to the

computational efficiency include investigating changes to the FFT block size and input

data sample rate and the implementation of hierarchical search methods in the matched

filter. The FFT engine used in this pipeline can be efficiently used on graphics processing

units (GPUs) and work is ongoing to develop a fast, efficient GPU implementation of

this pipeline. In the longer term, the pipeline will be extended to search for binaries that

exhibit spin-induced precession [76], include the effects of higher-order multipoles [62],

perform a coherent search using a global network of detectors [77] and target the search

to look for gravitational waves emitted at the time of short gamma-ray bursts or other

astronomical transients [78, 79]. Results from these studies will be reported in future

publications.
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Appendix A. Calculation of Event Significance

In this Appendix we give the derivation of Equation (17) which gives the probability

that one or more events with higher detection statistic value than a given threshold ρ̂∗c
would occur due to random coincidences of noise triggers over the search duration.¶

For a randomly chosen candidate event which is assumed to be due to noise, the

probability that there are n∗ or fewer background events with a higher value of ρ̂∗c is

given by

p(nb ≤ n∗|Ne = 1, Nb)0 =
1 + n∗

1 +Nb

, (A.1)

where Nb is the total number of background events and Ne is the number of candidate

events under consideration. This result follows by comparing a random (noise) candidate

event’s ρ̂c value to an ordered list of background events from the time shifts. The

candidate value can lie above all background events, below all background events or lie

in between two background events. There are Nb + 1 places where a given candidate

event can lie when ranked against the list of background events. If the candidate event

is due to noise then its detection statistic value is drawn from the same distribution as

the time-shifted background events, therefore it is equally likely to occupy any one of

these Nb + 1 positions.

Now, since higher ρ̂c values correspond to smaller nb values, the probability that

one random coincident noise event lies above a threshold ρ̂∗c is

p(ρ̂c ≥ ρ̂∗c |Ne = 1, Nb)0 =
1 + nb(ρ̂

∗

c)

1 +Nb

. (A.2)

The same count of louder background events nb might be obtained for a slightly smaller

value of ρ̂c, given that background event values are not infinitely finely spaced, thus

the condition ρ̂c ≥ ρ̂∗c is more restrictive than nb ≤ nb(ρ̂
∗

c), and so strictly this equation

should have a ≤ sign; however we will neglect this subtlety in what follows. We wish

to find the probability that one or more events out of the Ne coincident events in the

search is a noise event (false alarm) at or above the threshold ρ̂∗c . This is given by the

complement of the probability that all events do not lie above this threshold, which for

one event is given by 1− [1 + nb(ρ̂
∗

c)] / [1 +Nb]. The probability that this is true for all

candidate events follows by multiplying the individual probabilities for each of the Ne

events:

p(none above ρ̂∗c |Ne, Nb)0 =

(

1−
1 + nb(ρ̂

∗

c)

1 +Nb

)Ne

. (A.3)

¶ A less detailed derivation was presented in [74].
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This step requires that candidate events are independent, which is achieved, to good

approximation, by the final event clustering described in Section 3.6. Then the

probability that at least one out of Ne clustered candidate events is louder than a

threshold ρ̂∗c (if all candidate events are due to noise) is

p(≥ 1 above ρ̂∗c |Ne, Nb)0 = 1−

(

1−
1 + nb(ρ̂

∗

c)

1 +Nb

)Ne

. (A.4)

In what follows we will approximate 1 +Nb ≃ Nb, which is a negligible correction given

that Nb is very large.

Since we do not know Nb and Ne before performing the analysis, we should treat

these event counts as stochastic variables. However, since there is such a large number

of background events, the statistical uncertainty on Nb is negligibly small. We expect

the rate of background noise events for the duration of background time Tb analyzed to

be equal to the rate of coincident events over the duration of foreground time analyzed,

T :
Ne

T
≈

Nb

Tb

. (A.5)

Under the assumption that the candidate events are all due to noise, we can model Ne

as a Poisson distribution with a mean of 〈Ne〉0 = (T/Tb)Nb.

We wish to know the significance of obtaining a candidate with a given ρ̂∗c
without restricting to any specific number of coincident events, therefore we marginalize

Eq. (A.4) over Ne to obtain

p(≥ 1 above ρ̂∗c |Nb)0 =
∑

Ne

p(≥ 1 above ρ̂∗c |Ne, Nb)0p(Ne|Nb). (A.6)

Given that coincident noise events are approximated by a Poisson process that we

measure using the time-shifted background events, we can find the unknown probability

p(Ne|Nb). Letting the Poisson rate of coincident noise events be µ = (NbT )/Tb, then

the probability of obtaining Ne events is

p(Ne|Nb) ≡ p(Ne|µ) = µNe
exp(−µ)

Ne!
. (A.7)

Substituting into Eq. (A.6) we obtain

p(≥ 1 above ρ̂∗c |Nb)0 =
∑

Ne

{

1−

[

1−
1 + nb(ρ̂

∗

c)

Nb

]Ne

}

µNe
exp(−µ)

Ne!
. (A.8)

Since the sum of a Poisson distribution over all possible event counts
∑

Ne
µNe exp(−µ)

Ne!
is

unity, this simplifies to

p(≥ 1 above ρ̂∗c |Nb)0 = 1−
∑

Ne

(

µ

[

1−
1 + nb(ρ̂

∗

c)

Nb

])Ne exp(−µ)

Ne!
. (A.9)
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Next, we multiply inside the summation by exp[−µ(1− 1+nb

Nb
)] exp[µ(1− 1+nb

Nb
)] (equivalent

to multiplication by unity), to rewrite Eq. (A.9) as:

p(≥ 1 above ρ̂∗c |Nb)0 = 1−
∑

Ne

(

µ

[

1−
1 + nb(ρ̂

∗

c)

Nb

])Ne

×
exp

[

−µ(1− (1+nb(ρ̂
∗

c)
Nb

))
]

Ne!
exp

[

−µ(1 + nb(ρ̂
∗

c))

Nb

]

. (A.10)

Setting µ̂ equal to µ[1− (1+nb)/Nb], we again identify a sum of the Poisson probability

over all possible counts:

p(≥ 1 above ρ̂∗c |Nb)0 = 1−
∑

Ne

µ̂Ne
exp(−µ̂)

Ne!
exp

[

−µ(1 + nb(ρ̂
∗

c))

Nb

]

, (A.11)

All but the last term in the sum total to one and we can re-write this using the Poisson

rate µ = T (Nb/Tb), giving

p(≥ 1 above ρ̂∗c |T, Tb)0 = 1− exp

[

−T (1 + nb(ρ̂
∗

c))

Tb

]

, (A.12)

which reproduces Eq. (17) in the main text.
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