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Abstract

This paper develops a new mechanism to efÞciently compute and compactly store qual-
itative spatial relations between spatial objects, focusing on topological and directional re-
lations for large datasets of region objects. The central idea is to use minimum bounding
rectangles (MBRs) to approximately represent region objects with arbitrary shape and com-
plexity and only store spatial relations which cannot be unambiguously inferred from the
relations of corresponding MBRs. We demonstrate, both in theory and practice, that our
approach requires considerably less construction time and storage space, and can answer
queries more efÞciently than the state-of-the-art methods.

Keywords: Compact representation; Qualitative spatial reasoning; Region Connection Cal-
culus; Cardinal Direction Calculus; Query answering

1 Introduction

Large volumes of spatial information are continuously being collected from heterogeneous sources.
Although most spatial information is stored in a quantitative way, humans often prefer a qual-
itative approach to describe, interpret, understand and query spatial information. For example,
people might ask questions such as ÔDoes our street belong to the catchment area of schoolX ?Õ,
ÔIs my neighbourhood within some high-risk area of criminal activities?Õ, ÔIs the school near a
bush Þre now in danger as the wind is blowing from north to south?Õ, and so on. Further, qual-
itative spatial information can be more ßexibleÑin the sense that it allows answering queries
even when precise geometric details are unavailable (e.g., due to privacy reasons or storage
limits)Ñand more timely because precision usually requires more careful and time-consuming
measurement.

! This is a draft version from the authors. The published version is online at the website of IJGIS.
Seehttp://www.tandfonline.com/doi/abs/10.1080/13658816.2015.1104535
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The Þeld of qualitative spatial reasoning (QSR) has made signiÞcant progress in modeling
and reasoning about qualitative spatial relations (Cohn and Renz 2008). However, most current
applications of QSR only deal with a relatively small number of variables. QSR does not yet
scale to domains with hundreds of thousands of variables because these methods represent spa-
tial information in a qualitative constraint network (Cohn and Renz 2008), the size of which is
quadratic (if all relations are binary) or cubic (if some relations are ternary) in the number of
variables. An important challenge for the QSR community thus lies in developing methods for
representing qualitative spatial information more compactly, such that queries of interest can
still be answered efÞciently.

Various sources of qualitative information may be considered in applications. Common
sources of qualitative spatial relations are descriptions of volunteers and textual descriptions on
the web (Goodchild 2007, Hoffartet al. 2013). However, we may also derive qualitative repre-
sentations from geometric information. We will consider this latter possibility, where the main
aim of qualitative representations is to improve the efÞciency of query answering. Qualitative
representations also play an important role in GIS for spatial data adjustment (Wallgr¬un 2012),
human-friendly interaction (Caduff and Egenhofer 2007) and for respecting privacy issues when
working with sensitive data.

Given the 2D geometric representation of a large number of regions (e.g. administrative
areas), the aim of this paper is to efÞciently compute and compactly store the qualitative spatial
relations between these regions. Our novel approach is applied to RCC8 relations (Region Con-
nection Calculus) from Randellet al. (1992) and CDC relations (Cardinal Direction Calculus)
from Goyal and Egenhofer (1997) and Liuet al. (2010) for large datasets of region objects. The
main idea is to use minimum bounding rectangles (MBRs) to approximately represent spatial
region objects with arbitrary shape and complexity, and only store those spatial relations which
cannot be unambiguously inferred from the spatial relations between corresponding MBRs.
While MBRs have been extensively used in spatial indexing (see Sect. 5), to the best of our
knowledge, our approach is the Þrst that considers MBRs for reducing the size of qualitative
representations. We prove that our approach can represent qualitative spatial information more
efÞciently than existing alternatives (in terms of both time and space). Furthermore, we exper-
imentally show that our approach can indeed be used to answer queries more efÞciently than
state-of-the-art techniques.

The remainder of this paper is organised as follows. After a concise introduction of RCC8,
CDC and spatial clustering indices in Section 2, our MBR-based approach and query support are
described and theoretically analysed in Section 3 and empirically evaluated in Section 4. Section
5 discusses related work and we conclude and outline future work in Section 6.

2 Background

In this section, we Þrst brießy introduce the qualitative calculi used in this paper, i.e. RCC8
and CDC. The second part of this section describes the spatial clustering index proposed in
Fogliaroni (2012), which is perhaps the work most closely related to ours.

In this paper, we represent a spatial object as a boundedregion in the plane, which is a
nonempty regular closed set in the plane. Recall that a regular closed set in the plane is a subset
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of points which coincides with the closure of its interior, or intuitively, a region that has no one-
dimensional parts. The regions we consider could be connected (i.e. one-piece) or disconnected
(i.e. consisting of several disjoint pieces).

2.1 Qualitative Spatial Calculi

SupposeU is a domain of spatial or temporal entities. WriteRel(U) for the Boolean algebra of
binary relations onU. A qualitative calculusConU is a Þnite Boolean subalgebra ofRel(U). A
relation! in a qualitative calculusC is basicif it is an atom inC. Well-known qualitative calculi
include, among others, RCC8 (Randellet al.1992), and CDC (Goyal and Egenhofer 1997).

The RCC8 algebra is the most inßuential topological relation model. It has eight basic re-
lationsDC , EC , PO , TPP , NTPP , TPP ! 1, NTPP ! 1, andEQ , as illustrated in Figure 1
(TPP ! 1 andNTPP ! 1 are the inverse ofTPP andNTPP , respectively).
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Figure 1: Illustration of RCC8 relations.

CDC is a popular directional relation model. To encode the directional information of a
target regiona to a reference regionb, it will make use of the MBR ofb, denoted asM (b) (see
Figure 2 (a) for illustration). By extending the four edges ofM (b), it decomposes the plane into
nine tiles, named asNW , N , NE , W , O, E , SW, S, SE (see Figure 2 (b)), and represents
the relation" (a, b) from a to bas a subset of{ NW, N, NE, W, O, E, SW, S, SE } , where a tile
name, sayNW , is in " (a, b) if and only if an interior point ofa is in tile NW (see Figure 2
(b) for illustration). We call" (a, b) a single tile relation if it contains only one tile name. For
convenience, we also write the tile name in the single tile relation" (a, b) for this CDC relation.
If only connected regions are considered, then there are 218 basic relations in CDC; if arbitrary
bounded regions are considered, then there are 511 basic relations in CDC. See Liuet al.(2010)
and Goyal and Egenhofer (1997) for more information.

2.2 Spatial Clustering Index

For very large datasets, it is not feasible to represent the RCC8/CDC relations of a spatial
geometric dataset with a complete qualitative constraint network, due to the quadratic size of
such a network. To reduce the calculation and storage without loss of qualitative information,
Fogliaroniet al.(2011) and Fogliaroni (2012) have proposed the spatial clustering index, to pro-
vide a more compact and efÞciently computable qualitative representation. The approach uses
so-calledclustering relationsto reduce the calculation and storage of qualitative relations be-
tween regions in the dataset. Given a qualitative calculusC, a relation! " C is a clustering
relation if it is downward closed under set inclusion, i.e. from(a, b) " ! anda" # a, b" # b, we
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Figure 2: (a) A bounded connected regionband its MBR; (b) The 9 tiles ofband illustration of
CDC relation" (a, b) = { W, NW, N } .

infer (a", b") " ! . It is straightforward to show that RCC8 only has one clustering relation, viz.
DC, and CDC has exactly four, viz. the single tile relationsNW , NE , SW, andSE.

Given a 2D spatial geometric datasetD = { oi : i " I } , the approach from Fogliaroniet al.
(2011) and Fogliaroni (2012) makes use of some auxiliary geometric shapes, called Ôindex tilesÕ
to help detect clustering relations between regionsassociated withthem. Regions are associated
with these index tiles according to some predeÞned strategy for a speciÞc instance of spatial
clustering index, such as the intersection between a region and the index tile. In general, it
works as follows:

1. Build a spatial clustering structureI = { (t j , Cj ) : j " J } , where eacht j (j " J ) is
an index tile andCj # D a cluster of regions associated witht j by some strategies, and
{ oi : i " I } is covered by{ t j : j " J } (i.e.

!
i # I oi #

!
j # J t j ).

2. Fori " J andj " J , execute the following steps:

¥ If (t i , Ci ) = ( t j , Cj ), then compute and store the RCC8/CDC relation between every
two regions inCi = Cj ;

¥ If (t i , Ci ) and(t j , Cj ) are different, then compute the relation betweent i andt j ;

Ð If the relation betweent i andt j is a cluster relation, then store this relation for
t i andt j

1 and continue for the next pair ofi, j ;
Ð If the relation betweent i andt j is not a cluster relation, then compute and store

the relations between every region inCi and every region inCj .

Fogliaroni (2012) implements two instances of spatial clustering index, one grid-based and
the other R*-tree based. The grid clustering index uses rectangles from a grid that covers the

1It is optional whether to store the clustering relation between tiles, depending on whether we need that infor-
mation or not. Based on different query strategies, we may either not need this piece of information such as for the
strategy later used in Experiment 2, or need it for some other strategies like the one in Fogliaroni (2012).
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dataset as index tiles, and the R*-tree clustering index uses the MBRs of internal nodes in the
R*-tree (Beckmannet al.1990) as index tiles. As R*-trees are only one of many variants of R-
trees, the R*-tree clustering index can straightforwardly be extended to methods based on other
variants of R-trees (Guttman 1984). In this paper, we will refer to this class of methods asthe
R-tree clustering index.

To build a spatial clustering structure, different strategies can be exploited. For RCC8, the
grid clustering index uses the strategy that a regionr i is associated with an index tilet iff t $
M (r i ) %= ! ; for CDC, it uses the strategy that a regionr i is associated with an index tilet iff
M (r i ) andt have a common interior point. For both RCC8 and CDC, the R-tree clustering index
hierarchically builds the clustering index and has two strategies. For leaf level index tiles, in the
Þrst strategy, a regionr i is associated with a leaf index tilet iff M (r i ) andt have a common
interior point; in the second strategy, a regionr i is associated with a leaf index tilet iff M (r i ) is
contained int. For a non-leaf level index tilet, in both strategies of the R-tree clustering index,
a deeper level index tilet " is associated witht if t " is contained int.

As has been observed in Chapters 4 and 6 of Fogliaroni (2012), the spatial clustering index
has one important weakness. The performance (the reduction ratio in particular) of the spatial
clustering index strongly depends on the quality of the clustering index. A bad clustering index
not only results in many repeated considerations of region pairs, but also fails to associate a
sufÞcient number of regions to index tiles that are in clustering relations. Moreover, no general
optimal strategy has been found yet to obtain a good cluster index other than repeatedly testing
different parameters. This means that the performance of the grid or R-tree clustering indexes
cannot be guaranteed. Al-Salman (2014) developed another variant of the spatial clustering
index for point objects, which aims to obtain a better cluster by using a more sophisticated
clustering strategy (i.e. the density-based approach DBSCAN) and using the concave hull of
each cluster as the index tile rather than using the MBR for RCC8 case. This approach stores
fewer relations, while it costs more time to construct the representation because of the more
complex clustering strategy and the use of the concave hull.

3 The MBR-Based Approach

Given a geographic datasetD, consisting of regionsr1, . . . , rn , suppose we want to construct a
representation from which the RCC8/CDC relation between each pair of regions can be easily
obtained. The naive approach, i.e. the complete representation, consists of calculating and
storing the RCC8/CDC relation for every pair(r i , r j ) in D. It leads to a set of! (n2) relations to
compute and store. Furthermore, note that it can be expensive to calculate the relation between
two regions of arbitrary shape, as regions in some datasets may have thousands of vertices;
e.g., for the dataset Australia-adm2 used in our experiment, a region on average has about 2362
vertices and one region even has 148,488 vertices. In particular, it requiresO(m logm) time
to test intersection for two simple polygons withm vertices (Rigauxet al. 2001). Thus the
complete representation is extremely time and space consuming. Therefore, our task is to Þnd
an efÞcient way to construct a qualitative representation ofD at a signiÞcantly lower cost, while
still allowing us to easily obtain the RCC8/CDC relation between any two regions.

The spatial clustering index approach from Fogliaroniet al. (2011) and Fogliaroni (2012)
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has made improvements in terms of both calculation and storage, but, as already mentioned, its
performance strongly depends on the quality of the clustering index. The prime network ap-
proach (Duckhamet al.2014, Liet al.2015) can Þnd and remove all redundant RCC8 relations
and hence signiÞcantly save storage space, but it presumes that the complete network of spatial
relations has been calculated in advance, i.e. it could alleviate the required space for storing the
Þnal representation, but not the computation time.

Here we propose another alternative, calledthe MBR-based approach, inspired by the fol-
lowing observations:

1. MBRs can usually be obtained in real-world applications at very low cost, and can be
stored linearly with respect to the number of objects involved.

2. While the number of region pairs for which two MBRs have no common (interior) point
will depend on the nature of the considered datasets, we found that many real-world
datasets contain a large number of such pairs (e.g. most administrative datasets), and
hence the MBR of a region will usually only intersect with a small number of the MBRs
of other regions.

3. The RCC8 relation between two regions can be unambiguously inferred from the RCC8
relation between their MBRs if the two MBRs have no common point.

4. The CDC relation between two regions can be unambiguously inferred from the CDC
relation between their MBRs (and the MBRs of their connected components) if the two
MBRs have no common interior point.

5. Calculating the RCC8/CDC relation between two MBRs is much easier and more efÞcient
than calculating the RCC8/CDC relation between two arbitrary regions.

3.1 Algorithm

Algorithm 1 shows the main steps of the MBR-based approach. In Line 2, we Þrst Þnd all
pairs(r i , r j ) such that the corresponding MBRs have a common point, and then calculate the
RCC8 relations between such pairs in Lines 3-4. Similarly, we calculate the CDC relations in
Lines 5-7. Note that since CDC relations are not closed under inverse (Liuet al.2010), we need
to calculate and store both the CDC relation fromr i to r j and that fromr j to r i .

The idea of the algorithm is related to the widely used standard MBR pre-processing tech-
nique, which is used by GIS systems to Þlter out candidate answers to queries. However, while
the standard pre-processing method only aims to improve the computation time of query answer-
ing, we propose to use MBRs to construct a more compact representation of qualitative spatial
information. Although this idea is conceptually simple, we show that it outperforms the state-of-
the-art methods for constructing qualitative spatial indices, both in theory and in experiments.

3.2 Correctness of the Algorithm

We need to show the correctness of the algorithm. This means, after applying the algorithm
to a set of regionsD = { r1, ..., rn } , the RCC8/CDC relation between any two regionsr i and
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Algorithm 1: Calculating a compact representation using MBRs.

1 Input: A set of regions{ r1, . . . , rn } .
2 Output: A compact representation from which RCC8/CDC relations can be derived.

1 Obtain the MBRs{M (r1), . . . , M (rn )} of { r1, . . . , rn } ;

2 ForRCC8: Þnd all pairs(r i , r j ), with i < j , such thatM (r i ) andM (r j ) have a
common point;

3 For every such a pair(r i , r j ):

4 Calculate and store the RCC8 relation betweenr i andr j ;

5 ForCDC: Þnd all pairs(r i , r j ), with i < j , such thatM (r i ) andM (r j ) have a common
interior point;

6 For every such a pair(r i , r j ):

7 Calculate and store the CDC relation fromr i to r j and that fromr j to r i ;

r j is either stored or can be unambiguously inferred from the RCC8/CDC relation between the
corresponding MBRsM (r i ) andM (r j ) (and the MBRs of the connected components of the
regions). In the following, we show that the relations which are not stored can be inferred from
the relations between MBRs.

It is easy to see, as the following proposition shows, that for RCC8, the non-stored topolog-
ical relations can always be inferred from the topological relations between the corresponding
MBRs.

Proposition 1 ((Papadiaset al. 1995, Li and Cohn 2012) ). Given two (connected or discon-
nected) regionsa andb, if M (a) DC M (b), i.e. M (a) $ M (b) = ! , thenaDC b.

The following proposition shows that for CDC and connected regions, a similar conclusion
can be obtained.

Proposition 2. Given two regionsa, b, if a is connected andM (a) andM (b) have no common
interior point, then" (M (a), M (b)) = " (a, b), i.e. the CDC relation ofa to bis the same as that
of M (a) to M (b).

This is the case when for example" (M (a), M (b)) is a single tile relation other thanO,
which includes not only the CDC clustering relations but also some others likeN andW , so it
is more general than the clustering relation approach of Fogliaroni (2012).

For possibly disconnected regions, however, we cannot always get the correct CDC relation
merely from the MBRs of the regions. Figure 3 shows such an example, where we can see
that the CDC relation froma to b is { NW, NE } but the CDC relation fromM (a) to M (b) is
{ NW, N, NE } . In this case, we need to take the connected components ofa into consideration.
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Figure 3: The CDC relation fromM (a) to M (b) is { NW, N, NE } , while the CDC relation
from a to b is { NW, NE } .

Lemma 3. Given two possibly disconnected regionsa, b, supposea1, . . . , ak are the connected
components ofa. Then" (a, b) =

!
i =1 ,..,k " (ai , b), where each" (ai , b) is a subset of{ NW, N,

NE, W, O, E, SW, S, SE } .

The above lemma states that the compact representation problem for CDC and possibly
disconnected regions can be transformed into the same problem for their connected components.
Note that we need to do this only whenM (a) andM (b) have no common interior point. In
this case, we could just compute the CDC relation" (M (ai ), M (b)) for eachai and take it as
the relation" (ai , b), because we knowM (ai ) andM (b) also have no common interior point.
Then we sum them up to obtain the CDC relation betweena andb. In summary, for possibly
disconnected regions, we have the following conclusion.

Proposition 4. Given two possibly disconnected regionsa, b, supposea1, . . . , ak are the con-
nected components ofa, andM (a) andM (b) have no common interior point. Then" (a, b) =!

i =1 ,..,k " (M (ai ), M (b)) .

3.3 EfÞciency of the Algorithm

The major concern, regarding the efÞciency of the algorithm to construct a compact representa-
tion, is the number of RCC8 and CDC relations that need to be computed and stored for a given
geographic datasetD. For convenience, in this paper we call such number thequaliÞed sizeof
D for the corresponding algorithm (e.g. MBR-based/grid/R-tree clustering indexes), and use it
as the measure for the performance of the algorithms.

For grid and R-tree clustering indexes, the qualiÞed size is related not only to the charac-
teristic of the dataset but also to the parameters chosen by the algorithms, such as the index tile
size for grid clustering and the maximal number of children allowed in a node of an R-tree. For
the MBR-based approach, the qualiÞed size is only related to a particular characteristic of the
spatial geometric dataset, i.e. theaverage intersection degreeød as deÞned below.

Proposition 5. Given a spatial datasetD of n regions. Suppose each MBRmi (or the interior of
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each MBR for CDC) intersects withdi other MBRs.2 Let us call ød = (
"

di )/n theaverage in-
tersection degreeof D. Then the qualiÞed size of the conÞguration for the MBR-based approach
is n ød/ 2 for RCC8 relations andn ød for CDC relations.

Interestingly, we observe that, for many real-world datasets, most regions only have a rela-
tively small number of ÔneighbouringÕ regions, i.e., theaverage intersection degreetends to be
quite small when compared to the number of regions in the conÞguration. For example, Fig-
ure 4 shows the distribution ofdi for the administrative areas of Australia. We haveød & 7.12,
which is much smaller than the number of regionsn = 1395. As a result, the qualiÞed size of
this dataset for the MBR-based approach will be much smaller than the qualiÞed size for the
complete representation.
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Figure 4: Distribution of intersection degree of the administrative areas of Australia.

Moreover, the qualiÞed size of a given set of regions for the MBR-based approach is never
larger than the qualiÞed sizes for the grid or R-tree clustering indexes, for both RCC8 and CDC.

Proposition 6. Given a set of possibly disconnected regionsD = { r1, ..., rn } , then, for RCC8,
the qualiÞed size ofD for the MBR-based approach is at most as large as the qualiÞed sizes of
D for either the grid clustering index or the R-tree clustering index.

To prove the proposition, we need to show that any relation stored by the MBR-based ap-
proach is also stored by both the grid and the R-tree clustering indexes. This is actually true
because, for any such relationRr i ,r j , we can always Þnd two tiles that one containsr i and
the other containsr j but they are not in a clustering relation. A detailed proof is provided in
Appendix A.

A similar result also applies to CDC.

2Henceforth we assume the average intersection degree refers to the to slightly different deÞnitions for RCC8 and
CDC, respectively, and do not explicitly distinguish them.
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Proposition 7. Given a set of possibly disconnected regionsD = { r1, ..., rn } , for CDC the
qualiÞed size ofD for the MBR-based approach is at most as large as the qualiÞed sizes for
either the grid or the R-tree clustering indexes.

The proof of this proposition would be similar to the one for the RCC8 case, with a few
differences. We give a detailed proof in Appendix A.

Apart from comparing the qualiÞed size, we also need to compare the preparatory work
before the computation of the compact representation of the three algorithms. For the grid
clustering index, the preparation is to build the clustering structure. For the R-tree clustering
index, the preparation is to build the R-tree. For the MBR-based approach, the preparation is to
identify all (interiorly) intersecting MBRs (Lines 1 and 5 of Algorithm 1).

The task of identifying all (interiorly) intersecting MBRs is a classic problem known as the
Rectangle Intersection Problem (or Rectangle Spatial Join Problem). There are several well-
known efÞcient algorithms. Using so-called interval trees or segment trees or priority search
trees, we can identify all intersecting pairs of MBRs in timeO(n logn + k), wherek is the
number of intersecting pairs. For example, see works by Rigauxet al.(2001), Bentley and Wood
(1980), G¬uting and Wood (1984) and G¬uting and Schilling (1987). Since on average there are
only a small number of MBRs intersecting a given MBR, the time needed is usually dominated
by O(n logn). For the datasets used in the experiment, on a computer with IntelR$ CoreTM-i7
3.6 GHz CPU, using brute-force search is already very efÞcient (less than50 ms) compared
with building the grid clustering structure (about100ms and sometimes more than200ms) or
building an R-tree if we use the efÞcient bulk-loading STR R-tree by Leuteneggeret al. (1997)
(about50ms).

3.4 Query Support

A central function of GIS is to answer spatial queries. Queries about qualitative spatial informa-
tion include checking the relation between objects and Þnding instances of regions that satisfy a
given spatial constraint (Fogliaroni 2012).

We focus on the former type of queries, which we regard as the most fundamental one. To
Þnd all variables that satisfy a relation with a given variable, the essence is to infer or obtain the
actual relation between any two variables (i.e. the query type which we focus on), usually after
applying some query pre-processing techniques to restrict the search scope (Clementiniet al.
1994, Papadiaset al.1995). In other words, the indexing technique provided by the MBR-based
approach can be combined with other query pre-processing techniques to better support queries
and real-world applications of qualitative calculi.

To support query answering, our MBR-based approach uses both the stored RCC8/CDC
relations and the MBRs of regions (and the MBRs of the connected components of the regions).
In general, to identify the relation between two regions, it runs as follows. First, we check if
the relation is stored explicitly (e.g., for CDC we check if two MBRs intersect interiorly), if so
return it; else use the MBRs to calculate the relation by Proposition 1 and 4.

In practice, we do not need to strictly follow the procedure induced by Proposition 4. Con-
sider the example shown in Figure 3 again. To calculate the CDC relation ofa to b, from
" (M (a), M (b)) = { NW, N, NE } , it is not difÞcult to see thata must have connected compo-
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nents saya1, a2 such thatNW " " (a1, b) andNE " " (a2, b). Hence we only need to check
if there exists a connected componentai of a such thatN " " (ai , b). Even better, in this case,
we only need to check ifI x (a) = { x : (' y)(x, y) " a} , thex-projection ofa, has nonempty
intersection with(x !

b , x+
b ), where

x !
b = inf { x : (' y)(x, y) " b} and x+

b = sup{ x : (' y)(x, y) " b} . (1)

The following lemma provides another observation that can be used to simplify the procedure.

Lemma 8. Given two possibly disconnected regionsa, b such thatM (a) and M (b) have
no common interior point, if" (M (a), M (b)) contains at most two single tile relations, then
" (a, b) = " (M (a), M (b)) .

Another factor that may affect the efÞciency of query answering is the choice of data struc-
tures in which the relations (constraints) are stored. One should note that this choice is generally
task dependent. For example, we could store the constraints in a relational database, in which
case we can use both the variables and relations as identiÞers. In the experiments below we
will take this approach. It has the advantage of being more ßexible in the types of queries
that are supported. Note that it is also possible to index the geographic objects by using R-
trees and related data structures to improve retrieval efÞciency (Guttman 1984, Beckmannet al.
1990, Papadiaset al.1995). Such techniques mainly focus on answering the type of queries that
ask for all instances of regions that satisfy a given qualitative relation. They assume that the
qualitative relations are already known and use data structures like R-trees for regions to elim-
inate instances of regions which could not satisfy the given relation. We should note that the
R-tree clustering index used in the experiments is a different technique from the R-tree based
techniques discussed here, where the former focuses on building a more compact qualitative rep-
resentation supporting efÞcient query answering. Even though these techniques might be useful
to further enhance the efÞciency of answering the type of queries examined in this paper, we will
not consider such optimizations in our experiments, to focus the evaluation on the efÞciency of
checking spatial relations.

4 Empirical Evaluation

Our approach was evaluated on real-world datasets, in terms of the qualiÞed size and the com-
putation time of query answering. Our implementation makes use of the open source GIS tools
GeoTools3, JTS4, and the H2 DBMS5.

4.1 Datasets

Two types of real-world datasets were selected for our evaluation: Þve datasets about administra-
tive regions from Global Administrative Areas (GADM6) based on administrative regions (Real-

3http://www.geotools.org/
4http://www.vividsolutions.com/jts/JTSHome.htm
5http://www.h2database.com/
6http://www.gadm.org/
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1) and Þve datasets about environmental habitats from the European Environment Agency7

(Real-2). These datasets differ considerably in terms of the total numbers of regions and av-
erage intersection degree of the MBRs.

Real-1 comprises the following administrative datasets of various sizes: Germany-adm3
(434 regions), Ukraine-adm2 (629 regions), Australia-adm2 (1395 regions), China-adm3 (2411
regions), and USA-adm2 (3145 regions). The Þve datasets are chosen because of their variation
of size. The average intersection degrees of all Þve datasets are about six to seven. Real-
2 contains Þve datasets of approximately the same number of regions, with different average
intersection degrees. In particular, the Þve datasets of Real-2 were selected to ensure a range
of intersection degrees. Each dataset contains around 600 regions, with average intersection
degrees of respectively about 45, 106, 122, 180, and 205. The average intersection degree of
the full dataset of habitat information is about 426 (about7.2%of the number of regions), while
the Þve sub-datasets chosen here are ÔextremeÕ cases with average intersection degrees varying
from 7.3% to 33.9% of the number of regions in each dataset. We did not use the full dataset
because of the following two reasons: (i) that it is hard to collect real-world datasets that have
similar size as this one and also have a variation of average intersection degree; (ii) some of
the considered baseline methods (e.g. the complete representation) become infeasible when the
dataset is this large, though our algorithm can Þnish in reasonable time.

Both Real-1 and Real-2 contain disconnected regions. The average number of connected
components for the regions in the datasets of Real-1 is about1.2, 1.1, 4.03, 1.88 and 3.50,
respectively; that for Real-2 is about 13, 21, 29, 18, and 34, respectively.

4.2 Experiment 1

In Experiment 1, the performance of our algorithm was compared with the grid and R-tree
clustering indexes proposed by Fogliaroni (2012), and also with the complete representation.

When applying the grid clustering index, as in Chapter 6 of Fogliaroni (2012) we select a
grid Gthat covers the dataset such that the size of each index tile in the grid is about the average
size of the regions in the datasetD = { r1, ..., rn } . Following Fogliaroni (2012), we say an index
tile t in G is a ÔvalidÕ tile ift $ M (r i ) %= ! for some regionr i ; the cluster of regions associated
with a valid index tilet is exactly the set of regionsr i such thatt $ M (r i ) %= ! .

For the R-tree clustering index, since there are no generally accepted optimal parameter
settings or tree building strategies, we use the efÞcient bulk-loading variant of R-tree, the STR
R-tree (Leuteneggeret al. 1997) as an illustration of the performance of the R-tree clustering
index. The STR R-tree is designed for static or a priori available objects, which is the case
here, and it can efÞciently build an R-tree such that only a small number of MBRs overlap. The
implementation of STR R-tree used in the experiment is from JTS. We use the default parameter
setting of the implementation. Also, we run the R-tree clustering index algorithm from the root
level of the tree, because, as suggested in Fogliaroni (2012), the algorithm will reduce more of
the qualiÞed size if it starts from a shallower level of the tree.

As noticed in Fogliaroni (2012), the grid clustering index has another weak point. In the
grid clustering procedure, some pairs of regions may be simultaneously associated with several

7http://www.eea.europa.eu/
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index tiles. This will result in these pairs of regions being repeatedly used for computation. If
the number of such pairs is large, then the number of qualiÞed relations would be so large that
using the grid clustering index would be even more expensive than the complete representation.
In our experiments, we check whether a pair of regions has already been considered, before
calculating the spatial relation. We have found that the extra work is indeed worth performing,
as it can avoid repeated and expensive calculation of qualitative relations between regions.

4.2.1 Results.
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(a) Real-1, RCC8 (in logarithmic scale)

! "!! #!!! #"!! $!!! $"!! %!!! %"!!
!

#

#!

#!!

#&!!!

#!&!!!

#!!&!!!

#&!!!&!!!

#!&!!!&!!!

!"
#$

%
&

%
'()

*%
+

'

!"#$%&'()'*%+,(-.

!"#$
!%&'(
!$)*&++
!,-./0+1+

(b) Real-1, CDC (in logarithmic scale)
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(c) Real-2, RCC8 (in linear scale)
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(d) Real-2, CDC (in linear scale)

Figure 5: QualiÞed size variation with respect to the number of regions and the average inter-
section degree, on real-world dataset.

Figure 5 shows the results of our experiments for the two real-world datasets. It is im-
mediately clear from Figure 5 that the other algorithms dominate the complete representation
(ÔCompleteÕ in the Þgures) in all cases. Figures 5(a) and (b) show for Real-1 the qualiÞed size
of the MBR-based approach, which is actuallyn ød for CDC orn ød/ 2 for RCC8, and thus grows
linearly in the number of regionsn for both RCC and CDC relations. The qualiÞed size of the
MBR-based approach is consistently smaller than the grid or R-tree clustering indexes. Indeed,
the qualiÞed sizes of the grid and the R-tree clustering indexes quickly become prohibitively
high as the number of regions increases for CDC (note that they-axis is in log10 scale), al-
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though these two algorithms perform better for RCC8 than for CDC. This is probably because
the clustering index mainly helps to distribute disjoint objects into different clusters, which can
distinguish the cluster relationDC clearly from other relations for RCC8 but cannot distinguish
well the cluster relations and non-cluster relations for CDC.

The results on Real-2 (Figures 5(c) and (d)) further show that the MBR-based approach is
outperforming the other algorithms, and that it linearly depends on the average intersection de-
gree. Taking a closer look, we can see that there are indeed several differences from the results
for Real-1. First, the difference between the grid clustering index and the R-tree clustering in-
dex becomes much smaller for both RCC8 and CDC (noting that they-axis uses a linear scale
in Figures 5(c) and (d)). Second, the growth rates of the qualiÞed size for the grid and the R-tree
clustering indexes are not as high as the growth rates for Real-1. The Þrst difference is due to the
large number of regions intersecting with each other in Real-2. This makes it especially hard for
both grid and R-tree clustering indexes to Þnd good clustering structures. Consequently there is
very little difference between the clustering powers of these two approaches. The second differ-
ence is due to poor performance of both algorithms. To be speciÞc, as the average intersection
degree grows while the number of regions is Þxed, the qualiÞed sizes for both grid and R-tree
clustering indexes remain large.

4.2.2 Discussion.

In summary, the MBR-based approach outperforms both grid and R-tree clustering indexes for
CDC and RCC8. The advantage of the MBR-based approach is especially noticeable for CDC,
because the clustering structures cannot distinguish well the clustering relations for CDC. An-
other advantage of the MBR-based approach is that it linearly depends on the number of regions
and the average intersection degree, while the performance of the other two algorithms is depen-
dent on the tuning of speciÞc parameters. We conclude that the MBR-based approach is a simple
yet very efÞcient method to compute and store CDC/RCC8 information in a compact way.

4.3 Experiment 2

In Experiment 2, the performance of answering a basic spatial query was tested using the differ-
ent representations: the MBR-based algorithm, the grid clustering index, the R-tree clustering
index, as well as the complete representation, and using direct geometric computation of re-
lations between given objects. The speciÞc spatial query used here is to Þnd the CDC/RCC8
relation between two given objects. In the analysis that follows, we focus solely on the more
challenging CDC relation. For RCC8, each of the MBR-based algorithm, the grid and R-tree
clustering indexes only omits theDC relation, and so the RCC8 query performance is highly
predicable and similar across all these methods.

To answer the query for the representation obtained by the MBR-based approach, we use
the ÔMBR query methodÕ, partially derived from the discussion in Sect. 3.4. The details of the
MBR query method are as follows. We writeR12 for the CDC relation fromr1 to r2 (i.e. r2 as
the reference object) andS12 for the CDC relation fromM (r1) to M (r2), whereM (r1) and
M (r2) are the MBRs ofr1 andr2, respectively. Then:
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¥ If the interiors of the two MBRsM (r1) andM (r2) do not intersect andr1 is a connected
region, thenR12 is the same asS12.

¥ If the interiors of the two MBRsM (r1) andM (r2) do not intersect andr1 is a discon-
nected region, thenR12 andS12 can only be 1-tile, 2-tile, or 3-tile relation. We only need
to consider two cases.

Ð Case 1: ifS12 is 1-tile or 2-tile relation, thenR12 is the same asS12.

Ð Case 2: ifS12 is 3-tile relation, then it can only be one of these four cases:{ NW, N,
NE } , { NW, W, SW } , { NE, E, SE } , and{ SW, S, SE} . The difference between
R12 andS12 lies only in the presence of the ÔmiddleÕ tile name (e.g.N is the middle
tile name of{ NW, N, NE } , andE for { NE, E, SE } ) in them. Therefore, we only
need to check if there is a connected componentr i

1 of r1 which intersects with the
middle tile interiorly, and if so thenR12 = S12, otherwiseR12 is S12 excluding the
middle tile.

Case 1 is from Lemma 8. We have already seen an efÞcient technique to deal with Case 2,
as mentioned before Lemma 8. We compare the endpoints of the projections of the rectangle
M (r i

1) and the middle tile rectangle on thex/y -axis. For example, forS12 = { NW, N, NE } ,
we compare the endpoints of the projections of these two rectangles on thex-axis. If the pro-
jections have an interior intersection, thenM (r i

1) must have an interior intersection with the
middle tile N (becauseM (r i

1) can only lie in the area covered by tilesNW , N , andNE ).
If the projections have no interior intersection, then we knowM (r i

1) does not have an interior
intersection with the middle tileN .

Based on the observation above, direct computation can be optimized in the case where
the MBRs do not intersect interiorly, by exploiting exactly the same steps for the MBR query
method. In the following experiments, we will always apply this optimization to direct compu-
tation.

Turning to the grid and R-tree clustering indexes, it should be noted that Fogliaroniet al.
(2011) and Fogliaroni (2012) did not consider the mechanism to answer the query discussed
here (to Þnd the CDC relation between two given objects). There are many possible ways to
answer this query. Here, we use the strategy with the assumption that the MBRs are available:

1. First compute the relation between the MBR of the primary object and the MBR of the
reference object;

2. If the relation is one of the clustering CDC relations (NW , NE , SW, SE), then the
actual relation is also the same relation;

3. If not, then the relation between the objects must have been previously computed and
stored in the representation.

The difference between this strategy and MBR query method mainly lies in the case where the
MBR relation is not a clustering relation and at the same time it does not contain tile nameO
(that is, the two MBRs do not intersect interiorly). In such case, this strategy will query the
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representation for the relation while MBR query method will just use MBRs to compute the
relation.

In the experiment, to make the MBR-based and the grid clustering based query methods
comparable, we let the MBR query method Þrst check if two MBRs are in a clustering relation.
This will only slightly increase the query time of the MBR query method. For all the methods,
when it comes to check if two geometries intersect, we will Þrst use the MBRs of the two
geometries to pre-test the possibility of intersection.

4.3.1 Results.

We will assume that the calculated relations, MBRs and geometric information are all available
in memory. For each method and dataset, the calculated relations are stored in a database that is
hash indexed using the identiÞers of geometries as keys, e.g. the key for relationRij is i ( N + j ,
whereN is a sufÞciently large integer. The experiments have been done on a computer running
WindowsR$ 10, with an IntelR$ CoreTM-i7 3.6 GHz CPU and 16 GB memory.
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Figure 6: Query answering time of Direct Computation (Direct), MBR query method (MBR),
Grid clustering index based query method (Grid), R-tree clustering index based query method
(R-Tree), and retrieval from the Complete Representation (Complete). Note that Ô) Õ represents
values that lie more than1.5 box lengths from the hinge of the box.

As we can see from Figure 6, answering queries based on the MBR approach exhibits
promising performance. Compared with the two extremes, it is at least as efÞcient as direct
computation from the geometry and is substantially faster than retrieval from the complete con-
straint network. Like the grid and R-tree clustering indexes, the MBR-based approach represents
a compromise that can support more efÞcient queries than either of these two extremes. In partic-
ular, the median query time of the MBR-based approach is respectively about45%, 80%, 76%,
and97%lower than the direct computation, the grid clustering index, the R-tree clustering in-
dex, and the complete representation. Hypothesis tests also conÞrm the visual impression from
Figure 6, that the average MBR-base approach is more efÞcient than all the other approaches
(t-test, signiÞcant at the1% level). However, such statistical signiÞcance is in this case only

16



a guide, as the very large number of samples (200,000 data points) is a known cause of bias
towards signiÞcance in hypothesis testing. As for the number of I/O operations to the database
that stores relations, the MBR-based approach requires about68%fewer requests than the grid
and R-tree clustering indexes, and about89%fewer than the complete representation. This, to
some extent, explains why the MBR-based approach has better performance than these three
methods. All of these indicate that the MBR-based approach is a useful alternative in practice
to support efÞcient answering of queries on the qualitative spatial representation, in addition to
reducing construction time and size of the representation.

Even though the direct computation shows a performance that is good to some extent, it
is worth noting that this method is not always efÞcient for answering queries. The reason is as
follows: There are many ÔdegenerateÕ cases for the direct computation. In fact, in the experiment,
for the direct computation,10,645instances (10%of all the tested ones) have query answering
time of more than10,000 ns, compared with the case of the MBR method which has only61
instances beyond time10,000ns.

Sometimes the calculated relations would be stored in a database on hard disk rather than in
memory. In this case, all the methods except for the direct computation will take more time to
answer the query, as reading data from hard disk is slower than from memory. The MBR query
method will require fewer reading operations than the others because it stores fewer relations.
Another possibility is that the MBRs and geographic information are stored on hard disk. In
this case, all the methods except retrieving from the complete representation will require more
reading operations, as they would probably use the MBRs and geometric information to calculate
the relations. The exact impact of storing relations on disk is difÞcult to measure, however, as
performance will crucially depend on optimizations by the database and operating system, such
as bundling several queries to the database or by caching some frequent queried relations.

We should also note that although query answering by the MBR query method on average
equals or outperforms all the other approaches, it is possible to Þnd or construct degenerate cases,
where the performance of this method could be worse than these alternatives. In particular, in
the case where the relation of MBRs contain three tile names and these MBRs do not intersect in
their interiors, the MBR query method might lead to inefÞcient queries. In such cases, answering
queries by using the MBR query method needs to check if the ÔmiddleÕ tile name is valid in the
real CDC relation. This in turn involves checking intersection of the tile and the MBRs of the
connected components in the primary object. For example, in Figure 3, the MBRs of regiona
and regionb are in CDC relation with three tile names{ NW, N, NE } . Note thata contains
many connected components and none of them intersect with the middle tileN . In this case,
to compute the actual CDC relation betweena andb using the MBR approach, the query will
probably need to check the MBRs ofall the connected components ofa.

However, such degenerate cases seem to be rare in practice. As we have seen, on average
answering queries based on the MBR approach is the most efÞcient one of all the alternatives
tested, because the validity of the ÔmiddleÕ tile name can usually be conÞrmed after checking
only a few MBRs of connected components. Moreover, the performance on the degenerate cases
can be optimized, such as by spatially indexing the MBRs of connected components to reduce
the number of tests for intersection.

Finally, we note that all the methods might be further optimized in real-world applications.
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For example, the MBRs of connected components of the regions can be indexed using advanced
spatial indexing techniques such as R-Tree (Papadiaset al. 1995) to reduce computation when
checking CDC relations. However, we are more interested in the intrinsic performance of the
MBR query method itself. Thus, to be clearer about how the MBR query method performs, we
were not applying other optimizations, and the experiments here are just simple illustrations of
the performance of the MBR query method, to show it is feasible in practice.

5 Alternatives to the MBR-Based Approach

The qualiÞed size of the MBR-based approach can be further reduced. Here, we propose two
simple but useful techniques to this end. They are denoted as MBR-C (ÔCÕ stands for ÔCompar-
isonÕ as we will see later) and MBR-DC (ÔDC Õ here indicates this technique speciÞcally deals
with the RCC8 relationDC ). MBR-C works for both CDC and RCC8 representations while
MBR-DC is aimed only at RCC8 representations.

For MBR-C, to decide which relations need to be explicitly stored, we Þrst apply the MBR-
based approach, and then compare the CDC/RCC8 relationRa,b between two regionsa, bwith
the CDC/RCC8 relationRM (a),M (b) between the MBRs of the two regionsM (a), M (b). We
remove any relationRa,b that is the same asRM (a),M (b) . This method is based on the assump-
tion that in practice the conditionRa,b = RM (a),M (b) will usually be satisÞed by many pairs of
regions. In the query stage, to Þnd the correct relation betweena andb, it then sufÞces to return
the relation which is stored, if it is available, and to calculateRM (a),M (b) otherwise.

For MBR-DC , we further reduce the qualiÞed size of the RCC8 representation obtained by
MBR-C, by removing anyDC relationR(a, b) in the representation that satisÞes the following
condition: for every connected componentai of a and for every connected componentbj of
b, we haveM (ai )DC M (bj ). To efÞciently check this condition, we subsequently check the
following conditions:

1. for every connected componentai of a, we haveM (ai )DC M (b);

2. for every connected componentbj of b, we haveM (a)DC M (bj ).

3. for every connected componentai of a that does not satisfy (1) and for every connected
componentbj of b that does not satisfy (2), we haveM (ai )DC M (bj ).

The removedDC relationRa,b can be retrieved later by using the MBRs of the connected com-
ponents of the regions: we Þrst check ifRa,b is stored, and if not, we check ifM (a)DC M (b);
if not, we check if one of the above three conditions are satisÞed;if not, then we knowRa,b =
RM (a),M (b) by the speciÞcation of MBR-C. This method will lead to a smaller representation,
based on the assumption that the MBRs of the connected components can better approximate the
region, although this will come at the cost of slightly less efÞcient query answering since a larger
number of relations between MBRs may need to be checked. Here, we speciÞcally considerDC
relations because in practice many pairs of regions will be inDC relation, and in many of these
cases, theDC relation will also hold between the MBRs of the connected components.

Experiments on these approaches show that there is only a slight increase in the time taken to
construct the representation, while the qualiÞed size is reduced by a large amount, especially for
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the CDC case. Figure 7 compares the time of answering queries by these two approaches with
that by the original MBR-based approach. On average the original MBR-based approach signif-
icantly outperforms both of them (t-test signiÞcant at the1% level). However, in the context of
the very large sample sizes, the small effect size is in this case more salient than the statistical
signiÞcance and to an extent both alternatives are still relatively efÞcient for answering queries.
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Figure 7: Query answering time of MBR-C, MBR-DC and the original MBR-based approach
(MBR).

6 Related Work

MBRs have been used extensively in spatial data structures such as R-trees (Guttman 1984) and
their variations such as R*-trees (Beckmannet al. 1990) and STR R-tree (Leuteneggeret al.
1997). In these instances, MBRs are used to index the dataset in order to efÞciently answer
spatial queries. Guesgen (1989) uses MBRs to represent the Rectangle Algebra (RA) relations
between spatial objects. Thanks to their simple representations, MBRs are also used in spatial
reasoning to efÞciently Þlter out object pairs that cannot satisfy a particular constraint in a qual-
itative spatial query. To this end, Clementiniet al. (1994) and Papadiaset al. (1995) establish
consistent mappings between RA relations and the RCC8 relations for connected regions. For
example, it is identiÞed in Papadiaset al. (1995) thata DC b if M (a) DC M (b) for any con-
nected regionsa, b. For possibly disconnected regions, the interaction between RA and RCC8
relations is discussed in Li and Cohn (2012). The interaction between RA and CDC relations
is discussed in Liuet al. (2010). For a comprehensive discussion of the interaction among RA,
CDC, and RCC8 relations, we refer to the recent work in Cohnet al. (2014).

EfÞcient retrieval of qualitative spatial relations has been a hot topic in QSR since the 1990s.
Clementiniet al. (1994) study the use of MBR approximations in query processing involving
topological relations. Papadiaset al. (1995) further consider retrieval of topological relations
using spatial data structures like R-trees. Goyal and Egenhofer (2000) also investigate the use
of extended cardinal directions in spatial query languages.
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In addition to the two variants of the spatial clustering index proposed in Fogliaroni (2012),
Al-Salman (2014) studied a variant that clusters the point objects better so that fewer relations
are stored, by using the density-based clustering strategy (i.e. DBSCAN) and using the concave
hull of cluster as the index tile. The concave hull better approximates the shape of the cluster,
but at the cost of increased computation time for constructing the representation.

Finally, some works consider how to remove redundant constraints from a constraint net-
work (Fogliaroni 2012, Wallgr¬un 2012, Duckhamet al. 2014, Al-Salman 2014). In particular,
the prime network approach (Duckhamet al.2014, Liet al.2015) provides an efÞcient method
for removing all redundant qualitative constraints from a complete network. However, such ap-
proaches presume that the complete network has somehow been given. This is not the case for
our task in this paper, where we are asked to compute and store a compact qualitative represen-
tation directly from a set of regions.

7 Conclusion and Future Work

In this paper, we discussed the problem of representing the qualitative spatial relations between
a set of regions in more compact ways without loss of information. We proposed a novel and
efÞcient approach for representing the topological RCC8 relations and the directional CDC re-
lations between the regions in a large spatial dataset. This approach has been found to perform
well in theory and practice. In particular, in terms of qualiÞed size, our MBR approach is at
least as good as the existing approaches (i.e. the complete representation, the grid clustering in-
dex, and the R-tree clustering index) in theory and is usually much better in practice. Moreover,
our approach is parameter-free, while comparable alternative approaches depend strongly on the
chosen parameter values. Future research will consider combining the MBR-based approach
with other techniques to improve performance even further. For example, the prime network
approach (Duckhamet al. 2014, Liet al. 2015) can be applied to the compact representation
to remove redundant constraints; and the relations between MBRs and between regions can be
compared to see if they are the same and hence we can safely remove the relations between
regions.

Another important problem is to support efÞcient queries on the qualitative spatial repre-
sentation. In this paper, for one important type of query (i.e. deriving the RCC8/CDC relation
between two given objects), we have provided experimental evidence showing that MBR-based
representations lead to queries that are as efÞcient as any of the alternatives. In fact, the MBR-
approach outperforms other approaches in most cases. Our future work on query answering
would be to combine the MBR-based approach with other efÞcient query answering techniques,
and examine the support of other types of queries using the representation obtained by the MBR-
based approach.

In the current approach, we have not yet considered the possibility of vague or indeÞnite
information. In real-world applications, however, situations in which available information
is imperfect abound. Examples include regions with vague boundaries (Papadiaset al. 1995,
Cohn and Gotts 1996) and incomplete information from volunteers or web sources (Goodchild
2007, Winteret al. 2011, Hoffartet al. 2013). By replacing crisp MBRs with MBRs that have
bufferedboundaries, the MBR-based approach might be able to deal with indeÞnite information
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in the dataset. In our subsequent work, we would like to explore this in more detail.
Finally, we will consider further reduction of the qualiÞed size by the MBR-based approach

and corresponding efÞcient support of query answering. The three techniques we brießy dis-
cussed in the former section have shown some potential for achieving this.
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A Proofs of Proposition 6 and Proposition 7

Proposition 9((Proposition 6) ). Given a set of possibly disconnected regionsD = { r1, ..., rn } ,
then, for RCC8, the qualiÞed size ofD for the MBR-based approach is at most as large as the
qualiÞed sizes ofD for either the grid clustering index or the R-tree clustering index.

Proof. Suppose the RCC8 relation for two regionsr i , r j " D is calculated and stored by the
MBR-based approach. Then their MBRs must intersect, i.e.M (r i ) $ M (r j ) %= ! . Note that
for the grid and the R-tree clustering indexes, the MBRs of objects are used to build the spatial
clustering structure, and by the deÞnition of the spatial clustering structure, the tiles in the index
completely cover the objects (and, hence, their MBRs), i.e.

! n
k=1 M (r k ) #

!
l# J t l .

For the grid clustering index, by the above assumption, we know there must be one index tile
t0 s.t. t0$ M (r i ) $ M (r j ) %= ! . By the grid clustering indexing strategy of building a clustering
structure for RCC8, we know thatr i andr j are associated with the same clustering index entry
(t0, C0). Therefore, the RCC8 relation betweenr i andr j will be computed and stored by the
grid clustering index.

For the R-tree clustering index, we only need to prove that there exist two leaf level index
tiles t1, t2 such thatt1 $ t2 %= ! andr i andr j are associated witht1 andt2 respectively.

As mentioned in the previous section, there are two strategies for the R-tree clustering index
to associate a region to a leaf index tile. In the Þrst strategy, by the above assumption, we know
thatM (r i ) andM (r j ), as well asM (r i ) $ M (r j ), are covered by several leaf index tiles. Then
among the index tiles that coverM (r i ) andM (r j ), there are two index tilest1 andt2 (t1 might
be equal tot2) such that (i)t1 andM (r i ) have a common interior point, (ii)t2 andM (r j ) have
a common interior point, and (iii)t1 $ t2 $ M (r i ) $ M (r j ) %= ! . This means thatr1 andr2 are
associated witht1 andt2, respectively, andt1 andt2 are notDC , which is the only clustering
relation of RCC8. For the R-tree that is built by the second strategy, together with the above
assumption, we know that there must be two leaf index tilest1 andt2 (t1 might be equal tot2)
such thatr1 andr2 are associated witht1 andt2, respectively, andM (r i ) # t1 andM (r j ) # t2.
Thereforet1 $ t2 * M (r i ) $ M (r j ) %= ! , i.e. t1 andt2 are not in clustering relationDC .

From the above discussion, we know the RCC8 relation betweenr i andr j will be calculated
and stored by the R-tree clustering index.

Proposition 10((Proposition 7) ). Given a set of possibly disconnected regionsD = { r1, ..., rn } ,
for CDC the qualiÞed size ofD for the MBR-based approach is at most as large as the qualiÞed
sizes for either the grid clustering index or the R-tree clustering index.

Proof. Suppose the CDC relation from regionr i " D to regionr j " D is calculated and stored
by the MBR-based approach. This implies that their MBRs have a common interior point, i.e.
M %(r i ) $ M %(r j ) %= ! , whereM %(r ) denotes the interior of an MBRM (r ). Note that we
have

! n
k=1 M (r k ) #

!
l# J t l .

For the grid clustering index, by the above assumption, we know there must be one index
tile t0 s.t. t0 $ M %(r i ) $ M %(r j ) %= ! . By the grid clustering indexing strategy of building a
clustering structure for CDC we knowr i andr j are both associated witht0. Therefore, the CDC
relations betweenr i andr j will be calculated and stored by the grid clustering index.
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For the R-tree clustering index, we only need to prove that there exist two leaf level index
tiles t1, t2 such thatt1 $ t2 %= ! andr i andr j are associated witht1 andt2 respectively.

We consider the two strategies of building the R-tree index separately. For the Þrst strategy,
like the above discussion for the grid clustering index, we know there is a leaf index tilet0 such
thatr i andr j are both associated witht0. For the second strategy, we know that there exist two
leaf index tilest1 andt2 (t1 might be equal tot2) such thatr1 andr2 are associated witht1 and
t2, respectively, andM (r i ) # t1 andM (r j ) # t2. Thereforet%

1 $ t%
2 * M %(r i ) $ M %(r j ) %= ! ,

i.e. t1 and t2 have a common interior point. Thust1 and t2 are not in any CDC clustering
relation.

From the above discussion, the CDC relation fromr i to r j will be calculated and stored by
the R-tree clustering index.
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