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Abstract

This thesis presents a parallel, dynamic programming based model which is deployed on

the GPU of a system to accelerate the solving of optimisation problems. This is achieved

by simultaneously running GPU based computations, and memory transactions, allowing

computation to never pause, and overcoming the memory constraints of solving large problem

instances. Due to this some optimisation problems, which are currently not solved in an

exact manner for real world sized instances due to their complexity, are moved into the

solvable realm. The model is implemented to solve, a range of different test problems,

where artificially constructed test data is used to ensure good performance even in the worst

cases. Through this extensive testing, we can be confident the model will perform well

when used to solve real world test cases. Testing of the model was carried out using a range

of different implementation parameters in relation to deployment on the GPU, in order to

identify both optimal implementation parameters, and how the model will operate when

running on different systems. All problems, when implemented in parallel using the model,

show run-time improvements compared to the sequential implementations, in some instances

up to hundreds of times faster, but more importantly also show high efficiency metrics for the

utilisation of GPU resources. Throughout testing emphasis has been placed on GPU based

metrics to ensure the wider generic applicability of the model. Finally, the parallel model

allows for new problems to be defined through the use of a simple file format, enabling wider

usage of the model.
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Chapter 1

Introduction

Overview

This thesis presents a generic parallel model that seeks to enable a subset of optimisation

problems to be solved, both quickly and efficiently, through the use of Graphic Processing

Unit (GPU) based techniques. A parallel model is a method of mapping algorithms and

data to multiple processors by splitting it into multiple parts, such that all parts can be

executed simultaneously in an effort to reduce computation time. A GPU is a highly parallel

processing unit, originally designed to render 3D images, but more recently can be utilised

for general purpose programming. Performance metrics have been taken using specialised

GPU profiling tools to validate the efficiency of the proposed model. Also described is a

file format which seeks to allow the implementation of optimisation problems on the GPU,

with minimal programming knowledge from the end user. Analysis and discussion of the

observed metrics allows conclusions to be drawn on the suitability and applicability of the

model in different scenarios.

In this chapter a high level overview of the work detailed in the thesis is presented, as

well as the contributions stemming from this. Also in this chapter is an outline of the thesis

structure.



2 Introduction

1.1 Introduction

Solving discrete optimisation problems exactly is desirable, as, by definition, this is guaran-

teed to provide the optimal solution. This thesis is focused on the field of solving optimisation

problems through the use of general purpose graphics processing unit (GPGPU) program-

ming. “Driven by the insatiable market demand for real-time, high-definition 3D graphics,

the programmable Graphic Processor Unit or GPU has evolved into a highly parallel, multi-

threaded, many-core processor with tremendous computational horsepower and very high

memory bandwidth” [71]. GPGPU programming is a relatively new field of programming,

which allows end users to program GPUs for uses other than the purpose of rendering 2D

images of 3D spaces: “graphics processors (GPUs) become attractive because they offer

extensive resources even for non-visual, general-purpose computations: massive parallelism,

high memory bandwidth, and general purpose instruction sets, including support for both

single-precision and double-precision [...] arithmetic” [17]. GPUs in many applications

can prove to be considerably faster than their CPU counterparts; “the reason behind the

discrepancy in floating-point capability between the CPU and the GPU is that the GPU is

specialised for compute-intensive, highly parallel computation [...] and is therefore designed

such that more transistors are devoted to data processing rather than data caching and flow

control” [84]. This has led to the rise of languages to support the implementation of programs

on the GPU such as the proprietary, closed source, NVIDIA CUDA [70] - NVIDIA Compute

Unified Device Architecture, which allows programs to be deployed on NVIDIA hardware,

and the focus of this thesis is limited to CUDA. However, the unique architecture of the

GPU presents unique programming challenges [31, 98], and developing parallel models to

efficiently use the GPU is important: “... should redirect efforts in GPGPU research from

ad-hoc porting of applications to establishing principles and strategies that allow efficient

mapping of computation to graphics hardware” [82].
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More specifically, this thesis considers using the extensive computational resources of the

GPU to accelerate the solving of classic, hard problems with high computational complexities,

through the use of a technique called dynamic programming [19]. These common problems

form the core of many real world algorithms, from vehicle routing to cryptography, and any

performance gains should be widely beneficial. The solving methods considered here are

exclusively exact methods, meaning this work not only improves run time but also guarantees

solution quality is not only maintained, but is in fact maximised, and possibly improved over

inexact methods. This is done with the motivation that GPUs have such a high number of

cores, exact solving may be possible for hard problems.

As aforementioned [82], much of the previous work relating to the development of

dynamic programming algorithms for deployment on the GPU has been targeted specifically

at individual problems, rather than looking at overarching parallel methods. Considering

only some of the test problems described within this thesis, a range of algorithms specifically

targeting each is available [14, 99, 41]. We present instead a single, generic model that is

suitable for a range of problems, even beyond the ones for which it was originally designed.

As such, the study of a model for a wide range of uses such as this, is a novel direction of

research. The work presented in this thesis contributes further knowledge to the discussion

on developing suitable parallel models that target GPGPU hardware for a wide range of

problems.

To allow the implementation of a range of different problems we present a basic syntax

which defines the problem function, input data and type, and some implementation parame-

ters, allowing an end user to implement further problems easily. All test problems in this

thesis, which are defined as suitable for parallelism through the model, are implemented

through this syntax, demonstrating its validity.

Changing how the data maps to the physical hardware of GPU, through parameters such

as the block size, can have an effect on both run-time and resource utilisation. This thesis
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also examines the effect the choice of mapping strategy has, and what factors influence

this, such as: the specific problem; the class of problem; or whether selecting the optimal

strategy is problem agnostic and merely a factor of our model. Correctly mapping data to the

hardware is found to have a significant impact on the performance of the parallelism, with

slight differences from problem to problem, and this is discussed in detail in the performance

results.

The thesis provides an analysis of the model in terms of efficiency, using NVIDA

CUDA based metrics, meaning not only the run time is considered – it should be assumed

a device with hundreds of cores will improve the run-time – but also how effectively the

available underlying resources of the GPU are being used. This analysis gives insight to the

performance of the model, not restricted to the test problems examined in this thesis, allowing

predictions to be made as to how it will perform more generally for different problems and

on future iterations of GPU hardware.

1.2 Thesis Aims

The main aim of this thesis is to present an abstract and generic solving methodology

that enables the mapping of optimisation problems, which can be solved through dynamic

programming techniques, onto the graphics processing unit with the goal of improving the

run-time of these computationally challenging problems. It aims to provide an investigation

into how to effectively solve these problems using the GPU, considering other factors beyond

run-time such as memory efficiency and other overheads inherent in GPU programming.

Through this, we aim to increase the knowledge related to running this class of problem on a

GPU.
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1.3 Contributions

The main contributions offered by this thesis are:

• A generic parallel model which runs on the GPU that, through the use of dynamic

programming techniques, allows a subset of optimisation problems to be solved by

effectively using the high performance computing facilities offered by the GPU archi-

tecture. Problems which can be solved include the the longest common subsequence

problem, the travelling salesman problem, and the knapsack problem. The exact range

of problems that can be solved is dictated by the dependency structure of the specific

problem - this is discussed in detail in Section 3. The model is analysed and profiled,

and performance figures are provided to demonstrate the effectiveness of the model.

• An efficient memory structure and memory management, that seeks to reduce the

memory complexity on the GPU of the given input problems, allowing larger scale

problem instances to be solved. This is an especially important consideration when

running code on the GPU, as the amount of available memory is often more restrictive

than normal programming environments, meaning it quickly limits the feasible problem

size. As well as being memory efficient, it is required the model achieves this whilst

simultaneously not causing excessive additional computational overhead. Again,

profiling is used to validate that it achieves both goals.

• A generic file format based on Backus-Naur Form (BNF), that allows different problem

definitions into be quickly input to the program. The file contains basic information

about the problem to be solved, such as input data types, as well as information about

the amount of memory the problem requires. This is then coupled with a very small

function definition which defines the logic of the problem, and the mapping of the

dynamic programming definition onto the input data, meaning that the model remains

generic - allowing new problems to be added quickly and easily.
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1.4 Thesis Structure

This thesis is laid out as follows:

• Beginning in Chapter 2, the background work that underpins this thesis is presented,

and relevant problems and literature are introduced. In Section 2.1 the test problems

that have been selected are formally defined. In addition to a mathematical definition,

both the computational and memory complexity required to solve them using naive

approaches are given. Section 2.2 formally introduces and defines what is meant by

the term dynamic programming, and provides the criteria that a problem must satisfy

for dynamic programming to be applicable. Next we show how dynamic programming

can be applied to solve the introduced test problems, and present some basic solving

algorithms. Moving into Section 2.3, some alternate solving methodologies compared

to dynamic programming are very briefly introduced, to help illustrate in which

settings dynamic programming is appropriate. Finally, in Section 2.4, the concept of

parallel programming is introduced and defined, as well as the benefits and drawbacks

associated with it. The different paradigms of parallel programming are formally

defined, and the GPU programming language we use, NVIDIA CUDA, is introduced

and explained.

• Chapter 3 presents the model this thesis is proposing. Starting in Section 3.1, a high

level design of the model is presented, demonstrating how it maps data to the physical

resources of the GPU, and how the memory is managed when the model is in use.

Next, in Section 3.2, the specifics of the implementation are considered, and small

scale benchmarks are provided to justify the design decisions taken. This section also

discusses in detail the file format used to allow new problems to be defined. The

chapter concludes with Section 3.3, where we compare our model to the existing
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algorithms available in the literature, and identify the main contributions our model

offers.

• Next, Chapter 4 details how to implement the introduced problems using our parallel

model. Section 4.2 goes on to introduce potential optimisations that can be made,

without changing the overarching paradigm. In Section 4.3 we discuss which problems

were found to be unsuitable for implementation through the model, or required it to be

changed considerably, and attempt to classify the subset of problems that is suitable.

• Chapter 5 introduces the hardware that will be used for the analysis of the model,

as well as the profiling and performance metrics that will be recorded during testing.

Additionally, detail is given on how the test instances of each problem are generated.

Also in this chapter, some reference benchmarks for the hardware used is provided to

give an indication as to baseline and ideal performance.

• Moving into Chapter 6, we present the main performance results from the analysis

of the model, presenting results detailing run-time, and the recorded CUDA metrics.

We seek to generalise these results, in terms of the number of GPU blocks, and GPU

block sizes, allowing the results to be extrapolated and predictions made as to the

performance when running on alternate GPU hardware.

• Finally, Chapter 7 summarises the work, and draws conclusions based on the results

that have been outlined in this thesis. In Section 7.6, some ideas and theories are

presented as to the direction in which this work could be taken next.
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1.5 Publications

1.5.1 Model Design

The work presented in Chapter 3 covers the design of the generic parallel model, as well as

how specific problems can be mapped onto the GPU using it.

An earlier version of this has been published in [74]:

• O’Connell, J. F. & Mumford, C. L. (2014), An Exact Dynamic Programming Based

Method to Solve Optimisation Problems Using GPUs, 347-353. In Proceedings of the

Second International Symposium on Computing and Networking, IEEE.

doi:10.1109/CANDAR.2014.27

The performance of our parallel model is considered in terms of speed and computa-

tional efficiency when applied to instances of the knapsack problem, the longest common

subsequence problem, and the travelling salesman problem.

In this paper we found our model performed well with all test problems, achieving

a considerable level of speed up factor compared to the classic CPU implementation, as

well as utilising the available resources of the GPU effectively. However, the paper posed

further questions about improving the divergence of the code in order to improve the overall

efficiency.

1.5.2 Implementation

In Section 4.3.2 the implementation of the all pairs, shortest path problem on the GPU is

described. The algorithm detailed here has been used to support the work in the following

submitted journal article:
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• John, M. P., Mumford, C. L, Lewis, R, O’Connell, J. F. Exploring design issues

for solving the urban transit routing problem using a multi-objective evolutionary

algorithm. In IEEE Transactions on Evolutionary Computation. Under review.

A parallel implementation of the all pairs shortest path problem is used to support the

implementation of an algorithm which uses meta-heuristic techniques, in an effort to design

efficient bus route networks based on an underlying road network.

Whilst the focus of the article was not that of the performance of the GPU implementation,

it does discuss the fact that the GPU implementation of the all pairs shortest path problem

produces run times several hundred times better than that of the classic serial CPU counterpart.

The study also notes that as the problem size increases, the speedup factor offered by the

GPU also increases, until it becomes steady near the 800% mark.

Summary

In this chapter the thesis topic was introduced, as well as the motivation for undertaking the

work detailed within. The key contributions offered were detailed, and an overall structure

of the following document was presented. The next chapter will introduce the background

concepts upon which the work in this thesis builds.





Chapter 2

Background

Overview

This chapter introduces background topics and problems, as well as existing work using

NVIDIA CUDA 6.5 [52], that is relevant to the research in this thesis.

Beginning in Section 2.1, the problems which this thesis is concerned with solving

are introduced and defined: namely, the longest common subsequence problem and the

edit distance problem, the knapsack problem, the all pairs shortest path problem and the

Manhattan tourist problem. Both graphical representations and mathematical definitions of

these are provided.

Moving into Section 2.2, the method of programming and solving a problem, called

dynamic programming [9], is introduced. The benefits and drawbacks of using such an

approach to solve a problem are considered. The solution methodologies based on dynamic

programming techniques for the introduced problems are defined.

Next, in Section 2.3, other alternative classical methods of solving the aforementioned

problems are considered and discussed. We address inexact solving methodologies, heuristic

and meta-heuristic methods, as well as exact methods.
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Finally, in Section 2.4, parallel programming is introduced. Discussed are the concepts

of parallel programming, the different paradigms, as well as the common use cases and

issues associated with it. Next we consider how effectively a dynamic programming based

algorithm can be mapped onto a parallel processing model. Lastly, the programming model

offered by NVIDIA CUDA is outlined, before finally discussing existing algorithms and

models that employ the CUDA programming environment in order to solve the introduced

problems.
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P

NP

NP-complete

NP-hard

Fig. 2.1 How the different complexity classes interact and overlap in terms of P and NP

2.1 Problem Introduction

Introduced in this section are the problems we are seeking to solve with the parallel model

presented by this thesis. Whilst all of these are easily solved for limited size instances, due to

the high computational complexity they very quickly become in-feasible to solve exactly as

the size of the problem grows. It is therefore very common to solve these inexactly using

methods such as heuristics. However, as parallel programming seeks to reduce the run time

of executing a program, these problems stand to benefit from being implemented in parallel

as this will allow larger instances to be solved exactly.

2.1.1 NP Complexity

All problems which will be introduced fall under the complexity class of NP, therefore we

first define this. The ‘P’ in NP is defined as the computational complexity when a decision

problem can be solved by a deterministic Turing machine, requiring a polynomial amount of

computation proportional to the size of the input. Corbham’s thesis states that, generally, a

problem can be solved feasibly on a computation device if the problem lies within the P class

[40]. Obviously this is still highly dependent on the size of the input, but is a good starting

point when considering the feasibility of solving a problem.
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The computation class NP refers to non-deterministic polynomial time problems. These

are the class of decision problems where correct solutions to the problem can be accepted by

a non-deterministic Turing machine in polynomial time. The complexity class P is contained

within the larger class of NP.

NP-complete problems are problems which are enclosed in both the NP and NP-hard

complexity classes. Although solutions to these problem can be verified in polynomial time,

there is no quick way of generating the solution in the first place. Formally, this is defined as:

a problem p in the class NP is NP-complete, if all other problems in NP can be transformed

to p in polynomial time. An example of reducing an NP-complete problem to different

NP-complete problems is reducing the travelling salesman problem to the Hamiltonian

cycle problem, which in turn can be reduced again to the vertex cover problem. Generally,

NP-complete problems are considered more difficult to solve than NP, because if there is

a method of quickly solving an NP-complete problem, there is a quick method of solving

all NP problems (as every problem in NP can be reduced to an NP-complete problem).

As there is no computationally quick way of generating solutions to these problems, they

are commonly solved through the use of approximation algorithms, or heuristic methods.

These methods generate solutions to the problem, albeit ones that may not be optimal. The

relationship between the classes is shown in Fig. 2.1.

When discussing NP-complete problems, it is a common misconception that the NP

stands for non polynomial time, referring to the fact there is no know polynomial time

algorithm to solve the problem. Whilst this is likely true, as these problems are so difficult to

solve, this has never been proven.

NP-hard problems are problems which are at least as hard as the hardest problem within

the NP class. However, they are not required to be decision problems, nor in the NP class

at all. Formally, a problem p is NP-hard if there is an NP-complete problem y which can

be reduced in polynomial time to p. As all NP-complete problems can be reduced to any
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A A C C G G T G G A C A A T T C A

B G G A A A G A G A T A T G C A C

C A A A A T T C A

Fig. 2.2 The longest common subsequence (C) being extracted from two input strings (A and
B)

other NP-complete problem in polynomial time, all NP-complete problems can be reduced

to NP-hard problems. An example of an NP-hard problem is the halting problem - given a

program, and an input, will it halt? This is a decision problem but it is not in NP, yet it is

clear that any NP-complete problem can be reduced to this.

2.1.2 The Longest Common Subseqence Problem

“String comparison is a central operation in various environments: a spelling

error correction program tries to find the dictionary entry which resembles most

a given word, in molecular biology we want to compare two DNA or protein

sequences to learn how homologous they are, in a file archive we want to store

several versions of a source program compactly by storing only the original

version” [11]

The longest common subsequence (LCS) problem has the goal of finding the longest

subsequence that is common to a given set of input sequences. This input set is commonly

assumed to consist of two sequences, but there is no limit and n sequences can be analysed,

although each additional sequence increases the computational complexity.
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The problem is well defined by Hirschberg [43]. String C = c1,c2, . . . ,ci, . . . ,cp is a

subsequence of string A = a1,a2, . . . ,ai, . . . ,am if there is a mapping F : {1,2, . . . , p} →

{1,2, . . . ,k} such that F (i) = k iff ci = ak and F is a strictly increasing function, where n is

the length of the first string A, m is the length of the second string B, and p is the length of

the subsequence C. C can be formed by deleting m− p (not necessarily adjacent) symbols

from A.

From this a common subsequence is defined as: C is a common subsequence of A and

B = b1,b2, . . . ,bi, . . . ,bn iff C is a subsequence of A and a subsequence of B. Therefore C is

the longest common subsequence of A and B iff:

• C is a common subsequence of A and B

• There is no common subsequence D, for which the length of D is larger than C

A graphical example of the longest common subsequence problem can be found in Fig.

2.2.

For the general case of an arbitrary number of sequences, the problem is known to

be NP-hard. To solve this through a simple naïve approach [60], assuming an input of N

sequences, where the length of each sequence is defined as s1,s2, . . . ,si, . . . ,sN , it would be a

case of testing each of the 2s1 subsequences of the first input sequence to identify if they are

subsequences of the remaining input sequences. These subsequences are checked in linear

time for the remaining input sequences, which leads to the complexity of O
(

2s1 ∑
i>1

si

)
.

Obviously this complexity is far too high to be practical for any reasonably sized input data.

The problem is of interest as it has many uses and provides the underpinning for a wide

variety of different algorithms. The most common of these uses is that it is very prevalent

in bio-informatics algorithms, as the structure of searching for subsequences is very similar

to matching patterns within DNA and protein data [3, 76]. Here a parallel implementation

could speed things up considerably, allowing longer strings to be analysed, or more strings to

be analysed simultaneously.



2.1 Problem Introduction 17

This problem is also at the core of other algorithms such as compression algorithms or

version control systems, as through the identification of subsequences it allows the difference

between files, and lines of files, to be quickly identified [4]. Here a parallel version would

simply reduce the execution time of such tools and utilities.

Due to the problems widespread uses, it has been the focus of much study, and as such

there are many polynomial time algorithms available for when the size of the set of input

strings is restricted, or when the alphabet available to the input strings is constrained. The

most simplistic and widespread of these is a simple dynamic programming approach [43],

which allows the solving of two string problems in polynomial time based on the length

of the longest input string. These are discussed in detail in Sec. 2.2. Using this method

compared to the brute-force approach reduces the computational complexity to O(mn), when

only two input sequences are being processed, or O
(

N
N
∏
i=1

si

)
for the general case where N

is the number of input sequences, and s the length of each sequence.

Edit Distance

The edit distance problem is a small extension to the longest common subsequence problem

that seeks to apply metrics to the difference between two strings, and to apply a cost, or

distance, that it would take to transform one string into another.

There are several methods to define the metrics used in the edit distance problem, and we

chose to adopt a set of rules for our sample problems, called the Levenshtein distance [50].

The rules it defines for transforming a string are (where λ is the empty string):

• Insertion of a symbol. Inserting character c into string ab produces acb, or λ → c.

• Deletion of a symbol. Deleting c from acb produces ab, or c → λ .

• Substitution of a symbol. Substituting c for d in acb produces adb, or c → d.
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INTENTION

(λ )NTENTION

ETENTION

EXE(λ )NTION

EXECNTION

EXECUTION

(delete I)

(substitute N for E)

(substitute T for X)

(insert C)

(substitute N for U)

Fig. 2.3 The edit distance moving from the string INTENTION to EXECUTION, which has a
Levenshtein distance of 8
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Any arbitrary values can be applied to these scores; however, throughout this thesis

we will assume that deletions and insertions have a cost of 1, and substitutions a cost of 2.

Considering the example problem in Fig. 2.3, the presented string transformation would have

an edit distance of 8.

As with the longest common subsequence, the algorithm has implications in bio-informatics

processing, where the optimal alignment of two strings can be defined as the alignment of

the two strings with the smallest edit distance [43].

The algorithmic implementation of this is very similar to the dynamic programming

approach adopted to solve the longest common subsequence problem [94]. However, we

also consider it as a test problem in this thesis as it demonstrates the usefulness of our model

in solving different problems, when the underlying algorithms are altered to serve different

purposes.

The benefits of parallelising the algorithm to solve this problem are very similar to that of

parallelising the longest common subsequence problem: longer strings can be computed in a

given time frame without the requirement of being separated into multiple smaller strings, as

well as accelerating the computation of already feasible strings.

2.1.3 Knapsack Problem

“A well-known combinatorial problem that finds applications to capital

budgeting problems, loading problems, and solutions of large optimization

problems is the knapsack problem.” [45]

The Knapsack Problem (KSP) is a combinatorial optimisation problem concerned with:

given a set of items with an associated mass and profit value for each, select the subset of

items such that a given capacity constraint is not violated by the cumulative mass of the

items, whilst simultaneously maximising the cumulative profit of all the items selected.
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There are many variants of the knapsack problem, but one of the most common is the

0-1 knapsack problem, which restricts the amount of times an item is selected to either zero

or one. In this sense, it follows the real world analogy of an item being either selected and

placed in the knapsack, or it being excluded from the knapsack and left out.

This can be defined thus [78]: let there be a set of items, z1,z2, . . . ,zi, . . . ,zn where zi has

a value vi ∈N∗
+ and a weight wi ∈N∗

+. xi is a boolean defining whether the item zi is selected.

The maximum weight of the selected items cannot exceed W ∈ N∗
+.

max
n

∑
i=1

vixi (2.1)

subject to:
n

∑
i=1

wixi ≤W, xi ∈ {0,1}

This maximises the sum of the value of the selected items, whilst ensuring that the weight

constraint, W , is not violated. xi denotes how many times item i has been selected, and by

altering the constraint applied to xi, the problem can also be changed as required to reflect

the real-world problem that is being mapped to it. For example, allowing x to be any value

such that the constraint becomes xi ≥ 0, this allows as many copies of an item as required to

be selected, and forms the unbounded knapsack problem. Similarly, if there is a different

amount of each item available, the x constraint can be changed to x ∈ 0,1, . . . ,ci, where the

amount of copies of each item (xi) is restricted to a given limit, ci. This is the bounded

knapsack problem. An example instance of the knapsack problem is shown in Fig. 2.4, where

the capacity of the knapsack is 18, and the maximum profit attainable from the item set is 49.

Due to the lack of a polynomial time algorithm that can assert for all cases whether or

not a given solution to the problem is optimal, in terms of complexity the knapsack problem

is NP-hard [78]. However, a reduction of the knapsack problem, referred to as the decision
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v = 12,w = 4

v = 10,w = 6 v = 8,w = 5

v = 11,w = 7v = 14,w = 3

v = 7,w = 1 v = 9,w = 6

v = 5,w = 3

Knapsack
W = 18

∑v = 49

Fig. 2.4 A knapsack instance where the subset of optimal items from a given set of input
items is highlighted

problem, seeks to bound the problem and define whether or not a given profit value can be

attained without exceeding the weight constraint, and this is NP-complete.

There exists dynamic programming algorithms that can solve the problem in pseudo-

polynomial time, which will be the focus of this thesis and are introduced in Sec. 2.2. This

dynamic programming algorithm runs in O(nW ) time. Furthermore there has been a lot of

focus on approximation methods - methods which seek to find a subset of solutions based on

a reduced scaled version of the inputs. in an effort to then extrapolate to the real solution

set. For the knapsack problem there are many approximation schemes which run in fully

polynomial time. Finally, as with most optimisation problems, there exist many algorithms

which seek to solve the problem inexactly through heuristic and meta-heuristic methods,

which are briefly discussed in Sec. 2.3.1.

As the knapsack problem can be effectively represented as a simple linear integer program

[45], higher level problems can be reduced to the knapsack problem, and it provides the
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underpinnings of many decision and optimisation problems. Some of the most common uses

are in work-flow scheduling or manufacturing, where an employee or a piece of machinery

can be represented as a knapsack; in this instance, variations of the knapsack problem where

there are multiple copies of an item become beneficial. It is also often used as a tool to

analyse likely investments, where each has a specified return (the value of the knapsack item),

but an initial cost (the weight of the knapsack item). The hardness of bigger instances of the

problem also means that it can lend itself to supporting cryptographic systems [62].

2.1.4 Travelling Salesman Problem

The Travelling Salesman Problem (TSP) [7] is a classic NP-hard computer science problem.

The goal of the problem is thus: given a set of vertices, construct a set of edges which

connects all these vertices in an acyclic manner, where the cumulative length of the edges is

sought to be minimised. The typical analogy given is a salesman travelling between a set of

cities, who seeks to minimise the total driving distance.

This is formally defined, as given a set of vertices, which are cities, these are labelled

1,2, ...,n. As aforementioned, each one of these vertices must be visited once, and for it to be

a valid tour, the route must start and end at the same point. The naive, brute force algorithm

has a huge computational complexity of O(n!), making exact solving impossible for all but

the smallest instances; however, it is at the core of many vehicle routing and scheduling

algorithms. To represent the construction of the route, let us define a variable x where for an

n city problem xi j is defined as:

xi j =


1 the route goes from city i to city j

0 o.w.



2.1 Problem Introduction 23

Let the cost of moving between two cities i and j be defined as ci, j. Then with the use

of a temporary variable, ui Miller [63] shows how this problem can be defined as an integer

linear program:

min
n

∑
i=0

n

∑
j ̸=i, j=0

ci jxi j (2.2)

subject to: 0 ≤ xi j ∈ {0,1} ≤ 1 i, j = 0, ...,n (2.3)

ui ∈ Z i = 0, ...,n (2.4)
n

∑
i=0,i ̸= j

xi j = 1 j = 0, ...,n (2.5)

n

∑
j=0, j ̸=i

xi j = 1 i = 0, ...,n (2.6)

ui −u j +nxi j ≤ n−1 1 ≤ i ̸= j ≤ n (2.7)

Constraints 2.3 and 2.4 ensure that each city on the tour can only be arrived at from

exactly one other city. Equalities 2.5 and 2.6 requires that from each city on the tour, there is

a departure to exactly one other city. Finally, constraint 2.7 ensures that there is only a single

tour covering all cities, and that there cannot be multiple, simultaneous disjointed tours.

There exists a dynamic programming based algorithm to solve this, called the Held and

Karp algorithm, which will be discussed in Sec. 2.2; it reduces the computational complexity

to O
(
2nn2), with an associated memory complexity of O(2n). However, this is obviously

still too high for most real world sized instances to be solved in a reasonable amount of

time. Due to this, the problem is very rarely solved using exact methods and therefore, this

problem is solved almost exclusively through inexact methods such as heuristics. A brief

introduction to inexact methods is provided in in Sec. 2.3.1.
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Fig. 2.5 A Manhattan tourist problem instance. The number of landmarks on each street
denoted as the weight of the edges, the optimal solution is highlighted in the figure

2.1.5 Manhattan Tourist Problem

The aim of the Manhattan toursit problem is to find a route that crosses the borough of

Manhattan, such that the amount of landmarks visited on the route is maximised. More

generally each edge is assigned a weight, proportional to the number of landmarks on the

edge, and the goal is to travel from a start vertex to a goal vertex maximising the total weight

of the edges traversed. An example of this is shown in Fig. 2.5.

Within the Manhattan tourist problem the possible moves at each vertex is south or east

to prevent cycles forming in the graph. Therefore it should be apparent that this problem is

similar to the travelling salesman problem, with a different set of constraints; the goal is to

traverse from A to B, whilst maximising the edge weight (rather than minimising distance

in the case of the TSP), and there is no constraint to visit each node. Unlike the travelling

salesman problem, this problem is not NP-hard.
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This generalised toy problem can form the basis of more advanced problems; it shares the

same foundation as the longest common subsequence problem, or the edit distance problem,

whilst also being similar in its use case to the travelling salesman problem. Parallelising this

problem is therefore beneficial, as demonstrating a model that can solve this simplistic case

can have implications in solving more specific problems, and can likely also be used to solve

other problems with minimal adaptation.

A naïve recursive algorithm to solve this problem would run in exponential time. There-

fore there are dynamic programming solutions available to this problem [49], which are

similar to those available for both the longest common subsequence problem [43] as well

as the edit distance problem; again these will be discussed in Sec. 2.2. The complexity of

such algorithms is dictated by the x and y dimensions of the input grid being considered, and

therefore the computational complexity of the algorithm is O(xy).

2.1.6 All Pairs, Shortest Path Problem

The all pairs shortest path problem is a generalisation of the previously introduced Manhattan

Distance Problem. It is concerned with finding the shortest routes through a directed acyclic

graph using every combination of pairs of nodes in the graph as a start and end vertex.

The shortest path problem is defined as:

min ∑
i j∈A

wi jxi j (2.8)

subject to: x ≥ 0

∀i∑
j

xi j −∑
j

x ji =


1 i = s

−1 i = t

0 o.w.
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Fig. 2.6 A directed graph with the cost shown for traversing each edge, highlighting the
shortest path from A to F .

A graphical representation of a small example of the shortest path problem is presented

in Fig. 2.6.

In this notation, s is representing the source node, t the target node and wi j is the cost of

traversing the edge from i to j. xi j is used as an indicator to denote whether or not the edge is

present in the shortest path. From this definition, the problem moves to an all pairs, shortest

path problem working out the shortest path between s and t when s and t are set to all pairs

of nodes in the graph.

This is represented as an adjacency matrix, which is a matrix of size v · v where each

cell (i, j) of the matrix denotes the edge weight between node i and j, or ∞ if there is no

feasible path. In the case of the all pairs shortest path problem, once the algorithm has

finished executing (i.e. the problem has been solved), the values in the adjacency matrix will

be updated to reflect the shortest path between each i and j.

A brute force approach to solving this problem would obviously require considering every

single edge between all the vertices of the graph, which would lead to the time complexity of

O
(
v2). However, the method we seek to parallelise to solve this problem [29] is introduced

in detail in Sec. 2.2.3.

As with the previous vehicle routing based problems, paralellisation is desirable as it

allows larger matrix sizes to be computed, which may mean that entire route network can be
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calculated at once rather than having to break them down into smaller sub networks leading

to efficiency savings.

2.2 Dynamic Programming

In this section the method of programming called dynamic programming is introduced, as

it forms the use of dynamic programming based techniques the parallel model proposed in

thesis is developed.

2.2.1 Definition

Dynamic programming allows large complex problems to be solved by breaking them down

into smaller sub-problems, which are then solved independently, the results of which are

combined to form the solution to the original problem [24].

The first property the problem must have is that it must be possible to break the problem

down into overlapping sub-problems [22]. This means the results from the sub-problems

are reused several times, or in a recursive situation the same problems are solved repeatedly,

rather than creating a new problem every single time [19]. This is not to be confused with

an approach such as divide and conquer, where the problem is broken down into to separate

non-overlapping sub-problems which are then solved independently to reconstruct a solution.

The second property the problem is required to have is that it must have an optimal

sub-structure. The best way to describe this is through the example of solving an optimisation

problem starting from a time period t and ending at time period T . It should be apparent that

it is required to solve sub problems s starting at later date first (subject to t < s < T ). This

is a very basic example of an optimal sub-structure. Another illustrative example would be

to minimise the cost of a set of alternatives; where the search space can be partitioned into

smaller subsets, and each of these alternatives only belongs to a single subset. These can be
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further reduced, until finding the minimal cost of each subset is trivial, and it is apparent that

this also solves the original larger problem. This is an optimal sub-structure.

The concept of the optimal substructure in turn leads to the Bellman’s Principle of

Optimality [8] and the Bellman Equation [24], which is a necessary condition for optimality

when using a dynamic programming based solving method. This equation shows that a

dynamic programming algorithm to solve an optimisation problem can be solved through

recursion by defining the relationship between the the score or value of the optimisation at

one period of time, and the change in this at the next period of time. This relationship is

called the Bellman Equation, which we now define.

Let a state of the problem at time t be called xt , therefore the initial state of the problem

will be called x0. The set of possible actions at each time step, at ∈ Γ(xt), is dependent on

the current state , where at is the set of variables a that can be altered at this specific time

step t. The transition from a state x due to the variables of a we represent as T (xt ,at), and

the value or score of T (xt ,at) we define as F(xt ,at). Therefore the decision problem that

requires optimisation can be defined as:

V (x0) = max
{at}∞

t=0

∞

∑
t=0

βF (xt ,at) (2.9)

subject to: at ∈ Γ(xt)

xt+1 = T (xt ,at)

∀t ∈ {0,1, . . . ,∞}

0 < β < 1

In this notation V (x0) is the value functions, and this is dependent on the initial state

as the overall solution to the problem is dependent on all states following the initial state.
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Breaking this problem down into smaller sub problems, which is the basis of dynamic

programming is addressed by Bellman as:

“An optimal policy has the property that whatever the initial state and initial

decision are, the remaining decisions must constitute an optimal policy with

regard to the state resulting from the first decision.” [8]

When a problem exhibits this structure, it means that is displays an optimal sub-structure,

and as such is a suitable candidate for solving through dynamic programming. To mathemat-

ically represent the principle of optimality it is a case of considering the current time step

separately to all future time steps, and then starting again for the next time step, as this new

state will affect the whole future decision process. This can be represented as a recursive

definition:

V (x0) = maxa0{F (x0,a0)+βV (x1)} (2.10)

subject to: a0 ∈ Γ(x0)

x1 = T (x0,a0)

which we can simplify further to:

V (x) = maxa∈T (x){F (x,a)+βV (T (x,a))} (2.11)

This recursive relationship can be identified in all of the following dynamic programming

solving methodologies of the introduced problems.
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2.2.2 Dynamic Programming Methods

In computer science, implementing a dynamic programming based algorithm is either done

through simple recursion to directly reflect the mathematical representation, or memoization

which allows the partial solutions to be stored in a table or similar data structure.

In the case of large problem instances, most languages would very quickly hit a recursion

limit, where the call stack becomes full and the function cannot recurse further. Therefore

using memoization this limitation can be removed; by storing partial solutions in main

system memory, future function calls simply lookup this value then continue the calculation.

Memoization can also be referred to as tabling.

Tabling allows us to break a problem down into sub-problems and, when we solve a new

sub-problem, consult the scoring table to see if it has already been solved. If it has, the

stored solution is loaded, if it has not then the solution to the sub-problem is calculated and

stored in the table. This saves computation, at the expense of storage. Finally, this scoring

table can then be traversed to find the solution to the overall problem.

2.2.3 Solving Problems Through Dynamic Programming

All of the solving methodologies used in this thesis assume that memoization is being used,

and the (i, j) values in the following definitions show the location in the look-up table the

partial solutions are to be stored.

Longest Common Subsequence Problem

Assuming the characters of the first input string (A) are indexed A1,A2,Ai, . . . ,An, and the

characters of the second input string (B) are indexed B1,B2,Bi, . . . ,Bm .

To identify the length of the longest common subsequence between the two strings a

table is created which is of dimension m ·n, where n is the length of the first input string, and

m is the length of the second. Each cell in the table m ·n contains an integer value denoting
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the longest possible sub-sequence based on the sub strings from A0, . . . ,Ai and B0, . . . ,B j.

Therefore it should be apparent that the cell of the table (m,n) will contain the length of the

longest common subsequence for the complete two sequences. This is defined in Eqn. 2.12,

where LCS denotes the longest common subsequnece scoring grid.

LCSi, j =



/0 i = 0 or j = 0

LCSi−1, j−1 +1 Ai = B j

max


LCSi−1, j

LCSi, j−1

o.w.

(2.12)

A dynamic programming based algorithm will work through populating this table begin-

ning at (1,1) and moving through the table filling a row at a time. If the character of string A

at location i matches the character of string B at location j, the running total of ‘subsequence

recorded so far’, based on the previous count stored at i−1 and j−1, is incremented and

updated [94]. In this manner the table can be filled using solutions to previous problems, sat-

isfying the dynamic programming requirement of overlapping sub-problems. This approach

is a bottom up method of dynamic programming.

Once the table has been filled, as well as having the length of the longest possible

subsequence, it is also possible to trace back through the table to rebuild the actual sequence

of characters. This is due to the fact it is possible to identify which characters are present

in the subsequence, as it is on these characters that the count was updated. Therefore by

beginning in cell (m,n) and tracing back to each point the count was incremented the longest

common subsequence can be built, or if there are multiple LCS’s of the same length, a single

one of these will be produced. The definition of this is Eqn. 2.13, where LCSSTR denotes

the scoring grid with the output from the longest common subsequence algorithm. With

adaptation this relationship can be altered to produce many sub-sequences if there is more

than one, but this is not discussed here.



32 Background

LCSST Ri, j =



“ ” i = 0 or j = 0

LCSST Ri−1, j−1 ·ai xi = y j
LCSST Ri, j−1 LCSi, j−1 > LCSi−1, j

LCSST Ri−1, j−1 o.w.
o.w.

(2.13)

Edit Distance Problem

The edit distance problem can be solved using a similar procedure to the methodology

presented for the longest common subsequence problem, as they are closely related.

di0 =
i

∑
k=1

wdel(bk)

d0 j =
j

∑
k=1

wins(ak)

di j =



di−1, j−1 a j = bi

min


di−1, j +wdel(bi)

di, j−1 +wins(a j)

di−1, j−1 +wsub(a j,bi)

a j ̸= bi

(2.14)

As before strings are stored as sub strings of increasing size, allowing partial solutions

to the problem to be stored in the scoring table, and reused in the future to accelerate

computation. Again, the scoring table is of size m ·n and each cell at (i, j) contains the edit

distance thus far for the sub strings a0, . . . ,ai and b0, . . . ,b j. The final edit distance can be

found in cell (m,n). As with the longest common subsequence, this is a bottom up method

of dynamic programming.
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This is shown in Eqn. 2.14, where d represents the scoring grid for the edit distance

problem, w the function which returns the cost of the different available operations on the

strings, and a and b the two input strings.

The key difference between the edit distance problem and the LCS problem is in this

case we are searching for when the string changes, rather than when the string remains the

same, as is represented in the second case clause. In this second case, when the string is

altered, the algorithm should seek to identify the transformation that must take place, in order

to transform the first string to the second, and applies the transformation with the least cost.

It is at this point that the cost of each operation can be changed such that different scoring

systems for the edit distance problem can be implemented.

Knapsack Problem

Both of the knapsack problems already defined can be solved using dynamic programming.

Unbounded Knapsack Problem

mi =


0 i = 0

max
wi≤w

(vi +mw−wi) o.w.
(2.15)

0-1 Knapsack Problem

mi,w


mi−1,w wi > w

max


mi−1,w

mi−1,w−wi + vi

wi ≤ w
(2.16)

In the case of the formulation of the unbounded knapsack problem presented in Eqn. 2.15

the scoring table which contains the partial solutions, is in fact a vector of length W , where
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W is the capacity of the knapsack. The dynamic programming definition states that each cell

w of the vector m is storing the maximum profit that can be attained when the capacity is w,

therefore the final solution to the problem is present in cell W . Note this definition is only

applicable when the weights are strictly positive integers (wi > 0), and the solution is simply

an attainable profit value rather than a set of items.

The dynamic programming definition for the 0-1 knapsack problem differs from the

definition for the unbounded knapsack problem [90], as the constraint that each item can

only be selected once must be maintained. Therefore a two dimension scoring grid is created,

with a width of W and n rows, recalling that n is the number of items being considered. This

allows for the calculation of the effect adding an item will have on the current total profit,

based on the current free capacity. As each item is considered rows are traversed, with the

current running total being stored in the scoring grid. Therefore, at the end of computation,

the final available profit is stored in cell (W.n).

The Travelling Salesman Problem

Representing this problem using dynamic programming is slightly more challenging than

the previous problems. Firstly, assuming city x as a start point: for every other city i we find

the minimum cost path with x as the starting point, i as the ending point, and in which all

cities appear exactly once. Let the cost of this path be defined as pi. Therefore, the cost of

the cycle would be pi + ci,x. Thus, the optimal tour is min∀i∈{0,1,...,n} (pi + ci,1), where n is

the total number of cities. This means that rather using a single scoring grid, pi is calculated

through the creation of multiple simultaneous scoring grids, S, which are created and filled

through a recursive relationship. It is due to this that both the computational and memory

complexity of the TSP problem is so high.
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Assuming that 1 was the start and end city for the desired tour, SXi is defined as the

minimum cost path visiting each vertex in set X exactly once, starting at 1 and ending at i.

This can be represented using the following recursive case:

SX ,i =


c1,i |X |= 2

min
(
SX\i, j + c ji

)
j ∈ X ∧ j ̸= i∧ j ̸= 1

(2.17)

All Pairs, Shortest Path Problem

The all pairs shortest path problem can be solved through a dynamic programming methodol-

ogy, the Floyd-Warshall algorithm [29]. The principle of this algorithm is based on the fact

the shortest path from i to j will be the shortest path from i to k then k to j, where k at some

point becomes every vertex.

Therefore, in this algorithm instead of simply iterating over the grid once to fill each cell

(i, j), an additional inner loop k is also required to iterate over the scoring grid repeatedly in

order to update all pairs of paths until the shortest is identified. This solving implementation

is a top down approach to dynamic programming where i, j denote indices within the scoring

grid:

mi, j


mi,k +mk, j ni, j > mi,k +mk, j

mi, j o.w.
for 1 ≤ k ≤ |V | (2.18)

Obviously, the size of the scoring grid required for maintaining the paths is the same size

of the original adjacency matrix (vv), as the output is an updated adjacency matrix containing

the shortest paths. This leads to the time complexity of the algorithm being O
(
v3) and the

memory complexity of the algorithm as O
(
v2).
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2.3 Alternative Solving Methods

In this section we briefly consider methods to solve the introduced problems, other than

dynamic programming, for both completeness of this thesis and to justify why these methods

have not been selected as the focus of this work.

2.3.1 Inexact Methods

Inexact methods are ways of solving the problem that provide an solution to the problem, but

with no guarantee of finding the optimal solution. Our primary motivation for moving away

from such methodologies, and indeed this body of work, is we believe that the extremely large

amount of computational power offered by GPUs extends the usefulness of exact methods to

an extent that would have seem inconceivable a few decades ago.

Inexact Heuristics

Inexact heuristics are essentially educated guesses, which, usually after being applied repeat-

edly, produce valid solutions to a problem, but have no way of guaranteeing the optimality of

these solutions. Due to this, they are popular methods of solving large scale optimisation

problems, as they can often provide valid solutions quickly. Often, for large problems,

solving exactly is impossible and therefore there is no alternative to using a method such as

an inexact heuristic. A meta-heuristic is simply a process that guides the development of the

heuristic, i.e. in some way it seeks to improve the guessing process over time. Through the

use of an ideal meta-heuristic, it should be possible to iteratively improve a solution over

a given time frame, therefore allowing a large problem to be processed for a fixed amount

of time producing a good answer at the end. It is also possible for an inexact heuristic to

find the optimal solution, but there is no way of validating this unless the problem has a

prior know optimal solution. Naturally however, exact methods are preferable to these, as

optimality is guaranteed. Examples of meta-heuristics include evolutionary algorithms, tabu
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search and simulated annealing. There are a range of existing works on both the tabu search

[36–38] and simulated annealing [1, 55, 88], including parallel versions for both the CPU

[28, 32, 6] and the GPU [85, 27, 46]. Due the level of existing investigation relating to these

approaches, finding a research niché in this area would be challenging, thus this thesis seeks

to move in a different direction. Detailed information on these methods is not provided here,

and the reader is referred to the existing literature.

Evolutionary algorithms are an extremely popular meta-heuristic, very commonly used

in optimisation, and as such some preliminary investigation into these was carried out to

evaluate their effectiveness, as well as the potential for parallelism. The basic structure of a

genetic algorithm is igiven in Alg 1. The premise is to begin with valid solutions generated

either at random, or through some form of heuristic, which are continually combined in an

effort to improve the solution quality. As improved solutions are found, they replace old

solution which are not as promising, mimicking real world evolutionary principles.

Algorithm 1 The basic outline of a genetic algorithm
Generate a set of random solutions, the population
repeat

Select n random solutions from this set, the parents
Combine these solutions, the crossover to create a new solution, the offspring
If the new solution is better, replace m parents with it

until stopping condition

Suitable methods of implementing these algorithms in parallel were investigated with the

most common being either breaking the population into smaller parts and running smaller

EAs in independence, and exchanging population members at intervals, or simply evaluating

the quality of the updated population in parallel each generation. After implementing these

algorithms in parallel on a CPU based system in the early stages of the development of this

work, we identified there is already a wide range of GPU literature on implementing both

such methods in parallel [79, 100, 46], and the motivation for the work was not as strong, as

such the investigation was taken no further.
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Polynomial Time Approximation Schemes

A polynomial time approximation scheme (PTAS) [91] is, as the name suggests, an algorithm

that produces an approximate answer to an optimisation problem in polynomial time. A

PTAS seeks to solve an instance of the problem based on the parameter ε (where ε > 0), and

produces a solution to the problem that is within a factor of 1− ε (or 1+ ε for minimisation

problems) of being optimal. The time complexity for a PTAS can be different for differing

values of ε , for example as the amount of precision the algorithm maintains is increased or

reduced, but must always be polynomial in terms of n [47].

A more specialised type of PTAS is a fully polynomial time approximation scheme, an

FPTAS. In this case there is a greater restriction on the run-time complexity class, where it

must be polynomial both in terms of n and 1
ε
.

Finally there is an alternative type of approximation algorithm, the polynomial time

randomised approximation algorithm (PRAS) which seeks to find solutions that are have a

high probability of being ε optimal. Obviously the accuracy of the algorithm is dependent on

the threshold of the probability of being ε optimal. As with the FPTAS in the previous case,

there is also a fully polynomial time randomised approximation scheme, which enforces the

same constraint of requiring a complexity that is polynomial both in terms of n and 1
ε
.

2.3.2 Exact Methods

The most obvious exact method is a naive brute force method, which simply tests valid

solutions to the problem until they have all been tested, thereby ensuring the method is exact.

However, this method is extremely computationally intensive and therefore infeasible for all

but the smallest problem instances.
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Exact Heuristics

As well as inexact heretics which quickly generate valid, but not guaranteed to be optimal,

solutions to problems, heuristics can also be exact.

For example in the case of a route finding algorithm - if a heuristic was returning the

shortest path between pairs of nodes, and in some instances this was pre-computed and

known data, the heuristic would be returning exact results. Therefore an algorithm guided by

this exact heuristic would have guaranteed optimality.

Also, when the portion of the algorithm a heuristic is responsible for calculating becomes

so small, it can return exact results. Using the example of a graph based algorithm - let us

assume the heuristic is responsible for calculating some value based on groups of nodes.

Should these groups become small enough for the heuristic to perform an exact calculation,

it is now classed as an exact heuristic.

Algorithms can have combinations of exact and inexact heuristics, or heuristics which

change classification based on the specific input size passed to them. However, only when a

heuristic algorithm is guided by solely exact heuristics, can optimality be guaranteed.

Branch and Bound

A common method of solving optimisation problems is the branch and bound approach. Due

to its prevalence and ability to be adapted to a wide range of problems, as with evolutionary

algorithms, at the beginning of this research some time was spent investigating these.

The basic premise of a branch and bound algorithm is that all the possible solution paths

are traversed, the branching, which ensures the optimality of the solution and the exactness

of the algorithm. However, when a path becomes less promising than others, the traversal

stops and it is removed from the search space, the bounding. The first step of running a

branch and bound algorithm is to generate a lower bound, a value to which the actual answer

to the problem can be no worse than. There are many different way of doing this, either
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through a heuristic or simply generating a random solution. From this point the a tree is

constructed, in which all the solutions to the problem can be built iteratively, however at each

node an upper bound is determined which is an estimate as to ‘the best possible solution that

will be in this branch of the tree’. Then at each node, before creating children from it, it is

evaluated whether the best solution of the branch is worse than the current lower bound, and

if it is, the branch is pruned and simply not created. Therefore it is crucial that the bounds

are pessimistic to the quality of the solution in the branch, as if they return results that are

too high, valid branches may be cut which will break the exactness of the algorithm. As the

tree is built, the quality of the best solution found so far is recorded and updates the lower

bound during the execution of the algorithm, therefore allowing branches to be pruned more

efficiently as the algorithm progresses.

Some preliminary work was carried out investigating these, and again some CPU paral-

lelisation work was carried out. In our investigations we identified that the primary limiting

factor of these was the need for constant communication across the processors in order to

maintain the solution quality. This is due to the fact when a branch finds a new improved

solution and wants to update the lower bound, all the other processors need to be aware

so that they can prune there branches appropriately. However, having large amounts of

communication in a parallel program can hurt performance, as discussed in the next section,

but similarly if less frequent communication takes place the less efficiently the algorithm will

run and the more wasted work is taking place, so a balance between the two factors needs to

be struck.

2.4 Parallel Programming

“Highly parallel computing architectures are the only means to achieve the

computational rates demanded by advanced scientific problems.” [2]
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Parallel processing and parallelism are at the heart of this thesis, thus it is important to

understand the basic concepts before presenting our main research contributions in detail.

Generally, programmers not involved in high performance computing used to rely on

advances in the clock speed of a processor, and the performance of the hardware in order

accelerate programs they developed. However, in the early 2000’s advances in improvements

of the speed of the processor slowed due to heat and power limitations. Therefore chip

developers moved towards a model of developing processors which included more cores

rather than simply faster cores. This led to new programming challenges and the emergence

of parallel programming [87].

2.4.1 Parallelism

Parallel programming is the term used to describe when a program is designed to run on more

than one processor in a computer simultaneously. This is achieved by breaking the program

down into smaller components that can run in independence of each other, communicating

through fixed channels. Implementing a program using parallel programming is desirable,

as it has the advantage of improving (reducing) the run-time. This means the program will

simply take less time to run, or larger problems can be dealt with in the same time frame

as before. For the purposes of this thesis, we are interested in parallel programming as it

may allow the solving of larger problems in an exact manner, something that would not be

feasible without it.

The way in which the program is broken down into the individual components is heavily

dependent on the algorithm being implemented, the data which it is to process, and the

architecture or environment in which it is to be deployed. However, it can be classified

into two broad categories; task parallelism, in which separate parts of the algorithm run

concurrently and data parallelism, where the same part of the algorithm is operating on

multiple pieces of the input data simultaneously. Generally however, programs use elements
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of both paradigms, and fall somewhere on a spectrum between the two. At this point we

also define the term execution pipelines. Pipelines enable a level of parallelism, by allowing

multiple pieces of data into the pipeline simultaneously. For example, a piece of data could

have an operation performed on it by stage one of the pipeline, while a different piece of data

has a different operation performed on it by stage two, in a single clock cycle, thus allowing

operations to be carried out in parallel.

As NVIDIA CUDA, which this thesis uses, adopts primarily a data parallelism paradigm,

this is discussed next.

Data Parallelism

Data parallelism is the process of breaking down large data into smaller blocks, and passing

these blocks to independent processors to process simultaneously. . Therefore this is only

applicable in situations when different sections of the input data have no relationship to each

other. For example, consider our case of a dynamic programming scoring grid. Should a

processor need data from a different cell of the scoring grid in order to process the current

cell, but this second cell is not in the same block the processor has been allocated, an error

can occur if this is not handled. To handle such a scenario, communication will be required

between the two processors, which can often be a slow process. This means the viability of

parallel data processing is heavily dependent on the structure of the algorithm, as well as

the relationship between the different points of input data. The size of the blocks, and the

granularity of how far the data is broken down can be altered by the programmer as they see

fit, for the algorithm and the architecture the program is to be deployed on. Should sufficient

processors be available, or a massively parallel architecture be used, it is possible to break

the data down such that each processor is allocated a single piece of data. In our example of

a scoring grid, each processor is allocated a single cell of the grid.
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In nearly all parallel processing settings it is required that there should be a level of

communication between the independent processors. Examples of this could be updating

each processor with information about progress in other blocks or synchronising some

shared value between processors. A common cycle of a parallel program is to do a fixed

amount of work, pause for communication, then continue working. There are two different

approaches to dealing with communication in a parallel setting; explicit communication

through a message passing system or implicit communication through the blocks sharing a

portion of shared memory which multiple processors have access to.

Implicit communication through shared memory is the communication method which

NVIDIA CUDA adopts, and therefore the method which will be adopted during development

of the model in this thesis. Communication via shared memory takes place through multiple

threads monitoring the same area of memory and watching for changes. A simple example

would be, if communication was to occur, the processors would monitor the state of some

shared variable, and when it transitioned to a specified state, they would be aware that

other processors had written data for communication to the shared area. At this point, other

processors would be aware it is safe to read this data back.

In a parallel setting, the time taken during communication can be a bottleneck in the

code, as at these points the processors all have to cease computation, and wait until the

communication finishes. This is an issue that is magnified when processors may be at

different stages of work, and as such one may be idling for a considerable amount of time

whilst it waits for another to finish and be ready to communicate. Therefore, for a parallel

program to be effective, the amount of communication should be kept to a minimum.

As dynamic programming focuses on the idea of a central scoring grid, naturally dynamic

programming algorithms would tend towards data parallel approaches.
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2.4.2 NVIDIA CUDA

“In November 2006, NVIDIA introduced CUDA, a general purpose parallel

computing platform and programming model that leverages the parallel compute

engine in NVIDIA GPUs to solve many complex computational problems in a

more efficient way than on a CPU.” [71]

“The computing industry is at the precipice of a parallel computing revo-

lution, and NVIDIA’s CUDA C has thus far been one of the most successful

languages ever designed for parallel computing.” [83]

Graphics processing units have been developed to allow the high speed, real time render-

ing of 3D objects, primarily for the use in computer gaming, but also in visual computing

and design applications. Due to the need in computer games to perform a massive number of

floating point operations per second, during the rendering of frames, this has pushed GPUs

down the route of massively parallel processing where they are equipped with extremely

large numbers of small processing units that can perform data parallelism very effectively.

Nearly all modern GPUs have hundreds of processors, with higher end variants pushing that

figure to several thousands.

In 2006, NVIDIA released the first version of the Compute Unified Device Architecture

which allows the programming of GPUs for uses other than graphics, which led to the rise

of general purpose GPU programming (GPGPU). Originally CUDA was only available

through official C bindings, but since then C++ bindings have been added as well as third

party support for a variety of languages such as Java and Python. In 2010 OpenCL [86] was

launched, a language that seeks to offer the same functionality without being proprietary

to one hardware manufacturer. However, we choose not to use OpenCL in this thesis as it

adds additional complexity during programming when dealing with the generic wrappers,

and when running OpenCL code on a NVIDIA card, the compiler simply auto translates it to

CUDA first.
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Fig. 2.7 A representation of the block and thread hierarchy adopted by the NVIDIA CUDA.
T denotes individual threads

As aforementioned, CUDA adopts a heavily data parallel approach, and uses a pipeline

execution architecture. This means that adding divergence to the code, i.e. if clauses and

branching, can introduce a lot of inefficiency to the program as both sides of the branch must

be evaluated in the pipeline. When programming an application to run on a GPU through

CUDA, the programmer interacts with the available threads of the GPU through a grid. This

contains a series of blocks, and each block contains a group of threads. This is shown in Fig.

2.7. The indices applied to each block and thread are used for the programmer to reference

them, however they have no direct mapping to the underlying hardware. Instead they are

used as a programming aid, as it is often possible to define some form of mapping between

the input data and the indices of the underlying block, allowing for clear implementations of

how the parallelism is applied to the data.

The blocks are executed on independent multi-processors of the GPU, with new blocks

being loaded as multi-processors become available. There is no guarantee as to the order in

which blocks are loaded, so it is critical when writing CUDA programs there is no dependency

between separate blocks. Once execution has begun on a block, it cannot cease until the

block is complete.
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As the clock speed of the CUDA architecture is so high, the memory on the GPU can often

become the bottleneck of the execution due to its relatively high latency. On a GPU there

are several different types of memory, all of which have been optimised for a specific task.

The largest memory store, and also the slowest by a considerable amount is global memory,

which is available to all blocks and threads at any given time. Moving down the hierarchy

there is a smaller amount of faster shared memory, which is visible between all threads within

a block. Finally, the fastest memory on the GPU is the highly limited thread local memory,

and the even quicker and highly limited thread local registers. Additionally, the GPU also has

specialised memory stores the programmer can hinge; constant memory and texture memory,

both of which are global stores. Constant memory is optimised for broadcasting the same

data to multiple threads simultaneously, and texture memory is optimised for requests for

data that are spatially close.

Compared to the high performance of the GPU cores, GPU memory is relatively slow.

Therefore steps have been taken in the CUDA architecture of CUDA to compensate for this.

Once execution has begun on a block it cannot be then unloaded, however during execution

blocks are broken down into smaller units of threads called warps, which are processed by

the multiprocessor. Should a warp be requesting a memory operation, which is high latency,

the scheduler can context switch this warp out and bring another one into the multiprocessor

to be processed. In this way the latency of the memory can be hidden as long as there is

sufficient parallelism to keep the multiprocessors saturated. The concept of warps is also

linked the issue of divergence on the processor. As the smallest unit of threads that can

be dispatched to the multiprocessor is a half warp, and in pipeline architectures all threads

are required to follow the same code path, if only a small number of threads in the half

warp require this code path, the rest will simply do nothing affecting efficiency. Therefore

having divergence, and nested divergence in a CUDA program can have a huge impact on

the efficiency of the execution.
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Fig. 2.8 The memory hierarchy of a graphics processing unit, and how these different memory
stores interact. R = registers, T = thread, L = local memory
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All work is dispatched to the GPU within a kernel, which is analogous to a function

which to be executed on a GPU. Once the kernel has been dispatched, the CPU has no direct

interaction with it, and can only monitor it’s progress by requesting the state of the GPU

from the CUDA API calls. More modern implementations of CUDA, coupled with modern

hardware allow the running of more than one kernel simultaneously on a GPU, or allow the

dispatch of new kernels from ones currently executing enabling some level of recursion. In

all cases from a programmers perspective the launch of a kernel on the GPU is a non-blocking

operation, freeing the CPU to perform other tasks whilst the GPU is processing. This is

has led to the rise of ‘heterogeneous computing’ [65, 15] where both the CPU and GPU(s)

of the system are running in tandem to ensure that maximum efficiency is drawn from the

computing resources available. Obviously however, care must be taken when dealing with

multiple kernels, or using the CPU at the same time, as due to the fact the kernel launch is

not blocking it is easy for synchronisation issues to appear.

As CUDA is a data parallel architecture there are limited options for synchronisation, as

the paradigm is geared toward performing the same operation across large data sets in no

guaranteed order. CUDA does provide the ability to synchronise threads within the same

thread block, but not to synchronise across the entire GPU. This is by design to ensure that

programmers are creating blocks that are not dependent on one another, and the scheduler is

free to load and drop blocks as it wishes. Dispatching a new kernel is a very quick operation,

and if global synchronisation points are required, the programmer should use the launch of a

new kernel to serve this purpose, and ensure the CUDA paradigm is not violated.

Due to the underlying inherent architecture of the GPU there are some use cases in which

there is a potential for a large amount of speed up, and similarly there are cases where it may

not be beneficial. As GPUs were originally designed for graphical operations, it is no surprise

that video or image manipulation are some of the most promising candidates for speed up on

the GPU, able to achieve speed-up factors hundreds of times over serial code. Where as an
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algorithm with a complicated execution flow, and a large amount of dependencies between

steps is likely to not achieve a large degree of speedup, if any. In essence, the more data

parallel an algorithm is, the more it is suited to the NVIDIA CUDA architecture.

With dynamic programming using large scale matrices, and potentially benefiting from a

data parallelism approach, NVIDIA CUDA is obviously a natural fit for accelerating such

algorithms. Next, we consider existing approaches to this already present in the literature.

2.4.3 Existing Parallel Methods

The Longest Common Subsequence

Due to the amount of uses for the longest common subsequence problem, there is a wide

amount of existing literature available.

In 1990, Apostolico et al. [5] presented a simple divide and conquer based approach

to solving this problem. The parallel model was very coarse grained, meaning that large

chunks of the input data were divided between the available processors. The algorithm ran

by dividing the entire scoring grid into smaller chunks and dividing these between a small

number of CPUs, and these are then computed in parallel (the division phase). However, it

still requires a large amount of serial operations to handle the boundary data on the edge

of each block, and communication between the individual chunks (the conquer phase).

Due to the amount of serial communication, the applicability of this approach is limited

to only a small number of processors. The algorithm has a computational complexity of

O(log(m) · log(n)), where n is the length of the first input string, and m is the length of

the second. Whilst this is now a dated piece of literature, it serves to demonstrate that the

most obvious method of parallelising the LCS problem is to use a simple divide and conquer

approach, and then seek to mitigate the communication and synchronisation issues that arise

from this.
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Moving on from this in 1994 Lu & Lin [59] propose a method to improve the runtime

complexity. They show that an LCS problem can be also be represented as a directed acyclic

graph (DAG). The objective of the problem is then to find the maximum weight path from the

top left of the scoring grid, to the bottom right, as this will be synonymous with the longest

common subsequence. To find this, the algorithm finds the maximum cost path from every

vertex on the top row to the bottom. Similar to the previous approach, a divide and conquer

approach is used for parallelism, but in this instance it is much more fine grained approach,

where the grid is recursively split into an upper and lower portion and solved. This means that

the grid can be decomposed all the way to two row chunks, allowing far more processors to be

used simultaneously. The complexity of the algorithm is improved to O(log(m)+ log(n)).

This work shows that splitting the grid into smaller pieces unsurprisingly allows for a greater

degree of parallelism. It also shows how satisfying large chunks of dependencies at once can

improve the parallel efficiency.

This was improved upon again in 1997 by Nandan & Saxena [68] who maintained a very

similar paradigm, but through a level of pre-computation, generate what they termed as a

cost matrix for each pair of rows. Whilst this is a serial portion of the code, it means that

non promising paths can be removed much more quickly, and therefore considerably reduce

the overall amount of computation required. In this case the complexity of the algorithm

is now reduced to O(log(m)). This paper demonstrates that by allowing a small amount

of computation to take place before the main execution begins, run-time can actually be

improved, so optimisations should not just be sought in the main algorithm.

In 2005 a parallel algorithm was proposed by Xu et al. [97] for implementation on an

optical bus. Whilst this is a highly specialised architecture, it has the benefit of being quite

similar to the architecture that the GPU implements i.e. many small processors which form a

pipeline. Also optical bus systems heavily rely on multi-casting for communication which

is analogous to a GPU broadcasting a message to each processor in a block. In this work
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a very fine grained form of data parallelism is used, where each cell of a row is calculated

in parallel before the same then occours in the next row. Whilst this is a simplistic method

of parallelism without the need for any pre-computation nor an advanced synchronisation

method, it takes advantage of the very high number of processors available; a method such

as this would be suitable for implementation upon a GPU. The computational complexity of

this parallel algorithm is O
(

m·n
p

)
. This work was very interesting in the respect that it shows

when using a very high number of processors, and a SIMD architecture, it is possible to run

a dynamic programming algorithm in parallel using the simple approach of allocating each

cell to a processor and synchronising when appropriate.

The last CPU work we consider is from 2006 by Krusche and Tiskin [54]. This paper

details a highly efficient method of moving through the scoring grid as a wavefront, where

cells are calculated in parallel as the dependencies are satisfied. This means that cells are filled

in a diagonal method from the top left of the grid, down to the bottom right, as dependencies

allow successive cells to be filled. Also presented are some algorithmic optimisations such

as compacting multiple cells of the grid into successive processor words to decrease memory

bandwidth requirements and speed up execution. This lowers the computational complexity

again to O(n). The work detailed here shows when attempting to parallelise a dynamic

progrmming algorithm it can be very effective to traverse across the grid in a wave like

method, simply filling cells as soon as possible as the dependencies for them become satisfied.

There has also been work on implementations for the GPU. Kloetzli et al. [53] demon-

strate a diagonal wave front based implementation similar to Krusche and Tiskin [54] running

on a GPU. This is an appropriate model to deploy as it is a highly data parallel approach,

with each cell being calculated in parallel by an individual GPU core, and due to the diagonal

nature of the wave front, large numbers of cells can be computed at once. However, it should

be noted that this method of calculation leads to periods of warm up and warm down, which

are times when the device is not fully utilised at the start or end of execution because the
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size of the wave front is smaller than the available number of cores. Also detailed is how

this would scale into a multi-GPU setting, using native CUDA functions, where the blocks

are mapped across many GPUs as opposed to a single one. We feel this is a very important

work as it demonstrates that a diagonal wave front is highly effective on the GPU, using

the available computational resources , whilst also mapping to the dynamic programming

paradigm effectively. Also, this may be appropriate to more problems, as it does not require

any problem specific features beyond the identification of the dependencies of each cell. The

discussion about multiple GPU implementations was interesting, as it demonstrated how

powerful the CUDA API is needing little additional work to scale this beyond a single GPU.

Extensions have followed on from this work, such as adding an element of pre-computation

to allow for a greater degree of parallelism [99], or coupling pre-computation with algorith-

mic optimisations to maximise performance on the GPU [75]. All of these however follow

the same principle of having a wave front traverse the scoring grid in a diagonal manner,

such that the amount of parallelism at any given time is maximised, and this is the model that

most effectively takes advantage of the massively parallel architecture on the GPU. Whist

these algorithms do offer novelty over the previous approach by Kloetzli et al. [53], and it is

important to consider and evaluate the points they make, we feel that they do not further the

discussion by as much.

As the edit distance problem is so closely related to the LCS problem, and the dependen-

cies are the same, it can be assumed that if an algorithm is valid for the LCS problem it will

also be valid for the edit distance problem. Whilst this may not be the case if many specific

optimisations have been applied, generally this assumption holds. The same applies to the

Manhattan tourist problem.
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The Knapsack Problem

In 1988 Lee et al. [56] propose a divide and conquer method that allows the dynamic

programming implementation of the knapsack to be implemented in parallel. The overall

scoring grid is broken up into smaller chunks, and these chunks are then filled in parallel. As

with the early parallel implementations of the LCS problem, this is a coarse grained approach,

designed for deployment on a small amount of processors and is only parallelised at a basic

level. This still requires serial communication between the blocks, which limits how well

it can scale to larger numbers of processors. In this work the authors have opted to present

the communication between the blocks in a hypercube structure, in an attempt to make the

communication as efficient as possible. This algorithm has a computational complexity of

O
( n·c

m+c · log
(
m+ c2)) where n is the number of objects, m the number of processors, and c

is the capacity. As with the first paper considered for the LCS problem, this initial piece of

literature demonstrates that a simple divide and conquer based approach to breaking down

the dynamic programming grid is valid, which then only needs a communication method

between these to be designed.

Lin & Storer built upon this in 1991 [57], by restructuring the overlapping sub problems

within the dynamic programming definition. In this work, the knapsack problem is formulated

using the multistage representation [16]. This means that whilst the amount of dependencies

required are the same, the computation of each element is independent of one another

allowing for more efficient parallelism. The computational complexity of this algorithm is

improved at O
(
m · c · log

( n
m

))
. For a small processor count it is possible that the approach by

Lee et al. [56] is faster, than a high processor count using this algorithm, but when the number

of processors is the same this algorithm should always be faster. Also, this algorithm allows

for the possibility of a greater number of processors. This paper presents the interesting point,

that restructuring the sub-problems can allow for a greater degree of parallelism.
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Also in 1991 Gerasch [33] presents a parallel polynomial time approximation scheme

which has a computational complexity of O
(
n · log

(n
ε

)
+n+ log(n)

)
. This is based on the

two list approach to solving the knapsack problem [44] which moves away from the dynamic

programming approach we are seeking to use. In this algorithm, the first step is to sort the

items by profit and weight before computation begins, and this can be parallelised. The

authors use a simple parallel prefix sum operation to achieve this. Also, the core dynamic

programming loop is implemented in parallel; as this is an approximation scheme, multiple

feasible solutions are calculated, which in this algorithm are produced simultaneously. We

have not considered a PTAS before this point, although the paper clearly demonstrates that the

generation of multiple solutions within a PTAS naturally lends itself to being implemented in

parallel. However, as a PTAS does not generate an optimal solution, its relevance to the work

in this thesis is limited.

In 2004, Goldman & Trystam [39] demonstrate an advanced divide and conquer algorithm.

They show how to restructure the scoring grid as a precedence graph, which is a specialised

type of directed acyclic graph, and is used to represent the dependencies within in the

algorithm. To solve the problem, paths through the graph are then calculated in parallel, and

an adapted backtracking algorithm can then be used to find the final solution. The nodes of

the graph maps to an irregular mesh and the communication across this is maintained through

a hypercube structure. We feel that this work is quite similar in its design to the LCS paper by

Lu & Lin [59], with the concept of taking the scoring grid and remapping it as a graph. We

found the work interesting, as it goes into great depth to consider the dependencies between

the cells of the grid, as well as discussing different way in which this can be represented.

While reviewing the literature we found there are limited implementations that consider

the classic dynamic programming case, with many choosing instead to focus on branch and

bound [18, 25, 58] implementations, as well as inexact heuristic methods [69, 20].
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In 2011, Boyer et al. [13] proposed a similar algorithm, but refer to their implementation

as a dense dynamic programming method, as they have gone to great lengths to compact

data, in an effort to minimise and reduce memory transactions as far as possible. Also in this

implementation it is demonstrated that this algorithm can be deployed on multiple GPUs

simultaneously, allowing for even greater degrees of parallelism. The authors achieve this

by having a single CPU thread control the multiple kernels, and also run a load balancing

algorithm on this thread such that a GPU is not left idling for an extended period of time. This

piece of work provided a lot of insight into the very fine details of implementing these kinds

of algorithm effectively on the GPU, as well providing detail on multi-GPU implementations.

We found it interesting that such complex load balancing was required to implement this

effectively, and it was not as simple as dividing the work evenly across the GPUs.

Moving onto GPU parallel implementations, in 2012 Boyer et al. [14] propose a parallel

method which executes the core dynamic programming loop in parallel, filling a row of

the scoring grid at a time, as the dependencies allow. Each cell of this row is assigned to

an individual thread, and GPU core, which leads to a very fine grained parallel approach.

Also in this work, they consider some of the challenges associated with GPU programming.

As dynamic programming requires a large amount of memory, algorithmic optimisations

have been applied such as compressing the multiple cells of the matrix into single 32 bit

values, and copying data to the host when possible. The authors have identified that host

copies are inherently expensive, and have tried to minimise and coalesce them, at natural

synchronisation points in the algorithm. Also, the authors have tried to limit the amount of

the scoring grid that is present in the GPU at a given time, holding pieces that aren’t currently

required in the host memory. Finally, how to manage the large number of threads and deal

with appropriate synchronisation between is also detailed. We feel this paper has a lot of

similarities with the wave front approach put forward in some of the LCS literature [54, 53],

where there is a very high degree of parallelism and the scoring grid is simply filled as fast as
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possible whilst maintaining synchronisation. The points about compressing the memory, and

carefully considering each memory transaction were also interesting, and something that had

not been considered in such depth in the LCS literature.

All Pairs, Shortest Paths

Beginning in 1987, Jenq & Sartaj [48] present simple a divide and conquer approach. This

decomposes the dynamic programming scoring grid into smaller chunks, and manages the

communication between these using a hypercube style structure. Whilst this is a fairly naive

approach the authors have given some consideration as to how to effectively break down the

grid, and how to map these chunks onto multiple processors. We note the literature survey for

this problem begins the same way as the previous two, with a decomposition of the scoring

grid and using a hypercube for communication. Whilst this literature is now dated, it does

demonstrate that a single solving methodology should be applicable for all the problems

presented thus far.

In 2003 Venkataraman et al. [92] propose a cache efficient implementation. Whilst

this is not actually a parallel approach, it is used to effectively support future parallel

implementations so is considered here. In this algorithm a divide and conquer approach of

breaking down the scoring grid is used, albeit a somewhat more advanced method than simply

breaking the scoring grid down into smaller chunks. Once the grid has been decomposed,

the sub-grids are processed in a specific order as part of a three-phase process. Initially sub

grids that have no dependencies begin processing, followed by sub grids which only have

dependencies on one other which are now satisfied, finally updating the remaining sub grids

that have dependencies on two others. We feel this paper is so interesting as not only does it

show decomposing the larger grid into sub grids, it discusses how to configure the size of

the sub-grids to be optimal for the amount of cache available; a concept we believe will be

transferable to individual GPU blocks.
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Following on from this Bondhugula et al. [12] in 2006 demonstrate how to implement

Venkataraman et al. [92] on a field programmable gate array (FPGA). Beyond some small

adjustments to take into account the implementation on a FPGA, no major changes are pro-

posed over the original algorithm. We found this work very interesting, as it overcomes one

of the challenges of implementing the APSP problem in parallel, which is the dependencies

for each cell span the entire scoring grid. Whilst the multiple stage system of the algorithm

may lead to extra work over a classical serial implementation, computation based operations

are so cheap and memory operations are so expensive, it is a clearly a beneficial trade off to

make.

In terms of GPU implementations, the seminal work on the APSP was in 2007 by Harish

& Narayanan [42]. This paper seeks to outline a general algorithm for implementing graph

problems on the GPU, of which the APSP problem is a suitable candidate. As this work seeks

to deal with graph problems, rather than dynamic programming, it moves away somewhat

from the concept of scoring grids and many dynamic programming principles. In this work,

a breadth first based traversal method is adapted for use on the GPU, where each vertex of

the graph is assigned a thread, and as the graph is traversed synchronisation occurs at each

level of the tree. The authors present pseudo-code for solving the APSP problem with this

algorithm, however they note there is a restriction placed upon the amount of vertices that

can be calculated on the GPU, and indicate this to be around a few thousand. We feel the

work in this paper moves away from the classic dynamic programming principles we are

focusing on to be of relevance to the work in this thesis, but as it appears to be the first GPU

implementation it should be reviewed here.

In 2008, a more specialised APSP algorithm was proposed by Katz & Kider [51] based on

the work by Venkataraman et al. [92]. This algorithm is closer to the dynamic programming

representation, and as it is targeting the specific APSP performs more efficiently. Also

presented in this paper is the memory configuration used which demonstrates how to only
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maintain the appropriate sub-grids in GPU memory at a given time, based on the dependencies

of the ones that are currently being processed. Some discussion is provided on how this

would map to multiple GPUs; due to the fact the blocks are so independent between phases,

and there is so little communication it should be easy to scale this algorithm beyond a single

GPU. We feel this paper is the current reference implementation for implementing the APSP

on a GPU. Furthermore, the discussion on linearising of the memory made some useful

points, as well as offering insight onto how to most effectively use the different available

stores on the GPU.

Most recently in 2014 Djidjev et al. [23] presents a method of using multiple GPUs

effectively to solve an APSP instance. This paper is essentially an enhanced divide and

conquer method, that seeks to split the input graph more intelligently between the GPUs by

looking to exploit natural breaks in the graph, or identify natural clusters of nodes which

would be present in real world road networks. By partitioning the graph in such a way,

communication between the isolated parts of the graph can be greatly reduced, which in

a multi GPU setting can greatly increase the efficiency as communication is an expensive

operation. Whilst this paper makes efforts to reduce the communication overhead, we note

that the approach presented is not an algorithmic improvement that can be abstracted and

applied to other problems, but rather a very problem specific solution.

Dynamic Programming

As this thesis seeks to find a generalised approach to implementing dynamic programming

algorithms to solve multiple problems effectively on the GPU, we must now consider more

generalised and abstract parallel models.

In 1990 Viswanathan et al. [93] presented a parallel model applicable to various problems,

such as finding the optimal order of matrix multiplication and finding an optimal binary

search tree. In this paper the authors consider a simple dynamic programming recurrence
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relation, and describe how the search space can be mapped to a binary search tree. From

this point it is possible to break down the search into a series of sub trees which can then be

computed in parallel. Through standard parallel reduction techniques the final complete tree

can be reconstructed yielding the solution to the problem.

Edmonds et al. [26] discuss a parallel model that assumes a shared memory store is

available. In this they propose using the wavefront method (similar to Krusche et al. [54]

and Kloetzli et al. [53]), that traverses the scoring grid in a diagonal method, filling cells as

soon as the dependencies allow. This work presents the argument from a problem agnostic

approach, rather than just being applicable to a specific test problem. However the authors

talk about considerable overhead and difficulty from the synchronisation, as this is designed

to be deployed on a multiple CPU system. Therefore it is not as simple as assigning each

cell to a thread, rather a group of cells across the diagonal axis. At a similar time Galil and

Park [30] proposed a very similar method of dynamic programing with differences in the

way the grid is broken down and blocked into sub grids along the diagonal axis. We found

both these papers to be interesting as they demonstrate that a model we have already found

to be effective at parallelism on the GPU, from a theoretical level can be applied to many

dynamic programming algorithms.

Tan et al. [89] in 2007, presented a dynamic programming model designed to run on a

multi-core architecture, using a string manipulation problem as the test function throughout.

The hardware model in this paper was tested on was an IBM Cyclops64. Whilst this has not

been introduced, the authors discuss the fact that it has large scale parallelism, expensive

memory transactions, thread blocks and it is a heavily data parallel model. We believe

therefore the architecture this model was deployed on shares many similarities with a GPU

based system. In this paper the method still follows the diagonal parallelism approach,

however instead of assigning each cell of the matrix to a thread, blocks of cells are assigned

to a thread, in a similar method to the CPU approach of Edmonds et al. [26]. The authors then
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move on to discuss how to effectively use the different speed memory stores, demonstrating

more advanced methods for allocating the blocks of cells to threads, as well as giving some

consideration to load balancing; something that has not been shown in any of the works

presented thus far.

In 2011 Wu et al. [95] extend the diagonal processing method on the GPU to an adaptive

method where the level of parallelism changes during execution. In this paper, as there

are many cells being processed at once, for example when the wave front is approaching

the centre of the grid, then multiple cells are processed by a single thread. However this

changes when the wave front is smaller, returning to the paradigm of each thread processing

a single cell. In practise the algorithm is far more complex than this, with varying degrees of

parallelism, and different patterns of mapping the data to the hardware as the wave front passes

through the grid. Using this method of adaptive parallelism, the authors claim that memory

transactions can be coalesced more efficiently, as well ensuring that the hardware resources

are used as effectively as possible. These optimisations lead to run-time improvements in the

order of 10x based on the test problem of optimal matrix parenthesisation. We found this

paper interesting as it demonstrates that deploying this class of algorithm on the GPU is not

as simple as seeking to maximise the parallelism, but potential factors such as queuing less

threads and saturating existing ones more effectively have to be considered. This is also the

first example of adjusting the level of parallelism employed as the execution of the algorithm

progresses.

Moving onto 2013 this approach was also used by Berger & Galea [10], who as well

as using thread grouping to increase the hardware usage per thread, also adjust the level of

parallelism based on the underlying GPU hardware available. This is controlled by a series of

parameters that the user can define, or is detected automatically by the algorithm at runtime.

Whilst the authors use the multiple knapsack problem as a test case, the concepts they present

are transferable to other dynamic programming problems. This paper was interesting as the
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authors specifically stated they are seeking to find algorithmic improvements applicable to

the whole spectrum of DP problems, and present improvements based on this premise. The

concept of adjusting the parallelism based on the hardware is interesting, but is a common

paradigm in parallel programming and is more of a refinement to the algorithm rather than a

core feature.

Key Findings

Based on the literature review, we identify some key findings from the literature, and identify

shortcomings which will influence the work moving forwards.

• Data parallelism, and divide and conquer, is a highly effective method of implementing

dynamic programming algorithms in parallel.

• To calculate groups of cells in parallel, first their dependencies must be satisfied to

prevent waiting for communication.

• Traversing through the scoring grid in a diagonal wave front is an effective method

of parallelisation for multiple dynamic programming problems, and has been demon-

strated on both the CPU and the GPU.

• Steps must often be taken to limit the memory usage on the GPU. A common method

of this is to store data that is not required on the host.

• Pre-computation is generally favourable when it will avoid synchronisation or commu-

nication later during the execution of the algorithm.

• The literature pertaining to generic approaches to parallelising dynamic programming

algorithms pre-date GPUs, and, as far as we are aware, we are the first to tackle this

for GPUs.
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• Generally all current GPU algorithms target a single problem, or a problem and it’s

variants, rather than a range of problems.

• All presented papers demonstrate a different approach to managing the memory usage

of a GPU implementation, there is no single unified approach.

Summary

This chapter has introduced relevant background concepts to the work that is detailed within

the thesis. It has introduced a set of optimisation problems that will serve as test problems

throughout this thesis as well as the solving methodologists associated with them. A method

of solving problems exactly without using a brute force approach, dynamic programming, was

introduced and detailed as forms the foundation of the models which we present later. Also it

sought to justify why we have taken this approach to solving the problems, compared to other

classic solving methodologies. It has provided a brief overview to the concepts surrounding

parallel programming, as well as discussing GPU computing and NVIDIA CUDA the

hardware architecture the work presented in this thesis will be deployed on. Finally, it has

investigated related work to this thesis to identify current solving methodologists, as well as

the short comings associated with these, to demonstrate there is a gap for this research.



Chapter 3

Model Design

Overview

This chapter describes the creation of the parallel model that this thesis is proposing, and

the memory structure designed to support it. Also introduced is the method that allows

users to define files which describe the high level structure of a problem, allowing the new

problems to be defined easily. Small scale benchmarks are also presented as the model is

described, which seek to justify the design choices that have been made. Finally, we consider

the differences and contribution of this approach when compared to existing methods in the

literature, some of which that have been previously discussed in Section 2.4.3.
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3.1 Design

Based on the identified shortcomings in the previous literature survey, we now present our

proposed parallel model. This model should be high performance, improving the run-time

of the algorithm by using the available resources efficiently, and generic enough to allow a

variety of optimisation problems to be implemented on the GPU using the same paradigm.

3.1.1 An Anti-Diagonal Approach

A common identified method of parallelism when implementing dynamic programming

problems is to iterate through the scoring grid in an anti-diagonal, or wave front approach

[26, 53, 54, 95], and filling the cells of the scoring grid at each iteration in parallel. This is

based on the concept that as every cell in a diagonal row of the grid is filled, the dependencies

for the next are satisfied, allowing diagonal rows of the dynamic programming grid to be

filled in parallel, as discussed in Sec. 2.4.

A diagram showing how this traversal method operates is provided in Fig. 3.1a demon-

strating the the iterations required to fill the entire grid, and the order in which they occur.

The diagram provided in Fig. 3.1b shows that every cell of each iteration can be filled

simultaneously, as they are not dependent on each other.

As can be identified from the diagrams, there are going to be periods of warm up and

warm down at the beginning and end of execution, whilst the size of the iteration computed

in parallel are increasing and decreasing, meaning all the available parallel resources may not

be used. Therefore, achieving 100% efficiency, where all available cores are used throughout

the entire execution, will be impossible. However, assuming suitably large problem instances,

these inefficient execution periods should only account for a very small proportion of the

overall run-time of the algorithm.

We believe that this will be a suitable starting point for our parallel model, because it is

a data parallelism approach to parallel computing, which matches the paradigm employed
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(a) Iterating through the dynamic programming
scoring grid in an anti diagonal fashion. Each
dotted line represents an iteration that is pro-
cessed in parallel.
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(b) As a cell being filled satisfies the dependen-
cies of future cells, it allows the elements of
a diagonal iteration of the scoring grid, to be
calculated and filled in parallel.

Fig. 3.1 How the method of traversing through the dynamic programming scoring grid in a
diagonal manner, to allow parallel solving, operates

by NVIDIA CUDA. Also as dynamic programming relies on a scoring grid in memory,

the model should map to the underlying grid memory structures of the GPU in an efficient

manner, and the grid structure should easily divide into smaller blocks to allow for optimal

mapping of the data. The size, and dimension of these blocks is likely to have an impact on

the performance of the algorithm, and these parameters will be considered geneally in Sec.

3.2, and more specifically for individual problems in chapter 4.

This general approach is unlikely to provide the highest performance for each individual

problem, as we have already identified there are specialised parallel methods designed to

solve specific problems. However, this is a method that is valid for a whole range of problems,

and a suitable starting point for our proposed model, moving us towards the aim of defining

a single generic parallel model. We therefore consider this implementation to be a suitable

trade off between designing an extremely specialised high performance model targeting a

single problem, and a generic model that can solve multiple problems. It is acceptable to
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assume there will be some performance penalty, and a balance to be struck, when trying to

design a model which is suitable for more than problem instance.

It has already been observed from the dynamic programming definitions for the test

problems in Sec. 2.2.2, that each problem has a different structure regarding the previous

cells of the grid each cell currently being processed is dependent on. For example, the

diagram shown in Fig. 3.1 is using the longest common subsequence as the test problem,

which is the most appropriate problem for using this methodology. However considering an

alternate problem, such as the knapsack problem, to fill cells in this scoring grid it is required

that different cells be available rather than simply the previous diagonal iteration. This

becomes even more challenging when considering problems such as the travelling salesman

problem, or the all pairs shortest path problem, where there are more complex dependencies

for the current iteration requiring data more widely distributed throughout the scoring grid.

Details of the specific dependencies across the scoring grid for different problems are

considered in more detail in chapter 4, at this point of the design we discuss this issue more

generally. Considering the current cell which we are trying to fill, any dependencies that it

has in the scoring grid must be satisfied by the time the wave front reaches it. This means

whichever memory store is being used to store the main dynamic programming scoring grid,

or however this grid will be decomposed to fit on the GPU, dependent cells must always

remain present until they are not required by future cells. To overcome this, without losing the

generality of the model, we propose that the user should be able define how many previous

iterations of the wave front should be stored in memory, and remain accessible.

In Fig. 3.2a we demonstrate this concept in action. In the first example in Fig. 3.2b

we demonstrate a problem that has very simple dependencies only to the previous diagonal

iteration, and the one previous to this. This example actually matches the dependencies

of the longest common sub-sequence problem. Then in the second example we show a

different problem which has different dependencies, and as a consequence of this requires
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(a) An example of a cell in the scoring grid only
having data dependencies to the previous two
iterations of the wave front.

(b) An example of a cell in the scoring grid
having more complex dependencies requiring
the previous four iterations of the wave front.

Fig. 3.2 Different problems require different previous diagonal iterations to be stored, due to
the dependencies. Dark grey cells denote the current iteration, lighter grey cells previous
iterations, arrows the dependencies.

more previous diagonal iterations to be available to it. These diagrams serve to show that by

allowing the user to dictate how many previous iterations are available to the current iteration,

different problems with different dependency structures can be solved.

Naturally there will be some problems which will be less suitable for implementation

using a paradigm such as this. For example in some problems, cells within the scoring grid

are dependent on every other cell of the scoring grid, or dependent on vast swathes of the

grid. These problem instances will be more challenging to adapt into a form which supports

implementation through this paradigm, but again, this is linked to the point of trade offs need

to be accepted when aiming for a wide reaching implementation. Later in the thesis we will

consider defining problem types which are considered suitable, and problem types which are

considered unsuitable.

In addition to the different dependencies, each algorithm will obviously have a different

case statement or equation at its core, defining how the value for each cell is calculated.
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Changing this is what allows different dynamic programming based algorithms to be imple-

mented through the model. Therefore to allow the implementation of multiple problems we

propose the user should be able to define this equation or ‘core of the dynamic programming

algorithm’, and this will be input to the model through an input file which is discussed in

detail in Sec. 3.1.3. Now we have considered how to allow the implementation of both

differing dependency structures, and different dynamic programming definitions, the model

should allow the implementation of different problems.

Throughout the discussion of the development of this model, we have discussed the

amount of previous diagonal iterations available in memory at a given iteration. We are

developing this model on the assumption that problem instances will be too large to allow the

entire scoring grid to be stored in the memory of the GPU, therefore memory management

will be required to take place passing partial sections of the scoring grid to the GPU at a

time. Therefore, when this is being designed, the principle consideration must be placed on

ensuring that the correct dependencies are available, and therefore the correct number of

previous iterations are always available in GPU memory. This is discussed in more detail in

the following section.

3.1.2 Memory Structure

As aforementioned, managing memory on the GPU using CUDA is a challenge due to the

restrictive amount of high speed memory stores, with performance considerably dropping off

as the larger global memory stores on the GPU are used. Due to this, careful consideration

must be made to minimise the amount of memory required, the number of memory requests,

and the acceleration of memory transactions.

When dealing with very large problem instances, naturally the size of the scoring grid

will grow quickly as outlined in the problem definitions (commonly n ·m), which can become

too large to fit in any of GPU memory stores. However, the problems that will benefit the
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most from parallelism are obviously very sizeable instances, and thus it is critical we limit the

memory complexity of the algorithm to allow the computation of large problem instances.

Firstly, as introduced in the previous section, diagonal iterations that have completed can

be required to satisfy the dependencies of future cells, therefore must remain available in

memory. However, as discussed, the user defines the number of previous iterations that must

remain in memory, therefore any iterations older than this can be safely removed from the

GPU. We propose that the entire dynamic programming scoring grid be stored within the

host memory, with the GPU only storing the current diagonal iteration being processed, as

well as the minimum number of previous iterations required to satisfy future dependencies.

This is based on the assumption that the host will have a considerably larger available store

of system memory, which even in a modest high performance computing deployment is a

safe assumption to make. Figure 3.3 shows an example of the transfer of data asynchronously

from the GPU back to the host. The wave front and dependencies are currently being stored

on the GPU, the data that is no longer needed on the GPU is being asynchronously transferred

back to the host. The remaining cells to be processed are memory that has not yet been

allocated on the GPU.

This means that the vast memory requirements of the GPU storing the entire scoring grid

is reduced to GPU merely storing several vectors. The memory complexity of the portion of

the scoring grid that is required to be stored on the GPU is now dictated by the dependency

structure of the the problem which is being implemented, rather than the algorithm itself.

The memory requirements on the host, rather then the GPU, remain the same as the original

dynamic programming implementation, as this is still required to store the entire dynamic

programming grid. Taking the example of an algorithm which requires a scoring grid of size

(n.m), assuming the host has 64GB of memory, the maximum dimensions of the grid which

contained a standard integer data type of 4 bytes, would be roughly 63,5002, which in the

case of some tests problems is not especially large.



70 Model Design

Asynchronous
transfer to host

Wavefront and
dependencies To be

processed

Fig. 3.3 Iterations can be transferred back from the GPU to the host when they are no longer
required

To overcome this limitation we propose to allow the user to dictate whether or not they

require the whole scoring grid to be available at the end of execution, or whether the solution

presented by the final iterations of the scoring grid is adequate. For example in the case of the

longest common subsequence problem, by considering the data from the final iteration, it is

possible to retrieve the length of the subsequence. However, it is not possible to reconstruct

the actual data of the sequence as this would require the entire scoring grid. With the other

introduced problems, similar concepts apply, as well as with dynamic programming problems

more generally. Should the user decide not to maintain the scoring grid, then there is no

memory requirement on the host at all, and only the minimal memory requirement on the

GPU, allowing very large problem instances to be solved. Should the user decide the entire

scoring grid is in fact required, obviously the memory complexity can be a limiting factor.

This is why we believe that such a decision should be left in the hands of the user, rather than

being hard coded into the model.
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GPU
Host

Memory transfer

Fig. 3.4 Iterations of the wave front are transferred from the GPU to the complete scoring
grid which is maintained on the host

Figure 3.4 shows these previous iterations are stored on the host to rebuild the complete

scoring grid, should the user request this.

Discussed in the introduction to CUDA in section 2.4.2, is the fact that memory transfers

from the host to GPU, and vice-versa, are extremely slow and often cause a bottlenecks.

Therefore as we propose, if the user wishes to store the entire scoring grid, that data is

transferred back to the host continuously we need a way to overcome this. Our proposal to

alleviate this bottleneck is to use modern (5.5+) CUDA features, namely the ability to transfer

data asynchronously to and from the host whilst computation continues on the GPU. Through

the use of these features our model can transfer data from the GPU back to the host, when

iterations are complete without the calculation requiring to pause. This method of memory

management is likely to add some complexity to the implementation, as it will require more

sophisticated synchronisation of the associated data structures. However, we believe that

memory transfers are so slow this is an issue that must be addressed in our model. The
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complexities associated with this will be considered in the implementation section following

shortly.

An alternative solution to the management of the memory which was considered at this

point was to store all previous iterations on the host, further reducing memory complexity

on the GPU and either transfer past iterations back to the GPU as they were required, or

pass back to the GPU individual cells as needed. However considering modern GPUs have

several gigabytes of memory or more, and an iteration of the wave front is only a vector

of cells, it is safe to assume memory size on the GPU is no longer a limiting factor of

this algorithm. Therefore, adding the increased implementation complexity, and increased

run-time, of transferring data backwards and forwards between the host and the GPU, will

not be beneficial to overall performance of the model.

Thus far we have identified which pieces of the scoring grid are stored on the GPU and

host, and at which points of execution. Considering the data stored on the GPU, we have

not yet discussed which memory store of the GPU the iteration being processed, and past

iterations are to be stored in. At this point of the design process, we propose that this should

be stored in the global memory store of the GPU. Whilst this is not the highest performance

memory store, when considering all factors, in this specific implementation, it may prove to

be the most suitable. Considering that data needs to be transferred back to the host regularly,

even if the data was processed in a faster memory store, it must pass back through global

memory to return to the host. This additional step in the memory transfer process is likely to

add considerable additional run-time to the algorithm. The next fastest memory store, which

is local memory, is limited to the CUDA block size, and CUDA block boundaries. Therefore,

it could be possible the data dependency that a cell is requesting may in fact be stored beyond

its block boundary, and it may not be possible to access it. Whilst there are techniques to

overcome this, this is not trivial to achieve whilst keeping the model generic and suitable for

multiple problem implementations. Based on all of these factors, we believe it best if the
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wave front remains stored in global memory, and we discuss any potential optimisations later

in the implementation section.

The final point to consider is any data the problem requires in addition to the scoring

grid. For example in the case of the knapsack problem, there are the profit and weight values

to store, and in the case of the longest common subsequence problem there is the input

strings to store. Any test data such as this will need to be stored on the GPU, as it will be

required for the core calculation when it comes to filling any cells of the wave front. Based

on the documentation regarding each memory store, we suggest that this be stored in constant

memory. As this data is not going to be changed at any point during execution, and is going

to be required by all threads at some point, constant memory is optimised at a device level to

store such data. It is also possible that storing test data in texture memory may be beneficial

as this is optimised for memory requests that are spatially close, and some problems use test

data where the required entries are spatially close. Again, this is likely to vary from problem

to problem and the highest performing solution can only be found through testing by an end

user. Therefore, we propose that our model has a switch which allows the user to decide

whether or not their test data is stored in the constant or texture store, based on their own

needs and testing. However, this switch will default to a value of constant memory if left

unset.

3.1.3 File Format

Based on the above design choices, a file format needs to be defined to allow the user to

create an input file which is read by the algorithm before execution. This allows the model

to be generic by enabling the implementation of new problems. As observed so far, the key

factors that differ between the test problems, and therefore the factors that need to be defined

in the input file are:
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• The size of the dynamic programming scoring grid in use. This is both problem

dependent and instance dependent, so a user must have the ability to define the size

based on their specific use case.

• The number of past iterations that must be maintained to satisfy the dependencies that

future cells need from GPU memory as the algorithm iterates. This factor is primarily

dependent on the problem to be solved. Any older diagonals beyond this number, the

algorithm will seek to safely transfer back to the system memory.

• The type of input data used for the problem. Obviously the input data can change

between problems, for example it is numeric in the case of the Manhattan distance

problem, however it is a series of characters in the case of the longest common

subsequence problem.

• Dimensions of the input data. For example if the data is a string it would be one

dimensional input data, or if it was a matrix it would be two dimensional – Therefore

to keep the model generic the user needs to be able to define the dimensions of each

piece of input data.

• The number of distinct pieces of input data. We need to ensure the model can support

multiple input values for the problem, such a two strings in the case of the longest

common subsequence problem, or single adjacency matrix in the case of the Manhattan

distance problem.

• As aforementioned, which memory store on the GPU to place the test data in. The user

can define whether to store the test data in the constant or the texture memory stores of

the GPU based on which will give them higher performance memory access to the test

data.
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• A switch to define whether or not the entire scoring grid is to be maintained on the host,

or whether the only data to maintain is the live wavefront that is currently iterating on

the GPU.

• Arguably the most important part the user needs to define is the case definition which

forms the central part of the dynamic programming algorithm and the basis from which

each cell of the scoring grid is filled. This is done by writing a small function in C that

interacts with the test data that the user has previously defined.

3.2 Implementation

In this section we consider the technical and practical considerations of implementing the

proposed model within a CUDA based environment.

3.2.1 Thread Model

Firstly, we consider the implementation of the thread model where each thread is responsible

for calculating a cell of the wave-front. As CUDA natively adopts a grid based, data parallel

method, threads pass through the grid, processing cells or groups of cells at a time. This

was our primary motivation for adopting a parallel method which was based around a grid

based structure. However, passing through the grid in a diagonal manner adds an element of

complexity and makes the implementation considerably more challenging.

Figure 3.5 demonstrates, based on the design presented thus far, how the mapping of the

threads to the grid would be expected to occur. In this figure, the example problem being

solved requires a 5x5 scoring grid, where the size of the largest iteration is 5, and it would

require 9 iterations to solve. The values in each cell represent which iteration the cell would

be populated in. If the threads were implemented in a manner such as this, it would lead

to several issues. Firstly, consider the initial thread to execute, i.e. the thread of the first
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1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8

5 6 7 8 9

Fig. 3.5 A naive thread traversal method of the proposed model based on the design thus far,
where the values in each cell represent which iteration they will be populated in.

iteration. This becomes the central thread as execution continues, running down the centre of

the wavefront. As the size of the wavefront changes, this thread needs to be in a different

position within the overall thread group, for example it will move from being the first thread

in the group in the first iteration, to the second thread in the second iteration and so on. This

means there will be a considerable amount of extra calculation each time a thread group is

launched in order to have threads pass through the grid in this manner.

We therefore propose that the threads iterate across the grid from top to bottom, filling

cells of the wave front as they become available. This paradigm is detailed shown in Fig. 3.6.

The numbers in the cells denote the iteration of the wave front which this cell belongs to,

and the grey lines passing through shows the threads moving across the data. The example

problem used in this figure is the same as the previous. However this model presents its

own implementation complexities – consider how thread one calculates the first iteration,

then thread one and two calculate the second iteration and so on. This essentially means that

thread two would be forced to idle whilst waiting for thread one to complete it’s execution of

iteration one, causing implementation issues, but more importantly, thread divergence.
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Fig. 3.6 The actual thread mapping we adopt. Numbers in each cell denote the iteration
number of the wave front, and grey arrows show which threads are responsible for calculating
which cell of the scoring grid

Recall that in CUDA, threads are dispatched for execution in groups called warps, where

all threads are required to follow the same code path. This can lead to a large performance

impact as threads stall waiting for other threads following different code paths to complete

execution. Due to this, it is imperative that all threads follow the same path. Our proposed

solution is to allocate memory for all threads from the beginning of execution, which allows

all threads to perform work, even if this work is redundant. Following on from our earlier

example, thread two will perform work during iteration one, following the same code path as

thread one. However thread two will write the result of this to it’s allocated memory, which

will simply never be used, and then overwritten with real data in the next iteration. Whilst

this may seem as a wasteful use of cycles, performing work that is not going to contribute to

the algorithm, it is more efficient than the performance impact from allowing the threads to

diverge and halt waiting for one another.
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In order to effectively describe this, we now present the supporting memory model, and

associated diagrams.

3.2.2 Memory

The memory model we have designed to support this is shown in Fig. 3.7. This figure shows

the state of memory at iteration 5 when solving the problem presented in Figures 3.5 and

3.6. In our model we allocate memory on the GPU where the x dimension (the width) of

this grid is equivalent to the maximum size that an iteration could be at any point during

execution – the maximum size of the wave front. In our example this means the width of the

memory allocated on the GPU must be the same size as iteration five, as this is the largest

the wave front can grow to. The y dimension of this matrix is equivalent to the number of

previous iterations that are required to be stored, with the addition of an extra row for the

current iteration being processed.

This allows all threads to perform exactly the same work, and the algorithm is not slowed

down by thread groups being required to travel down different code paths. Again, using the

example provided in Fig. 3.7 - in iteration three, three threads are actively calculating data,

and two threads are performing the same operations, but just on unused allocated data that

can be safely manipulated. Then, when the algorithm moves into iteration four, four threads

are active calculating cells, with one thread performing redundant operations. Finally, as

iteration five is the largest iteration of execution, all threads are now active and have work to

perform. From this point forward the process continues in reverse.

Recall from our introduction to CUDA, the structure of memory transactions. If memory

requests take place from sequential addresses, CUDA will coalesce these requests, and

multiple requests will be served in a single memory transaction. This single coalesced

transaction can be as large as an entire warp, assuming that all the memory accesses are

totally sequential in memory. Therefore by rotating the diagonal structure of the parallel
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Fig. 3.7 The memory model which supports the parallel model. Numbers within the cell
denote the iteration of wavefront the cell belongs to, ‘#’ denotes the memory has been
allocated, but is not currently being used by the model.

model, and placing it linearly in memory, not only can we overcome divergence issues, but

we can also ensure that memory transactions are being performed efficiently. This further

validates our earlier design decision of allocating memory for each thread, even should this

data be totally unused, as it allows the number of memory transactions to be minimised.

Now we have considered the structure of the memory, and how this will be stored, next we

will discuss in more detail the removal of previous iterations from the GPU that are no longer

needed. Regardless of whether the user wants to store the entire scoring grid on the host, or

just maintain the wave front on the GPU, in both cases the memory will need to be rotated as

the wave front iterates through the scoring grid, as one of the major design principles of this

model is that the issue of limited memory resources on the GPU is overcome. We use the

term ‘rotation’ in relation to the memory model, as the solution we propose is all rows stored

in GPU memory are moved up by one at the end of each iteration, and the oldest row that

is no longer needed is transferred asynchronously back to the host if this is what the user

requests, or overwritten if not. An example of this is provided in Fig. 3.8.

This diagram continues from the earlier examples where the largest iteration of the

wavefront has a width of five, and only two previous iterations are required to be stored. The

set of cells on the left shows the state of the memory at iteration five, and the set of cells on
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Fig. 3.8 The memory model which supports the parallel model, showing that at all times,
threads have work, and memory allocated to perform this work in. Numbers within the cell
denote the iteration of wavefront the cell belongs to

the right the memory at iteration six. The oldest iteration, which at this point is iteration three

is passed back to the host asynchronously if the user has opted to maintain the full scoring

grid. Through this method it means that only the minimum amount of data is stored on the

GPU. However it does introduce the issue that synchronisation is required between iterations

of the wave front to allow memory rotation to occur, and ensuring threads are not rotatin

memory early causing race conditions. Synchronisation is covered in the following section,

3.2.3.

Considering next the details of the asynchronous transfer. Modern implementations of

CUDA allow computation and memory transfer operations to take place simultaneously,

through the use of a mechanism called streams. Streams are a method of dispatching work

to the GPU – each have their own queue, and are executed simultaneously. Therefore by

queuing memory requests in one stream, and queuing kernel executions in another, both can

take place at the same time. This requires additional care be taken to ensure that kernels are

not requesting data that is not yet present on the device, and vice-versa.
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Fig. 3.9 Multiple CUDA streams are used to allow the asynchronous operations of data
transfer and processing

We initialise and allocate the memory on the GPU in the standard manner, as well as

allocating the data on the host if required. Then, when execution begins, kernel commands

are sent to the GPU in one stream, whilst the GPU itself queues old iterations for return to

the host in a separate stream used for data transfer. As adding elements to a CUDA stream is

a non blocking operation, therefore in the implementation of our model we can simply queue

all kernel commands into the kernel stream at the beginning of the algorithm execution. Then

the host can either continually check for incoming data from the GPU in the data stream, or

if the scoring grid is not being maintained on the host, simply wait for kernel execution to

finish and return the final cell of the dynamic programming scoring grid. An example of this

in use is given in Fig 3.9

At this point it is possible to identify a potential flaw in the proposed memory structure

and memory management model. As data to be transferred back to the host resides in the

queue of the CUDA stream on the device until it is transferred back, it is possible to be in

a situation where the queue is filling at a faster rate than the calculation is taking place. In

this scenario it would be possible that the queue can grow to such a size that memory runs

out on the GPU, causing the model to crash. This problem is also compounded as memory

transfers are so slow, it would be expected that the wavefront would be iterating through the
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grid at a considerably faster rate than old iterations can be removed. However the extent of

this problem will be largely based on the complexity of the operation each cell must perform

to fill its data, for example, if the wave front is performing very complex operations to fill the

cell of the grid, it may infact traverse the scoring grid slower than the queue is being emptied.

In section 3.2.4 we perform some small scale testing to identify the scale of this problem,

and to validate our design choices.

The other potential problem of this method, is that at the end of execution there will still be

a pause whilst the remaining data transfer to the host has to take place. This is an unavoidable

side effect of the model we are proposing. However, as we are using asynchronous transfer

throughout, we are still in a beneficial position compared to standard data transfer. If standard

transfer was being used it would be a case of execution, then a pause as transfer back to the

host takes place, then execution again. Although there is still likely to be a delay at the end of

execution within our model, this has been offset greatly by the fact the majority of transfers

have been overlapped with execution.

3.2.3 Thread Model II

Now the supporting memory model has been introduced, we can address the finer points of

the thread model.

When CUDA was first introduced in section 2.4.2, we discussed the concepts of blocks,

which is a method of decomposing the data. As we are now proposing to launch a number

of threads equal to the biggest iteration of the wave front in an effort to overcome thread

divergence, we are now requesting more threads to execute than the device can provide.

Therefore smaller blocks of data will be processed at a time, and the blocks will be processed

by smaller groups of threads as the resource become available on the GPU. We must therefore

consider the block decomposition of the memory that is being processed by threads on the

GPU.
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Ideally, we want to achieve the optimal mapping of blocks to the device resources.

However this is dependent on factors such as the amount of memory in use, and even the

amount of registers in use on the GPU. Therefore, at this point of developing the model we

cannot consider such factors, as they will be highly problem specific. The only optimisation

we are able to make from this high-level of the design is to ensure that the block sizes are a

multiple of the size of a warp, allowing efficient mapping of threads to data. In the following

performance validation section, 3.2.4, we ensure that common block sizes do in fact perform

efficiently using the model, and demonstrate this is a valid assumption to make.

At this point the structure of our data follows a simple, regular structure. The division

of the scoring grid into blocks occurs thus; decomposition of the scoring grid into the

appropriate block size, ensuring it is padded to both the size of the longest iteration, and

padding it further to a multiple of the block size if required. Mathematically the number of

blocks in use would be denoted as ⌈n
b⌉, where n is the size of the largest iteration of the wave

front, and b is the desired block size. We ensure b mod t = 0 where t is the size the size of a

thread group executed by the device. Figure 3.10 shows an example of this in action where

the size of the wave front is five (n), and the block size is four (b). For the purposes of this

example we assume the block size of four is a multiple of the size of the thread group (t),

however in reality this is unlikely.

In our efforts to overcome the issue of thread divergence, it is possible we have introduced

new performance issues into the model. Consider the case, for example, of test data which

has millions of elements, causing the longest iteration of the wave front to be several million

in length. This means that during the first iteration for example, there can be one thread

running on useful data, then other millions are simply wasting cycles. As a GPU does not

have this many threads, it is a case of loading and unloading blocks such that all cells are

filled, and this only compounds the problem of wasted work further, as this means blocks

are being spawned for the sole purpose of redundant work. Figure 3.11 demonstrates this
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Fig. 3.10 Block division where the block size is four, and the size of the largest iteration of
the wave front is five

concept. We proposed this padding solution as a method of overcoming divergence, so that

thread blocks are not being wasted, but in this scenario we now find we are launching blocks

for the sole purpose of wasting them.

We therefore require a method to overcome this issue. As it is trivial to determine the

size of the current iteration, by simply using using the iteration number, we can identify

which blocks are going to have no work at all. We can then launch the CUDA kernel for that

iteration without the additional blocks.

As mentioned earlier, during the memory rotation operation, we need to ensure synchro-

nisation of the threads. However, synchronisation is against the design paradigm of CUDA

as a data parallel language. Consider the situation where as many blocks are being processed

as possible, but all of these are waiting for future blocks to complete. Due to the CUDA

policy of once execution has started on a block it will remain loaded until it completes,

the model will now hang as deadlock has been reached. Due to this CUDA provides API

features that allow threads within the same block to be synchronised, but does not provide

any functionality for synchronisation across block boundaries.

It is expected when developing CUDA applications, and data wide synchronisation is

required, this is achieved by launching a new kernel. This means that when one kernel
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Fig. 3.11 The memory used when the longest iteration is 10 wide, spread across two blocks

completes, it guarantees that all threads are at a given point, and all data is in a given state.

Then a new kernel can be launched to continue with processing. In our scenario this means

that a kernel can only compute one iteration of the wave front, as we require synchronisation

after each iteration. This may sound like a sub-optimal operation, however the process of

launching a kernel is a very quick, near instant, process, and the CUDA documentation

describes this as the only way of achieving a safe global synchronisation point.

We can accelerate this process slightly, by queuing all the kernels required through

execution within the CUDA stream responsible for dispatching kernels, meaning there is

minimal input from the host between kernels. This also is beneficial for the model in a more

significant way however; as we have a different kernel for each iteration, it allows the model

to alter then number of blocks being launched as well as the number of threads, for each

iteration, allowing us to prevent the launching of blocks with no work.

3.2.4 Performance Validation

We now perform some small scale tests, to validate the claims made in previous sections, and

justify our design choices.
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Firstly, we consider the issue of the asynchronous transfer queue, to evaluate whether it

is possible for the wave front to be calculated quicker than the GPU can transfer completed

iterations off the device, potentially causing the model to crash. For this test, we assumed

each iteration consisted of 500 cells, and each iteration when completed transferred back to

the same location on the host, i.e. overwriting, so that memory constraints on the host would

not limit the size of the test. This allowed us to run an artificially large number of iterations

to provide the best chance of overfilling the queue if this was a weakness in the model.

The test was run at three different workloads - the low workload denotes simply loading

the current cell from the wave front, one other as a dependency, and finally writing the same

value back incremented by one. The medium workload is defined as the same, but performing

10 GPU math based operations, max, abs, min, in between the load and the store. Finally the

high workload performs 30 GPU math based operations. For all testing it was assumed that

there was only one previous diagonal to store on the GPU. Results of this test can be found

in Fig. 3.12.

The results show that all tests successfully passed without crashing, however in the case

of 108 iterations, at a low workload, the transfer queue was very close to the limit of the 6GB

of memory available on the GPU. However, this test still passed in an artificially constructed

worst case which is very promising. When using an iteration count this high, if the data

from the GPU was actually required to be stored on the host, large amounts of host memory

would be required, and if it was not the asynchronous transfer queue would not be needed –

therefore this is a good representation of an worst case for the model.

Next we briefly consider the effectiveness of padding the data to ensure that divergence

is minimised. This is a very common paradigm in CUDA and a recommended design pattern,

but it is still prudent to validate our claim, as in the early and late iterations the amount of

padding required can be high as size of the wave front is small, and the block size is large.
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Fig. 3.12 Number of iterations still in the asynchronous transfer queue at the end of execution
for differing workloads of wave front calculation

In this test we consider two factors when analysing whether the padding is beneficial.

Firstly the run time is recorded to see the effect padding has practically on the run time of the

algorithm, and secondly we record the CUDA metric of branch efficiency which records at a

hardware level the divergence of a given program. Full details of this metric are provided

later in Section 5.2.1.

To test this we create two instances; one where padding was not present, and one where

padding was. We ran tests where blocks were ‘full’ to different percentages, i.e. the amount

that would have to be padded, or would be excluded by an if clause if it was not in use.

The size of the wave front was set at 4,096 elements and the size of a computation block at

4,096. We do not need to consider multiple blocks, as we have already determined that the

algorithm will be intelligent enough to not spawn blocks with no work at all. We ran the

high workload test case from the asynchronous transfer test for 1,000 iterations to identify

the average performance impact of using padding.
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Fig. 3.13 The effect that padding unused data has on the runtime of algorithm, as the amount
of unused data in a given block decreases

The results of this test are shown in Fig. 3.13, and they support our statement that

providing threads with an area to read and write to so they can follow the same code path

as other threads, improves the overall runtime of the algorithm even though more work is

being carried out. Note from the graph that performance improves for the unpadded version

at the 50% mark before deteriorating again, we discuss why we believe this is shortly with

the divergence results. Replicate runs of the test were carried out to ensure the validity of

this result. Another surprising point of test was the lines did not converge to the same run

time when the block was 100% used, when it is expected both the padded and unpadded

implementations to be following the same code path. We conclude from this result that

the if clause that guards the out of bounds elements in the unpadded implementation is

likely adding a small amount of overhead, so even when the block is entirely used it is still

performing slower than it’s unpadded counterpart.
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Percentage Used Padded Unpadded
10 1 0.95
30 1 0.86
50 1 0.99
70 1 0.85
90 1 0.97
100 1 1

Table 3.1 Results of the CUDA branch efficiency metric when running on both padded and
unpaded data, as the percentage of ‘used’ data increases

Results of the testing for recording the branch efficiency are given in Tab. 3.1. As is

expected, it shows no divergence for padded data, however the unpadded data does not

present the completely linear trend initially expected. This is due to the fact that the branch

efficiency is not dictated by the amount of unused data, but instead dictated by the amount of

warps that have to traverse different code paths. For example it would be possible to have no

divergence at all, if the boundary between the code paths each warp must take lines up at the

boundary of a warp size - i.e. in our example of a block size of 4096, in the 50% used data

case, 2048 cells must be filled based on one code path, and 2048 on a different. Therefore

if the warp size was 16 threads, the first 2048 cells would be filled by 128 warps, and the

second 2048 by another 128 – however at no point did a warp need to split based on an if

clause: all threads in every warp followed the same path, although these are different paths.

However, we will be using the optimised padded version.

3.2.5 Input File Implementation

Based on the requirements of the file format identified in Section 3.1.3 we consider each of

these points individually. For maximum compatibility across systems and inter-operability,

we assume the input file is simply a plain text file, with each new line defining the next input

parameter to be processed. Each line of this input file is read, and parsed by a Backus-Naur

Form (BNF) based syntax parser, and loaded into the model. Please note for brevity we



90 Model Design

5x5
prev: 2
char 1x5 A,B,C,D,E
char 1x5 C,D,E,F,G
mem: 0
maintain: 1

Fig. 3.14 A complete input file for a longest common subsequence problem, with two input
strings 5 characters in length, stored in constant memory on the GPU, maintaining the entire
scoring grid

omit the BNF definitions for standard text forms such as ‘character’, ‘integer’ and ‘line

terminator’.

Allowing the user to define the size of the scoring grid is a case of having it defined in

the input file, as two integers which represent the n and m. When the file is read, the model

is then aware of how much memory to allocate on the host device to maintain the entire

scoring grid. Also from these dimensions, the algorithm can calculate the size of the longest

diagonal, so the width of the grid that is to be maintained on the GPU can also be calculated.

The input file should contain two integers on a single line, separated by the character ’x’,

allowing it to be captured by the respective BNF tokens <dimension> ::= <n> "x" <m>

<EOL>, n ::= <integer>, m ::= <integer>.

The second value that is defined in the input file is the number of previous diagonals to

store in memory on the GPU. This is defined by the user based on the dependencies that are

present in the dynamic programming definition. In terms of the memory that is stored on the

GPU during execution, this value represents the height of the grid the GPU is maintaining

in global memory. As introduced in Sec. 3.1.2, once rows are rotated past the top of this

grid, they are asynchronously transferred back to the larger grid being maintained in the

host memory, should the user require. This is represented in the input file by an integer

prefaced by the characters prev: allowing it to be captured by the BNF token <previous>

::= "prev:" <integer>.
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Now that the dimensions of the scoring grid to be maintained in both system and GPU

memory are defined, the user needs a way of passing in the input data which the algorithm is

to process. Each piece of complete input data must be on a single line of the input file. On

each line first the user needs to define the type of this specific piece of data. For this the

line must start with a small string token identifying the type, such as ‘char’, which would

represent input data that is in the format of characters, ‘int’, which would denote the input

data is going to be a sequence of integers, and so on. Following this, the user needs to define

the dimension of the input data. Finally, following this, the user only needs to provide a

string of comma separated values which form the actual test data, with escape characters

denoting when each row of the test data matrix ends, should it be 2D. The user can add as

many lines of input data as they wish to the file which will be captured by the tokens:

• <input> ::= <type> <dimension> <input-data>

• <input-data> ::= <data> <EOL> | <data> <data>

• <data> ::= <data-row> <EOL> | <data-row> "&" <data-row>

• <data-row> ::= <comma-sep-values>

• <comma-sep-values> ::= (omitted for brevity)

For example to represent a string for the longest common subsequence in the input file a

user would write char 1x5 A,B,C,D,E. After defining the dimensions of the scoring grid,

and the number of diagonals to maintain, the user can define as many lines of input test data

as they wish, all of which will be accessible from model.

Finally the user places on the last lines of the input file a switch, denoting whether test

data should be stored within the texture memory or constant memory. We assume constant

to be the default option therefore setting this switch to 0 uses constant, and 1 uses texture.

Also the user should define whether they want to maintain the scoring grid on the host as
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well, or just the current iterations on the GPU. This defaults to only storing what is currently

on the GPU, therefore a value of 0 does not maintain the whole scoring grid, and a value of

1 does. These will be captured by the BNF tokens <mem> ::= "mem: 0" | "mem: 1"

and <persist> ::= "maintain: 0" | "maintain: 1", respectively

A complete example of this, using the longest common sub-sequence as problem would

appear as shown in Fig. 3.14

Representing the Dynamic Programming Case

Allowing the user to define the case definition of the dynamic programming case is a more

challenging consideration, as it must be present at compile time for the model to be able to

be able to generate the CUDA kernel. Due to the fact it must be present at compile time

the definition of the dynamic programming case cannot be in the input file as with the other

parameters, and must be written into a small function. To make this as easy as possible

for the user, we develop small wrapper for the user, allowing them to implement different

problems without needing to know the intricacies of CUDA programming.

A function is defined which is called each and every time a cell of the scoring grid

is required to be filled, and the user simply needs to fill in the definition of the dynamic

programming case here before compiling the program. This function is provided with a struct

containing pointers to all the input data the user has defined, allowing the user to access all of

the data they have specified in the input file. Also this function is provided with the current

iteration number, as well as the i and j index of the cell that is being filled.

This function is also provided with the length of the current iteration, which is used during

memory accesses, as well as a pointer to the data struct containing the number of previous

iterations the user has opted to maintain, allowing them to load any data dependencies they

need. It should be noted at this point that obviously memory access to previous iterations

cannot simply take place through the desired (i, j) values. For example, if the wavefront
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was in the middle of the scoring grid, and needed to load a cell from the previous diagonal

iteration, the actual (i, j) value of the desired cell in the context of the entire scoring could be

a very large number. Therefore this cannot be used to directly load data from the smaller grid

on the GPU which is maintaining previous iterations. We provide a function the user must

use when making memory accesses to previous iterations, allowing the user to make access

to previous diagonals through global (i, j) references. This is covered in the following Sect.

3.2.6

In this way it is hoped that the user should be able to write very basic C code to represent

the core of there problem, using the most simplistic algorithmic representation, and the model

will automatically handle everything else. Also, using the approach of allowing the user

to provide their own code may allow for more advanced users to provide more optimised

functions.

The actual source for the function signature the user is to fill to define their problem is

defined as:

_ _ d e v i c e _ _

U s e r F u n c t i o n ( d a t a _ s t r u c t Data ,

unsigned i n t C u r r e n t I t e r a t i o n ,

unsigned i n t i , unsigned i n t j ,

unsigned i n t Length ,

unsigned i n t * P r e v i o u s D i a g )

Obviously, a user is then able to create additional device functions which are called by

this core function if they so desire, and extend this functionality as far as they need too.

3.2.6 Other Implementation Details

Now that the model has been defined we consider the finer details of the implementation,

which were only introduced briefly earlier in this chapter.
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As the model needs to be generic we need a method which allows the user to input

different types of test data, as well allowing different amounts of this input data. Therefore

to enable this we use pointers to void data structures storing the raw data, which are then

cast to the appropriate type based on what the user has dictated within the input file. To

allow the storage of many pieces of input data, we store an array of void pointers, which

can grow arbitrarily large as memory allows, where each pointer maintains a reference to

a different piece of input data. It was considered at this point that a mechanism such as

header guards, and the identification of types from the input file if present at compile time,

could have been used to alter the data types of the input data in a more robust manner.

However, it was decided that whilst the dynamic programming definition should be present

at compile time, to require the input file at compile time could be inconvenient as this would

lead to the need for recompilation for changes as small as altering the input test data, or

changing the memory store that is being used for the test data. Therefore, it appeared that

the manipulation of the raw data through void pointers allowed for a more convenient and

usable final solution, although additional care must be taken when manipulating the data

types. Finally, the switching between GPU memory stores is controlled by a basic if clause

dictating where the memory should be allocated and transferred to. Note, that the input file is

parsed through the use of regular expressions, allowing large input files to be scanned and

read in quickly.

At the beginning of the execution the scoring grid on the host is allocated if required

by the user, and the scoring grid is created on the GPU based on the number of previous

iterations that are required, and the test data is transferred to the appropriate store on the

GPU. Then, the two queues for kernel execution and memory transfer are both initialised.

After the kernel queue is created, before each kernel is added we perform some pre-

processing in an effort to maximise efficiency, as covered briefly earlier. The width of each

kernel of the wave front can be different, as a new kernel is launched for each iteration due
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to the fact global synchronisation is required. Therefore as the kernels are queued to be

executed, the optimal width of each iteration is calculated to minimise the number of blocks,

whilst ensuring that only full blocks are present in the kernel using padding where required to

achieve this. The question of optimal block size is a subject of considerable research within

the CUDA community, and a factor that is heavily influenced by the underlying hardware

available, and the properties of the problem that is being computed such as the amount of

local memory required, and register usage. Therefore, instead of having this variable within

the model, we elect to hard code a block size that is optimal for the hardware that is used

during testing based on the CUDA occupancy calculator [72]. This is discussed in more

detail in Chapter 5, when the testing environment is outlined.

We provide a memory access function that allows the user to access data they desire from

previous diagonals, using a reference based on the entire scoring grid. This wrapper must

therefore be used in all accesses to previous iterations to ensure the validity of the result. The

signature of this function is very simple with the user simply passing the (i, j) of the location

of cell in the grid that is currently being processed and the (i, j) of the cell which they desire to

access, as well as the length of the current iteration to allow offsets to be calculated accurately.

It is for this reason the defined user function is provided with information regarding the

length of the current iteration. Therefore, in the dynamic programming definition when the

user defines read or write operations to or from the scoring grid, all memory read and writes

must pass through this wrapper.

The kernel to rotate the memory is a very simple function to iterate across each row

representing a previous iteration, and move it up one, starting with the oldest iteration which

is passed to the queue for the transfer back to the host if the user has opted to do so. The only

point of note is that the threads are locally synchronised block wise before the next row is

rotated, as this allows the memory requests to be coalesced and therefore accelerated. This

additional kernel is queued between each kernel execution.
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The mechanics of handling the parallel nature of the execution of the algorithm, simulta-

neously with the memory transfer, is actually surprisingly simple thanks to the functionality

provided by CUDA streams. At the beginning of execution, all kernels are queued in the

execution stream as aforementioned, then the host is simply required to monitor the incoming

data in the data transfer queue waiting to handle data as it arrives. Therefore from the host

point of view, once all the kernels have been created, they need not be considered again and

are handled by the CUDA driver.

Finally execution of the algorithm does not terminate until the queue to transfer back

completed diagonals from the GPU is empty, if they are being stored on the host to reconstruct

the entire grid, or until the GPU returns the most recent iteration. From this point the user is

expected to separately process the outputted data to their own needs to produce a solution

from algorithm output.

3.3 Comparison to Existing Work

We will now discuss the model’s novelty compared to the existing literature, and what benefits

the proposed approach offers.

Our approach is closely based on the method of filling individual cells of the scoring

grid in parallel, using a different thread to fill each one as it’s dependencies become satisfied.

This in itself is not entirely novel; the works of Krusche and Tiskin [54], Kloetzli et al.

[53], and to a lesser extent Boyer et al. [14] are existing literature’s with similarities to

our implementation, and the literature review in Sec. 2.4.3 covers these in more detail.

However, as discussed at length through this thesis, none of these parallel models allow for

the parallelism of other problems, quickly and easily. The above papers for example are all

related solely to the solving of the longest common sub-sequence problem. Considering

again the early work of Galil and Park [30], where they discuss the feasibility of a more

generic diagonal approach to solving dynamic programming algorithms, you can also see
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clear influences for our model, as they consider dynamic programming from a problem

agnostic point of view. Furthermore, from an implementation point of view, of the previous

works we have identified few of these consider factors such as optimising CUDA parameters,

or take advantage of modern CUDA features such as streams.

Therefore, a clear, and significant, contribution of this work, is that we demonstrate

that it is possible to make a pseudo-generic framework that allows the implementation of

many different dynamic programming algorithms based problems in parallel. Compared to

the existing literature we reviewed, none of these allowed for the practical implementation

of different problems; they either demonstrated an implementation for a single problem,

or discussed the theoretical implications of multiple problems, with no practical backing.

We then go a step further and implement the model upon the architecture of the GPU,

demonstrating that our model is suitable for use in a massively parallel environment. Of the

literature reviewed, there is considerably less available regarding implementation on GPU

architectures, with there being some notable examples from post 2000 [13, 75, 99]. Therefore,

not only are there are no examples of CPU based models to solve multiple problems, there

are also no examples of GPU based models, allowing us to find our research niché.

Our model also employs novel memory management, which we believe has two fold con-

tributions. Firstly, and most significantly, it allows problems larger than the size of memory

to be computed through the use of memory rotation, and secondly it demonstrates a highly

efficient implementation taking full advantage of multiple GPU streams, and asynchronous

operations. The base memory structure initially stemmed from the work of Klotezli et al. [53],

but has been vastly improved from this point with additional implementation optimisation

such as memory padding, as well as being extended to enable the implementation of memory

rotation.

In terms of the finer details of the implementation of our model, Wu et al. [95] also

provided inspiration for our work demonstrating how the size of the wave front can be
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adjusted based on the amount of work that needs to be done in an effort to improve the

parallel efficiency. This proved to be a critical factor for our implementation, considering

the large impact divergence can have on GPU code. We also drew on the work of Berger &

Galea [10] where they discuss how thread grouping and the altering GPU parameters, based

on the problem at hand can improve the efficiency and performance of the algorithm. Whilst

our model does not adopt the concept of thread grouping, we have a strong emphasis on

allowing the user to change parameters based on the problem being computed, as well as

an element of pre-processing where we calculate optimal values for block sizes, and kernel

sizes.

Finally, our contribution of allowing the user to interact with the model through the

concept of a file format, in an API style mechanism seems to be entirely unique in the

literature, although this is arguably more an implementation and engineering contribution

rather than solely a scientific contribution. However, it is through this mechanism we are

able to claim our model is generic, and without the ability to define different problems, as

well as associated parameters, the rest of the model would not be valid.

The complexity for our proposed model, to compare to the existing literature, can not be

ascertained at this point, as this is dependent on the problem the user inputs, as well as the

amount of memory they opt to maintain. Therefore the complexity for individual problems is

considered in the following implementation section.

Summary

This chapter presented a detailed description of the parallel model that this thesis is proposing,

as well as giving an insight into the design process to provide an insight as to our design

choices. Also the novelty and contributions of our model were presented in comparison to the

literature currently available. Performance results were shown to justify some of our design

choices, demonstrating the general performance of different components of our model, such
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as memory transfer and block structure, and how these perform in isolation. The next chapter

describes the implementation of the introduced test problems on the GPU, through the use of

our parallel model.





Chapter 4

Application of the Model

Overview

In this chapter we discuss how the introduced problems are solved through the use of the

proposed model. We consider different dynamic programming definitions, which require

different dependencies to be maintained for different problems, and how this is represented

in the model. We also consider implementation optimisations which can be made for the

separate problems. Later in the chapter we discuss adaptations required in order to solve

more complex dynamic programming problems. Finally we seek to define the broad classes

of problems which are unsuitable to be solved by the model.
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Fig. 4.1 Dependencies of the wavefront when solving the longest common subsequence
problem

4.1 Problem Implementation

First, we consider how each introduced test problem is represented within the model, in terms

of dependencies the current iteration of the wave front requires, as well as other details such

as how test data is represented. Maximum theoretical problem instance sizes are also defined

based on the code being deployed on a GPU with 6GB of memory.

4.1.1 Longest Common Subsequence Problem

The dependency structure for the longest common subsequence problem is given in Fig. 4.1,

with dark grey cells denoting the wave front, and light grey cells showing the dependencies.

White cells in the top left, behind the dependencies, are cells which can be transferred back

to the host if required. Therefore in the case of this problem, only 3 vectors need to be stored

on the GPU. The memory complexity of algorithm on the GPU is therefore O(n) where n is

the length of the longest input string. Due to this low memory complexity, we believe that

if the scoring grid was not be stored on the host, and assuming the data type of the scoring

grid was a 8 byte long integers, strings of length roughly 150,000,000 could be solved before
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Fig. 4.2 Dependencies of the wavefront when solving the Manhattan tourist problem

exceeding the 6GB limit of our GPU hardware. This figure assumes there both test strings

are stored on the device, and the scoring grid is required to store long integers rather than

regular integers due to the possible value of the longest common subsequence. Finally, both

input strings will be stored in constant memory on the GPU, as characters of vectors.

In the case of the edit distance problem - the dependency structure is identical to that

of the LCS problem. Therefore the above approach can also be used for the edit distance

problem by only changing the dynamic programming case statement.

4.1.2 The Manhattan Tourist Problem

The Manhattan tourist problem follows a similar structure to the LCS problem, but requires

less previous dependencies. Figure 4.2 shows the dependency structure of this problem,

again with the wave front denoted in dark grey and the dependencies in lighter grey. Due to

the dependencies of this algorithm the memory complexity is still O(n), where n is the width

of the scoring grid. The test data requirement for this model is higher, however. We store the

input test data in two matrices, where the first matrix stores the vertical edge weights, and
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Fig. 4.3 Dependencies of the wavefront when solving the knapsack problem

the second matrix stores the horizontal edge weights. Each row of the input matrices stores a

complete column, or rows worth of edge weights.

Based on these increased test data requirements, we now attempt to determine the

theoretical maximum problem instance size of the model. Based on two square input

matrices representing the edge weights storing 4 byte integers, and the scoring grid also

storing 4 byte integers, we believe the maximum theoretical city dimension our model can

solve is 25,0002. When running the Manhattan tourist problem, we elect to store the test

data in texture memory as it is possible requests may be spatially close within the 2D space.

4.1.3 The Knapsack Problem

Next we consider the knapsack problem; compared to the previous problems, this has a more

complex dependency structure. It is possible for a cell to require the entire row the cell is

stored in, from column 0, through to the column the current cell is in. Therefore, a much

larger number of previous iterations must be maintained to satisfy the dependencies. Until

the wave front reaches the halfway point of the scoring grid, all previous iterations must be
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Fig. 4.4 Dependencies of the wavefront when solving the knapsack problem, once the
wavefront is more than halfway through the scoring grid

maintained. This is shown in Fig. 4.3, where the dark grey cells are the wave front, and the

lighter grey cells are the dependencies.

Once the wave front has moved passed the centre point, only then can old iterations begin

to be transferred off the GPU. Figure 4.4 shows how the dependency structure appears when

the wavefront has moved beyond the halfway point of the scoring grid. It can be observed

that some cells are maintained that are not needed, for example the entire top row of the

scoring grid. This is due to the fact some of the cells of the iterations they belong to are

required by the wavefront, and therefore the entire iteration must be maintained.

Due to the higher number of previous iteration dependencies, memory complexity for

data which must be stored on the GPU is O
(
⌈W ·n

2 ⌉
)

where W is the capacity of the knapsack

and n is the size of the item set. Test data is stored on the GPU in two vectors, a vector

containing the weight of all items in the input data set, and a second vector containing the

profit of these items. In the case of the bounded knapsack problem, a third vector is stored

on the GPU dictating how many times each item can be selected. All of these vectors reside

in constant memory of the GPU. As the memory usage of the algorithm is dependent on the

capacity as well as the size of the item set, a limit to the size of input problem cannot be
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defined in terms of item set size alone. However we seek to provide an example of a problem

which will use all of the memory of the test GPU. A problem instance for the 0/1 knapsack

problem which contained 30,000 items and had a knapsack capacity of 400,000 would be a

rough limit for the problem size which could be executed on our GPU. This is based on the

assumption all data structures are storing standard 4 byte integers.

4.2 Available General Optimisations

There are few global optimisations that can be made at the high level of overall model design,

as most are problem dependent and should be input by the user.

As already mentioned, during the rotation kernel, all threads are synchronised before

read and write operations take place to global memory. Due to this, read and write requests

to global memory are guaranteed to take place simultaneously. By ensuring the threads

are in synchronisation, and the memory request is completely linear, it allows the memory

transactions to be coalesced, meaning multiple memory operations can take place in a single

cycle. Also, when rotating the memory, the function which translates the indexes of requested

cells from the scoring grid, to actual indexes in memory is not used – the rotation operation

is hard-coded and the user has no control over this.

The size of the blocks spawned are already optimised through the memory management

model, based on the target block size defined by the user. Enough blocks are launched to

contain the wave-front, and the wave front is padded as required to ensure it is a multiple of

the block size. Therefore, there are no optimisations available with respect to the size of the

blocks.

A key point that the user must be aware of when implementing the dynamic programming

case, is to limit operations that require data from previous iterations, as these are stored in

global memory of the GPU. A small point, that can cause considerable improvements on

the run-time is once the user has requested values they should be stored locally within a
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thread local variable. For example, if a value is needed in multiple calculations, it should be

stored locally within the thread once it has been accessed initially, rather than being loaded

from global memory multiple times. Across the execution of the algorithm, this has a large

effect on the runtime as all user accesses to global memory are required to use our wrapper

to determine the correct indices.

Finally, we take steps to ensure the heavily used memory index look-up function runs

quickly. In this function, when calculating the requested indices we ensure that the GPU math

library is used at all points, enable hardware based math operations to take place providing

the highest level of performance. Again, any small gain provided here will have large impacts

across the algorithm, as this function is used so extensively.

4.3 Specialised Problems

During the course of the development and implementation of this algorithm, some problems

were found to be unsuitable for implementation using the proposed parallel model. Here we

discuss these limitations in an effort to find a formal definition as to which problems are, and

which problems are not applicable for use.

4.3.1 The Travelling Salesman Problem

The travelling salesman problem required significant adaption to be solved by our model,

moving away from our principle of inputting new problems through a file format, and

requiring hard coded adaptations to the model. However, we sought to continue to use the

same principle of using the wavefront method, so the approach we adopted uses the same

algorithmic approach.

Based on the dynamic programming definition, once the scoring grid has been created,

to fill each cell a new subgrid is required to be solved. Then to fill each cell of this subgrid,
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Fig. 4.5 Multiple subgrids are required to solve the travelling salesman problem

further subgrids are required and thus recursion continues. This is shown in Fig. 4.5, where

the master grid requires 3 subgrids, which in turn require more. Solving the problem through

this method is an example of a bottom up approach, where the smallest subgrids must be

solved first, allowing progressively larger grids to be solved, until finally the single largest

scoring grid contains the overall answer. This diagram also demonstrates that this can still be

represented in a diagonal based form, similar to our wavefront approach.

To solve this problem, instead of using the GPU threads to fill cells in parallel, we use

the threads to solve entire scoring grids in parallel. Starting with the smallest scoring grids,

this creates a very wide front, all of which can be solved in parallel (the dark grey cells

in the figure). As these scoring grids complete, they pass values up to the next level of

grids (the ones in light grey in the figure), and these are then all solved in parallel. In this

manner the travelling salesman problem can be solved, with the wave front moving from

very wide iterations to progressively smaller. However, this increases the issue of iterations

becoming not wide enough to utilise all the resources of the GPU, as the the size of the

wavefront reduces in size. Also as iterations take longer to complete, it is possible that a

larger proportion of the run-time of the algorithm is spent calculating wavefronts that are

smaller than the GPU has the resources for.
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We considered splitting scoring grids such that each subgrid is solved my multiple threads

rather than a single thread, as the wavefront becomes progressively smaller, yet this would

have caused considerable implementation complexities. Also, this continues to move our

model further away from the original proposed design methodology, therefore we elect to

simply have one thread solving one scoring grid. There is a benefit associated with this

approach that due to the reduced thread count for the final iterations, there is more memory

available to each thread. As these iterations are also computing larger subgrids, the additional

memory is beneficial to the algorithm in the final stages of execution.

Our memory management model can still be used with this problem, again requiring

some adaptation. As the subgrids are computed, the memory can be pushed off the device

to the host as it is no longer required. However, this data must then be transferred back to

the GPU as the algorithm moves up a level of scoring grids. This means that the user has

no control over whether or not data is stored on the host. As calculation of scoring grids

is completed, and the results successfully transferred back to the GPU for the next level of

calculation, these can be removed from memory on both the host and the GPU. This reduces

overall memory complexity and allows larger problems to be solved.

The travelling salesman problem required adaptions to the model to allow it to be solved,

but we believe the approach we have adopted is closely related to the proposed model, and

we claim it is still solved through the same method.

4.3.2 All Pairs, Shortest Path APSP Problem

The all pairs, shortest path problem is also a challenging problem to solve. Due to its dynamic

programming definition each cell must check whether there is a shorter route between two

vertices by going via every other vertex, causing dependencies between every cell in the

scoring grid. This leads to the situation in which no old diagonals of the wave front can be

transferred back to the host memory as they are all be required by future iterations. Therefore
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the problem size is heavily constrained by the amount of memory on the GPU, only allowing

adjacency matrices of size 40,0002 or smaller to be solved.

The only methodology we could identify to resolve this would be to split the scoring grid

down to smaller blocks, solving these in isolation, and communicating results afterwards.

Whilst this is similar to the the approach we chose for the travelling salesman problem, in the

case of the APSP problem, this is a larger digression from the approach of a wavefront, and

moving closer to existing block decomposition methods readily available in the literature.

Therefore at this point, we choose not to implement the APSP using our model, as the

adaptations required would offer little research contribution, and define this problem as

unsuitable for solving via the base model. However during development and testing we did

implement a reference APSP implementation [51] for investigation. This was used to support

the work of the research group which has been submitted, but not yet published, in IEEE

Transactions on Evolutionary Computation.

4.3.3 Defining Unsuitable and Inefficient Problems

Based on the implementation issues we encountered, we observe that some problems are well

suited for implementation using the proposed model, others less so or requiring adaptation,

and some which are unsuitable for implementation at all.

The dependency structure of the method used to solve the problem is key in defining

whether a problem can be solved by our model or not, and how efficiently it can be solved.

Broadly, problems fall into four categories of suitability for solving through our model:

• Ideal - These are problems that require a small number of previous iterations to

be maintained as dependencies of the current iteration being solved. This has the

advantages of allowing large problem instances to be solved due to low memory

requirements on the GPU, as well as ensuring the GPU has a high ratio of computation

operations compared to memory transaction operations. Example of these problems
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include the longest common subsequence, knapsack, edit distance, and Manhattan

tourist problems.

• Inefficient - Problems which require a large amount of previous dependencies to be

maintained limit the size of instances that can be solved, as more iterations are required

to be stored on the GPU - but they can still be solved successfully. An example of a

problem in this category is the subset sum problem, where the current iteration has

dependencies to all previous iterations prior to the current one. In this case, the model

will still solve the problem successfully, but no previous iterations can be moved off

the GPU, meaning no memory management will occur, considerably limiting the size

of solvable problem instances.

• Requires Adaptation - If a problem has dependencies ahead of the wave front, it means

they are unsuitable for implementation without an adaptation to support this. To allow

cells ahead of the wave front to be available to the current iteration, the current iteration

should be kept in memory as a previous iteration until the future cells it requires are

reached by the wave front; at this point these can be filled, and the iteration rotated

off the GPU. Examples of problems that fall into the category are the all pairs shortest

path, and chain matrix multiplication problems.

• Unsuitable / Requires Extensive Adaptation - Finally, some problems are unsuitable

to be implemented through the model without extensive changes being made - these

are generally problems which require recursive child scoring grids to be created, such

as the travelling salesman problem, or have otherwise specialised problem specific

solving methodologies. Whilst we have demonstrated solving the TSP problem in this

thesis using the same basic paradigm as our model, it required extensive hard coded

adaptions to enable this.
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Summary

In this chapter we have described the mapping of the test problems onto the GPU through

the use of our parallel model. We have demonstrated through the use of the input files

and changing the dynamic programming statement, different problems can been solved.

Also discussed were adaptations to the model required when solving problems with more

complex dynamic programming algorithms. Finally, problems which are unsuitable for

implementation were considered, and the reasons for this are presented.



Chapter 5

Testing Methodology

Overview

This chapter describes the hardware environment used for carrying out the performance

testing of the proposed model, and the testing methodology adopted when analysing the

program. Covered is the hardware specification of the machines used during testing, as well

as the software that was used during both the compilation and execution of the program.

We introduce the metrics that will be recorded during testing execution, and describe how

these can be used to evaluate the model performance, as well as detailing how the test data is

generated for each introduced problem. Finally, we provide some small scale benchmarks

demonstrating the performance of the underlying hardware, giving theoretical best case

performance that the model could achieve.
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5.1 Testing Environment and Hardware

In this section the hardware and software environment used across all testing is described.

The majority of the testing took place on a desktop computer running the Arch Linux

operating system. The code was compiled using the GNU Compiler Collection (GCC) 4.8,

and GPU code was compiled using version 6.5 of the CUDA framework. The machine has an

Intel 3930K CPU providing 6 cores clocked at 3.2GHz, and 16GB of DDR3 memory. It also

contained 2 NVIDIA Titan GPUs which each provide 2688 CUDA cores and are clocked at

837 MHz. Note however, no multiple GPU tests were carried out as the model has not been

designed to support this, instead the multiple GPUs just enabled simultaneous testing in the

smaller test cases.

A secondary desktop with a lower specification GPU was used in order to demonstrate

how the code scales from one hardware environment to another. Code on this machine was

compiled using GCC 4.6, and the GPU code was compiled using version 6 of the CUDA

framework. In terms of hardware, this desktop has in Intel i7 4790 providing 4 cores clocked

at 3.6Ghz, and 16GB of DDR3 memory. It also contains a NVIDIA GTX 960 providing

1024 CUDA cores clocked at 1127 MHz. A full description of the role of the second system

during testing will be described shortly.

5.2 Methodology

Now we will detail the testing methodology we use to validate the performances of the

proposed model.

5.2.1 CUDA Metrics

The CUDA software environment ships with a built in profiler nvprof [73] that allows an

end user to retrieve accurate metrics relating to the CUDA code that is running on the GPU.
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As NVIDIA CUDA is a closed source, proprietary programming environment, this the only

profiler that allows a developer to record performance information during execution of a

CUDA kernel. This is advantageous however, as this profiler is produced by NVIDIA, it

allows for the use of hardware counters producing high quality profiling results. Listed here

are the metrics we will be recording during all test runs of the proposed model.

1. Global load efficiency - The ratio of the requested memory load operations from global

memory compared to the amount that took place. Therefore when considering the

results of this metric, a higher figure is better. It should be noted that it is possible for

this figure to increase past 100% if multiple threads within a single warp are requesting

memory from the same address.

2. Global store efficiency - Identical in operation to the previous global load metric, but

instead of considering memory load operations, it records memory store operations.

3. Warp execution efficiency -The ratio of the active threads present in a warp compared to

maximum amount of threads that can be active in a warp based on the multi-processor

on the GPU hardware. Again, with this metric, higher is better.

4. Branch Efficiency - The ratio of the branches of the program that are spawned during

execution which are non-divergent, compared to the total number of branches that are

created. For this metric, a higher value is more desirable.

5. Achieved Occupancy - Ratio of the number of active warps per processor cycle,

compared to the possible amount of warps that can be active per processor cycle.

For this metric, a higher value is better.

6. Instructions executed per cycle - The number of instructions executed for each clock

cycle of the processor.
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Now we consider our rationale for selecting each of these metrics. The results of metrics

1 and 2 are important as they relate to the efficiency of memory operations from the global

store. As discussed, the global store is the slowest of all of the CUDA memory locations,

and if used incorrectly can prove to be a bottle-neck on the run-time of a GPU kernel.

Therefore whilst we seek to reduce the amount of memory transactions to the global store,

it is impossible to avoid them entirely, so great care should be taken to make sure they run

efficiently. Metrics 1 and 2 are a direct reflection on this, and should they come back with

low results, it will demonstrate that the run-time of the kernel is being dominated by waiting

for memory transactions to take place.

Considering the warp execution efficiency (metric 3) is important, as it gives an indication

to how effectively the available computational resources of the GPU are being used. As there

is a finite limit on the amount of warps that can be active on a multi-processor at a time, it is

important that warps that are running contain as many threads as possible. Should this metric

prove to be low, it shows that there is divergence in the code, and portions of the GPU are

simply idling rather than executing.

The branch efficiency (metric 4) of the program is important, and is linked to the warp

efficiency. Remember that all threads within a warp must follow the same code path, therefore

for maximum efficiency the divergence of the algorithm must be kept to a minimum. This

metric is a direct reflection on the amount of divergence in the code, and as with the warp

execution efficiency if this value is low it may mean that some of the resources on the GPU

are idling. However, it should be noted that some divergence can be present without affecting

the overall efficiency, if the divergent branches are using a number of threads equal to the

size of a warp – in this case both code paths are still executing at maximum efficiency.

At a higher level than these is the metric that considers the achieved occupancy, metric

5; instead of counting how many individual threads are running in a warp, it considers the

amount of warps that are actually running. Many people consider this metric to be one of the
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most important [42], as it gives a quick snapshot overview of how efficiently an algorithm

is likely to run on the GPU. Maximising the warps that are running at a given time is key

to hiding the latency of the kernel on the GPU. As such NVIDIA have even developed a

occupancy calculator [72] which gives a crude estimation of this metric before runtime. The

occupancy, and metric 5, is heavily influenced by the parameters such as the block size, and

the amount of threads and memory available on the underlying hardware. This is discussed

further when we consider the testing environment for each individual problem in Section

5.2.4. A low value in this metric could mean a variety of things, such as bad algorithm

design, structuring the size of the blocks badly or failing to configure the launch parameters

appropriately for the hardware. Therefore, investigation using more fine grained metrics such

as branch efficiency and warp execution efficiency is required.

Finally, the instructions executed per clock cycle (metric 6) gives an overall indication

to how efficiently the resources on the GPU are being used. This metric shows how much

work the processor is actually performing for each cycle of the processor clock. This means

that should there be a lot of time the cores are idling, this metric will reflect this and will

then allow for more detailed investigation to be carried out. We believe that using this subset

of metrics allows us to gain an accurate insight as to how effectively the model executes in

terms of memory performance, processor performance, and adherence to an effective CUDA

programming paradigm considering factors such as divergence.

5.2.2 Empirical Metrics

We also use some more common metrics to gauge other aspect of the models performance,

listed here:

1. Wall time - A record of the total execution time each experimentation run requires. We

record this metric in terms of seconds.
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2. Memory used (host) - A record of the total peak amount of system (non GPU) memory

used during an experimentation run. We record this metric in terms of megabytes.

3. Memory used (GPU) - A record of the total peak amount of memory used in the GPU

global memory store during an experimentation run. We record this metric in terms of

megabytes.

Recording the wall time is one of the most common metrics when measuring the per-

formance of any newly proposed algorithm or model. However we believe it is of limited

usefulness, due to the fact it is a highly hardware dependent measure, varying from system to

system. It is even possible for the run time of an algorithm to change between systems using

the same hardware, due to differences in the software environment, and configuration. In an

ideal situation, other algorithms from the literature would be re-implemented on the same

system to produce comparative runtimes, but this is simply in-feasible and outside of the

scope of this work. Therefore we provide run times to demonstrate to the reader how long it

takes to solve a given problem size, and more importantly the cut off when the problem size

becomes to large to be solved in an acceptable time frame, but direct comparisons to other

studies won’t be drawn. In instances where other studies are suitably recent, reference run

times from these may be provided for illustrative purposes.

As with recording run time, recording memory usage is a metric that is applicable when

measuring the performance of any algorithm. With the overall scoring grid being stored in

memory on the host, based on the assumption there is more available than on the GPU, it

is important to record how large this value can rise to. Should this prove to be the limiting

factor, this will also provide an absolute value for the maximum size a problem instance can

be, before this model is no longer applicable.

Similarly, we record the amount of memory used on the GPU to ensure that the technique

of moving data back to the host is effective, and the GPU has enough resources available to

run the model. The rate at which this metric grows can also give an indication as to at which
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point instance of problems become to big to be calculated. This metric has to be recorded

through specialised NVIDIA tools however to ensure an accurate value is recorded.

5.2.3 Global Testing Parameters

All runs are replicated 20 times, as although during testing we ensure that all machines

experimentation is taking place on are otherwise idle, there may still be some background

noise from other running processes. Also, should there be any unexpected or unusual results,

as the runs have been replicated it can be ascertained this was not a quirk of one specific run,

and rather a quirk of the algorithm as a whole.

The CUDA block size used during execution also needs to be fixed between runs. Rather

than using a different block size between problems, we elected to use a uniform block

size across all runs as this means there is minimal change to the underlying code of the

model between tests, and this gives a fairer insight to the applicability of the model between

problems. As detailed, finding the block size is a factor that is heavily dependent on the

amount of memory the algorithm being executed needs, as well as the amount of resources

that are available on the specific GPU. For our testing we fixed the block size at 512 – this is a

multiple of the warp size of the GPU which is 32, meaning maximum efficiency at this block

size can be achieved. Also, setting the block size to 512 means each block has a maximum

of 4096 bytes of memory available to it, and each thread has 32 registers available, which we

expect to be a comfortable amount for our test problem implementation.

5.2.4 Test Data

In this section we describe how test data is generated for the performance testing, and which

parameters are adjusted across different runs.
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The Longest Common Subsequence Problem & Edit Distance

For the longest common subsequence problem the variable parameters are the length of

the input strings, and what percentage of the strings match to form the longest common

subsequence. All test data for this problem was generated by ourselves, by first fixing the

length of the two strings, then defining the length and content of the shared longest common

subsequence. The longest common subsequence was then placed randomly in both strings,

maintaining ordering, then the rest of the strings are filled using random characters from

the defined alphabet. For all of our test data we used the alphabet A, C, T and G as this is

the alphabet of DNA bases commonly used in computational biology, and one of the most

common uses of this problem.

For testing we varied the length of the strings between 0.5 and 3 million, in steps of 0.5

million, and varied the amount of commonality between the strings from 0 to 100% in steps

of 25%. As well as running tests with strings of the same length, tests were also ran when

there was a length difference between the strings – when one string was twice as long as the

other, and when one string was 4 times longer than the other (i.e. one was 25% the length

of the other). Increasing the length of the string allows the efficiency of the algorithm to

be observed as the size of the input data changes, and allows for investigation into whether

the parallel scaling of the algorithm changes as different input sizes are used. Changing

the length difference between the two strings means that the dimensions of the scoring grid

changes, and may have an impact on metrics such as warp efficiency, and warp divergence.

Finally changing the length of the longest common subsequence within the strings should

have no effect on the run time, or any other metrics, but this should be validated through

testing.

In the case of the edit distance problem, for ease of implementation we use the same

generated test data as that which is used for the longest common subesequnce problem. This

gives a good range of string size, as a well as range of edit distances. Due to the similarity
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between the problems, fluctuating the test data of the edit distance problem, should have

a similar effect on the recorded metrics as with changing the data for the longest common

subsequence problem.

The Knapsack Problem

In the case of the knapsack problem, the adjustable parameters are the set of items which can

be selected from, the number of times each item that can be selected, and the capacity of the

knapsack. As with the longest common subsequence problem, we generate our own test data.

Although there is standardised test data available for the knapsack problem, it is dated, and

targeting CPU implementations so proves not sizeable enough to warrant execution on the

GPU. Item sets are generated at random with 80% of the items having weight in the range of

5-20% of the total capacity of the knapsack, 10% in the range of 0-10% of the capacity and

the final 10% in the range 20-30%. All items had profit values assigned to them at random

between 0 and 100.

For testing we varied the capacity of the knapsack from 10,000 to 100,000 in steps of

10,000. The number of items in the associated item set was varied from from 0.8% to 1.6%

of the capacity of the knapsack, in steps of 0.2%. Changing the capacity of the knapsack

will affect the size of the scoring grid in one dimension, and changing the number of items

will change the size of the scoring grid in the other dimension. This will have an effect on

a whole range of metrics; firstly as it grows in either dimension there will be associated

increase in run time and memory usage, whilst there is also likely to be changes in warp

execution efficiency and branch efficiency as the size of the problem passes optimal block

size boundaries.

We use the same test data for both the bounded and 0/1 version of the problem. For the

bounded implementation, we assume that a vector x of equal length to the item set, stores a
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list of the amount of times each item can be selected. This vector is filled at random with

positive integers.

The Manhattan Tourist Problem

For the Manhattan tourist problem the adjustable parameters are the size of the grid, as well

as the weights defined upon the edges. As with the previous problems, we generate our

own bespoke test cases for this problem due to a lack of availability of online test cases,

seeking to adjust both of the above parameters simultaneously. Throughout testing the grid

is maintained as square, with the length of both dimensions increasing equally as they are

altered.

Generating the test data was the simple case of altering the size of the grid from 5,000 to

30,000 in steps of 5,000 and generating values for the edges as random numbers within the

range 0−100.

Travelling Salesman Problem

The travelling salesman problem is arguably the most challenging problem we consider,

and also requires an adapted implementation to make the model applicable, as covered in

Sect 4.3.1. When solving TSP instances through the classical methods of heuristics, test

data can have an effect on the run time, not simply in terms of size but also in terms of the

placement of the cities, meaning there is a very strong concept of best case and worst case

data. However in our implementation, as we seek to solve instances exactly, the only factor

that should impact the run-time is the number of cities being considered in the problem.

Rather than generating test data for the TSP, we instead use standardised data that is

available in the online repository TSPLIB [81], as here we can find suitably large instances

which warrant GPU implementation. The test data we use from the library is: A280, ATT532,

PR1002, NRW1379, U2152m, FNL 4461, where the number within the test data name
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denotes how many cities the instance contains, as this gives a good range of sizes for testing.

Note that we stop testing at the relatively small instance of 4461 cities, as the memory

constraints of this algorithm are so incredibly high, even when our memory management

features are employed.

Changing the data in this manner will have an effect predominately on the run time, and

also on metrics concerned with memory usage. It will be interesting to identify if the load

and store efficiency changes considerably between runs as the test data changes, as these

metrics are more likely to be linked to the implementation of the TSP problem, rather than

affected directly by the test data. Also the warp execution efficiency and branch efficiency is

likely to change marginally based on the test data, as with the other problems, but we do not

expect considerable changes between runs solving different problem instances.

5.3 Comparative Data

When developing a model for deployment on a GPU, finding a method to allow comparative

testing between our model and the literature is challenging as it is beyond the scope of the

work to implement a plethora of different competing GPU and CPU algorithms for each

individual test problem. However, to illustrate the effectiveness of our approach we must

consider its performance in the context of similar works.

Therefore the approach we have elected is in some instances to implement competing

algorithms, and in others to use results directly from the literature, whilst ensuring the

shortcomings of using other authors results are discussed here. Firstly we consider sequential

CPU implementations. It is expected that a GPU implementation that is taking advantage of

thousands of cores, should be orders of magnitude faster than a sequential, single core CPU

implementation. Therefore, in the case of single core CPU algorithms, using results from the

literature is acceptable as they are only used to illustrate the fact our GPU implementation

is a clear improvement over a CPU based method, and we do not use the results for direct
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comparisons between the run times. The same is also true of parallel CPU based implemen-

tations, where it is expected the GPU should comfortably outperform the run time of such

algorithms. Again, in these cases, we draw results straight from the literature which use

parallel CPU based implementations, to hypothesise a rough figure for the amount of CPU

cores that would be required to deliver a similar level of performance to our GPU method.

When we are comparing against competing GPU algorithms by using the results di-

rectly from other publications, care must be taken not to draw direct comparisons between

comparative runtimes, or other metrics, due to the difference in execution environment.

Therefore, in the following chapter presenting the testing results, we discuss our findings in

the context of other GPU algorithms. This provides a rough framing for where our algorithm

fits within the wider range of available algorithms, but we avoid drawing comparisons based

on values such as the percentage improved run time offered by our model compared to other

implementations, or similar.

Now we will identify the data which will be using from the literature for comparison.

5.3.1 Sequential CPU

As the longest common subesequence problem is a classic problem, CPU implementations

from the literature can be very dated, sometimes going back 30 years which obviously are

inappropriate for even rough comparison against. Due to this we implement our own version

of a basic dynamic programming approach to the longest common subsequence problem.

To complement this with more advanced algorithms, a relatively modern survey paper [11]

re-implements a whole range of longest common subsequence algorithms, including some

diagonal based methods [96, 67, 64], which we also use for comparison.

As with the longest common suebsequence problem, simple, sequential CPU based

algorithms for solving the Edit Distance Problem, and the Manhattan Distance Problem

are not present in modern literature. Therefore as creating basic dynamic programming
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algorithms for these is relatively simple, we also create our own simplistic CPU based

implementations of these. It should be noted that in all our CPU implementations the size

of the test data had to be considerably limited due to the memory requirements of these

algorithms, and a memory management model similar to the GPU for the CPU was not

implemented.

For the knapsack problem there is a recent survey paper [61] which focuses on more

modern approaches to solving this problem. Therefore as well as using a basic dynamic

programming approach of our own implementation, we also briefly compare against the

results of the dynamic programming method of Pisinger [77], as implemented by Martello

[61].

The travelling salesman problem is unique, as it is almost exclusively solved through

inexact methods for larger problem sizes. Therefore for this implementation we implement

the same dynamic programming on the CPU as the one which is implemented on the GPU,

as we believe this will provide good illustration of the benefits GPU can offer, and how our

model makes exact methods feasible again.

5.3.2 Parallel CPU

To compare against a CPU parallel implementation of the longest common subsequence

problem we use the work of Krusche and Tiskin [54], which is a modern implementation of

the earlier bit-parallel algorithm by Crochemore [21] which iterates through the grid in a wave

front. and describes considerable optimisation’s compared to older algorithms. This means

there are multiple levels of parallelism present in this algorithm – there is bit-parallelism

where cells of the scoring grid are represented by bits, as well as the higher level block

synchronous parallelism when large chunks of the scoring grid are calculated in parallel.

Bit-parallelism is the concept that by storing multiple cells in a single data type, for example

an integer or a long, only one operation needs to be carried out to affect all of them. Therefore
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we expect this algorithm to be high performing, and a representative example of a parallel

CPU algorithm.

Due to the similarity of the implementation of both the edit distance problem, and the

Manhattan tourist problem, we elect to use the results from the Krushe and Tiskin paper as

an indicator of the performance of these problems if they were to be implemented on the

CPU in parallel.

For the parallel CPU implementation of the Knapsack problem we consider the survey

paper of Rashid et al. [80] which is a modern paper concerned with analysing the performance

of multiple parallel Knapsack implementations, with a focus on reanalysing the performance

of classic parallel algorithms [35, 34].

5.3.3 Parallel GPU

For GPU parallel algorithms, we can use the works identified in the literature review in

Sect. 2.4.3. For comparison of the longest common subsequence problem we compare our

implementation against the work of Kloetzli et al. [53], whose implementation paradigm is

similar to ours. We also compare our implementation with Yang et al. [99], who demonstrate

the restructuring of data dependencies in the scoring grid. As with the CPU implementation,

we can also use this as an indicator of the performance of the edit distance problem and the

Manhattan distance problem.

We compare our knapsack problem implementation against the GPU parallel work of

Boyer et al. [14], who demonstrates a row parallel method of solving on the GPU.

For both the parallel CPU and parallel GPU implementation, we do not compare the

yravelling salesman problem to printed results, as we cannot compare our exact solution to

inexact solutions from the literature, due to the fact this would require the consideration of

factors such as solution quality.
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5.4 Reference Benchmarks

In this section, reference benchmarks for the introduced metrics are provided to give the

reader an indication of baseline performance in a perfect environment, allowing conclusions

on how comparatively efficient the proposed model is.

To create these benchmarks we use a specifically crafted test problem that is designed to

offer perfect conditions for the model to operate in, with test data size lining up perfectly to

block boundaries, and being accessed in a perfectly sequential manner. This test problem is

very similar to the longest common subsequence problem, however only one input piece of

test data is used. As the wave front iterates through the grid, the only dependency the cell

has is the one directly to the left of it (in the previous iteration), as this will be in the same

column within the data structure of previous diagonals being stored on the GPU. The cell is

filled based on the following very simple case:

REFi, j =


0 i = 0 or j = 0

REFi−1, j +1 o.w
(5.1)

A cell of the input test data is also read with the matching i value to simulate a read

operation taking place. Input data is simply a vector of initialised with zeros and the scoring

grid is assumed to be square, with i being the same size as the length of the input data. Block

size was set at 512 to mirror our real testing parameters.

The test problem was then deployed on the two described desktops (one with a NVIDIA

Titan, the other with a NVIDIA GTX 960), and the metrics were recorded across five replicate

runs.

We can see from the Fig. 5.1, that the metrics for the load and store efficiency metrics are

extremely high, nearly universally higher than 90%, demonstrating that in perfect conditions

the memory management of the model is highly effective. An interesting point of this however

is the fact the metrics do not pass 100%, as this is possible for the load and store values. If
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Fig. 5.1 Efficiency of the global load and store operations whilst running the reference
implementation, as the size of the scoring grid increases

they were to pass 100% it would show that multiple threads were accessing the same address

simultaneously, which would be assumed to be the case as loading the test data take place the

same i value. We hypothesise this is due to the wrapper that translates the memory addresses

is obviously causing work on the thread, which will in turn induce a delay before the memory

transaction takes place, and therefore all threads are not perfectly synchronised before the

memory operation. Without all threads being synchronised, a coalesced memory request

cannot take place.

In Fig. 5.2 the other recorded CUDA metrics are presented. This shows that the warp

efficiency averages at roughly 80% and the branch efficiency at roughly 90%. Again these

are very strong initial values for the efficiency of the model. Initially it was expected that the

warp efficiency and branch efficiency would have been more intrinsically linked. We assume

the warp efficiency is lower than the branch efficiency due to the fact that warps can stall

within already divergent branches, reducing the efficiency of the executing warps further.
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Fig. 5.2 Recorded CUDA metrics whilst running the reference implementation, as the size of
the scoring grid increases

The recorded value for occupancy is very high reaching nearly the perfect value of 100%,

which shows all the resources of the GPU are in use and also demonstrates that our choice of

block size is effective. Occupancy alone cannot be used as an indicator though, as whilst it

shows all resources are being used, they may not being used effectively.

A fact observable from both of the graphs thus far is the GTX 960 seems to perform

marginally more efficiently than the GTX Titan. This is likely due to micro-architecture

improvements on the GTX 960, as whilst in terms of CUDA cores it trails the Titan by a

considerable distance, it is a more modern example of GPU hardware. The exact reason for

the small discrepancy however cannot be isolated. The similarity in performance between

the two pieces of hardware demonstrates strong scaling and portability of the model, and its

performance isn’t bound to a specific piece of hardware.
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Summary

This chapter has presented details of the two systems that will be used for the performance

analysis of the model, a higher powered, but older Titan based machine and a more mod-

ern GTX960 based system. The methodology used when testing the model through the

defined test problems was discussed with the selected metrics introduced, and justification

provided as to why we are using a heavily metric based analysis method. Also presented are

methodologies for generating test data for each of the problems, as well as relevant results

from the literature which we will use to demonstrate the effectiveness of our model. Finally

we present some theoretical benchmarks as to peak performance the model can offer in

perfect conditions. The next chapter details the results of testing the model following the

methodology laid out here.



Chapter 6

Performance Testing

Overview

This chapter describes the performance testing of the proposed model using the test problems,

evaluated through the introduced metrics, using the discussed testing methodology. The

results of the testing are discussed, and the performance results are justified. Comparisons

are also drawn against results from the literature to illustrate the benefits of the proposed

model.
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Fig. 6.1 Recorded global load and store efficiency whilst solving the longest common
subsequence problem, on two strings of equal, increasing length, when the match is 50% of
each string

6.1 Performance on the Test Problems

The section presents results of the models’ performance when running on the introduced test

problems.

6.1.1 The Longest Common Sub Sequence Problem

We begin by testing the longest common subsequence problem. As defined in the testing

methodology, we solve the problem for strings of increasing length, different proportions of

common subsequence, and varying length differences between the input strings. Graphs and

more detailed analysis is provided for testing when there is a 50% common match between

the two strings, and the two input strings are of the same length.
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Fig. 6.2 Recorded CUDA metrics whilst solving the longest common subsequence problem,
on two strings of equal, increasing length, when the match is 50% of each string

Beginning with the global load and store efficiency metrics, Fig. 6.1 shows the recorded

values. These results have a mean of 90% which is a strong result. A point to note however is

the results appear to be slightly dropping, as the size of the string grows, when running on the

older hardware. The recorded results are also marginally lower than the reference figures for

the efficiency of storing in global memory – this could either be during the rotation kernel,

although this is unlikely as threads are in perfect synchronisation at this point, or during

the main execution kernel. Therefore we assume this is linked to threads taking a different

amount of time to perform work, and writing the result back at different times, potentially

causing other threads to wait.

The other recorded CUDA metrics, with the exception of instructions per clock (IPC), are

presented in Fig. 6.2. The graph shows the warp efficiency at roughly 73% for both devices,

the branch efficiency averaging at 82% and the occupancy at 95%. As with the previous

test these values are high, and very encouraging, but somewhat short of the reference values.

This is to be expected as the reference values were constructed to demonstrate a theoretically
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between the two strings is altered

Fig. 6.3 Metrics recorded when solving the longest common subsequence problem with a
fixed string length of 3,000,000 and the longest common subsequence between the strings is
varied between 25% and 100%

perfect implementation of the model, and is reflective of real world usage. The pattern of

falling short of the reference values is prevalent throughout testing, as detailed in this section.

A further promising result from this graph is the results for both the GTX Titan and the more

modern GTX960 are comparable, which gives an initial indication that the model adapts well

to a varying number of CUDA cores and to different CUDA API levels.

Varying Match Percentage

We now consider the effect that altering the percentage of common subsequence shared

between the strings has on the performance of the model. These tests are expected to provide

near identical results to the previous tests, as the match percentage should only affect the

values being stored within the scoring grid. The length of the string is fixed in these tests at

3,000,000.

Figure 6.3a shows the global load and store efficiency metrics, and Fig. 6.3b shows the

other recorded CUDA. As expected these results match the trends of the previous runs almost

exactly. This demonstrates the performance of the model is not dependent on the input data.
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Fig. 6.4 Metrics recorded when solving the longest common subsequence problem with a
fixed string length of 3,000,000 for the first string, and the second string length is altered
between 25% and 100% of this

Fluctuating String Length

Next we consider the affect that altering the size of the length differential between the two

strings has on the models performance. This test will cause the scoring grid to become

non-square, and therefore the model will be required to perform more rigorous bounds

checking, and the code will likely have to diverge more often. Due to this we expect the

branch efficiency and the warp execution efficiency to suffer. The impact on this metrics may

not be in direct proportion to the string length differential, the efficiency depending instead

on how many warp boundaries are crossed on each iteration.

Figure 6.4a details the load and store metrics for two strings of differing lengths, and

Fig. 6.4b shows the other recorded CUDA metrics. The length of the first string is fixed at

3,000,000 and the length of the second string is altered between 25-100% of this. It can be

seen that there is an efficiency impact on the model when the two strings are not of identical

length causing the scoring grid to be non square. The observed efficiency cost is minor with

the biggest impact being on the load and store memory transactions reducing the recorded
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Table 6.1 Average instructions per clock recorded during the performance testing of the
longest common subsequence problem

String A Length String B Length Match Percentage IPC
500000 500000 50 0.54
1000000 1000000 50 0.55
1500000 1500000 50 0.55
2000000 2000000 50 0.54
2500000 2500000 50 0.55
3000000 3000000 50 0.55
3000000 3000000 25 0.53
3000000 3000000 50 0.55
3000000 3000000 75 0.55
3000000 750000 50 0.47
3000000 1500000 50 0.44
3000000 2250000 50 0.45

metrics by between 15-20% in the worst case. Warp and branch efficiency are also impacted

but to a lesser extent reducing by between 5-7% in the worst case.

These are promising results as warp and branch efficiency, and occupancy, are metrics

that can begin to fall away dramatically as the code diverges, as clearly stated in the NVIDIA

CUDA documentation.

Instructions per Clock

Finally we consider the instructions per clock recorded whilst running the longest common

subsequence problem in the different testing scenarios.

The average values for the instructions per clock metric are presented in Table 6.1. The

results shown are highly consistent if somewhat low. We believe this is due to the highly

memory bound nature of our model, where the performance of the algorithm is dependent

on the speed of the memory transactions rather than CPU operations. The algorithm can be

required to pause whilst memory transactions are taking place, causing the IPC value to fall.

We are not discouraged by these results however, as whilst the IPC value is somewhat low,
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Fig. 6.5 Recorded global load and store efficiency whilst solving the edit distance problem,
on two strings of equal, increasing length, when the match is 50% of each string

the previously recorded metrics are high, indicating that whilst memory speed is the limiting

factor, the memory based portions of the model are performing efficiently.

6.1.2 Edit Distance Problem

We next consider the edit distance problem. Due to the similarity between this and the

previous problem we use the same testing methodology as outlined in Sec. 5.2.4. We

also therefore expect similar results to the longest common subsequence problem, with the

algorithms only differing with the edit distance problem performing more work to fill each

cell. Whilst the problems are similar, these tests serve to demonstrate the model running on a

different problem that has been defined through the input files.

As with the longest common subsequence problem we begin testing with strings of equal

length, increasing in size, and a common subsequence length of 50%. Figure 6.5 shows the
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Fig. 6.6 Recorded CUDA metrics whilst solving the edit distance problem, on two strings of
equal, increasing length, when the match is 50% of each string

recorded efficiency metrics for the memory transactions recorded during these tests. The

first result of note is the metrics tend to be between 2-4% improved over those of the longest

common subsequence problem. Whilst this is a minor performance gain, this is an accurate

result due to the replicate runs. We believe this is further indication that the model is heavily

memory bound, as when there is even a small amount of additional computation to fill each

cell, the observed efficiency of the model rises. Secondly, the results show the same pattern

of being relatively constant, with the performance of the model unaffected by the length of

the string. As these values all average near 90% or higher, these are extremely promising

results for our model.

Figure 6.6 details the other recorded CUDA metrics for the edit distance problem. These

also show improved results over the longest common subsequence problem, but of greater

magnitude than the memory metrics, reaching nearly a 5% improvement in some cases. This

is a more interesting result as divergence, and occupancy based metrics were expected to be
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(b) Other CUDA metrics as the edit distance be-
tween the two strings is altered

Fig. 6.7 Metrics recorded when solving the edit distance problem with a fixed string length
of 3,000,000, and the amount of commonality between the strings is varied between 25%
and 100%

unaffected by the change from one problem to the next, especially given that the strings are

still of the same length. The slightly improved performance on these metrics is difficult to

account for. Note also that the occupancy results are especially high, approaching 100% in

some cases. These results show strong performance of the model, and demonstrates it can

move effectively from one problem definition to the next.

Varying Edit Distance

We now vary the match percentage between the strings, which will in turn change the final

resulting edit distance. As before, this is expected to have no effect on the recorded metrics,

as the final answer output should not impact the performance of the algorithm. Figure 6.7a

shows the memory store and load metrics, and Fig. 6.7b the other recorded CUDA metrics

for these tests. As expected the amount matching between the strings has no affect on the

observed metrics which remain constant and inline with the previously observed results.

At this point we consider the fluctuations that have been present in most recorded results

thus far, where results have followed trends but not given straight lines when plotted. These
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Fig. 6.8 Metrics recorded when sovling the edit distance problem with a fixed string length
of 3,000,000 for the first string, and a second string length altered between 25% and 100% of
this

are not due to noise, as all tests were run multiple times to eliminate noise, therefore these

fluctuations are in fact present throughout testing. We hypothesise these are due to the

problem instance having an affect on the run times. For example, in the presented problems

so far, the code is required to take different paths based on whether it finds a matching

character or not, therefore the structure of the generated test data is could be causing the

observed fluctuations. As the same test data is used across each replicate run, the fluctuation

is not removed through repeated testing. We assume if multiple runs with different test data

took place with fixed string lengths, and fixed commonality between the two strings, the

fluctuations could be smoothed out.

Varying Length

Next, we consider tests where the input strings are not identical lengths, causing the scoring

grid to become non square. As before, we fix the first string with to length of 3,000,000 and

the second string length is altered between 25-100% of this. CUDA metrics recorded for

these tests are presented in Fig. 6.8, with the memory efficiency metrics shown in Fig. 6.8a
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Table 6.2 Average instructions per clock recorded during the performance testing of the edit
distance problem

String A Length String B Length Match Percentage IPC
500000 500000 50 0.58
1000000 1000000 50 0.58
1500000 1500000 50 0.58
2000000 2000000 50 0.59
2500000 2500000 50 0.58
3000000 3000000 50 0.58
3000000 3000000 25 0.57
3000000 3000000 50 0.58
3000000 3000000 75 0.58
3000000 750000 50 0.51
3000000 1500000 50 0.52
3000000 2250000 50 0.54

and the other CUDA metrics in 6.8b. Continuing the pattern of testing for the edit distance

problem, the results follow very similar trends to the longest common subsequence problem

where by using strings of different lengths has upto a 5% impact on the observed efficiency

metrics. Overall performance is marginally higher for this problem than than in the case of

the longest common subsequence problem.

Instructions per Clock

Finally, we consider the instructions per clock recorded during the performance testing of the

edit distance problem. These results are interesting in the context of the slightly improved

performance of this problem, and may offer some clarification as to why.

Table 6.2 shows the recorded values across testing. As before, the IPC values are very

consistent showing little change between tests, except a small reduction when testing was

taking place on strings of different lengths. A noticeable result of the testing however is the

IPC value is universally higher than it was during the LCS testing, although the algorithms

are very similar. This shows that a small change in the problem definition, and how the cell

is filled, can have an impact the efficiency of the algorithm.
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Fig. 6.9 Recorded global load and store efficiency whilst solving the 0/1 knapsack problem,
as the capacity of the knapsack and associated item set increases

6.1.3 The Knapsack Problem

Next we consider a more distinct problem, the Knapsack problem, which serves to further

demonstrate the applicability of the model to different problems. This problem allows us to

gauge the performance of the model when significantly more previous iterations are required

to be maintained locally on the GPU than has been required in previous testing.

For the first tests we record the same sets of metrics as used in previous testing, whilst

running the 0/1 knapsack problem with differing capacities of knapsack. The size of the item

set is fixed at 1% of the capacity in all tests, and the values of the items within the set are

generated as defined in Sect. 5.2.4. These tests are expected to show considerably different

results to the ones observed thus far, as the knapsack problem has a more challenging memory

access pattern, accessing memory in a more randomised manner, and the scoring grid will be

non-square in all instances.
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Fig. 6.10 Other recorded CUDA metrics whilst solving the 0/1 knapsack problem, as the
capacity of the knapsack and associated item set increases

Recorded metrics for the global load and store efficiency are presented in Fig. 6.9. The

first observation drawn from the graph is the fact the results are upto 15% lower than the

longest common subsequence problem in the worst case. This is likely due to the fact that

less memory can be accessed sequentially when loading profit values from across the scoring

grid. However, this does not account for the reason that the store efficiency metric is also

lower, which is expected to be in line with previous results as the wave front traverses through

the grid in the same diagonal manner.

The second point observed from the graph is that there is a smaller differential between the

load and store metrics, and there is also a smaller difference between the performance offered

by the different hardware configurations. The reduced difference between the hardware likely

indicates some memory transactions are reducing the performance of the model, and using a

more modern CUDA device cannot alleviate this issue. The smaller difference between the

load and store is likely due to waiting on slow memory transactions – for example memory

cannot be stored back into the wave front, until first previous memory has been loaded,
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causing the store operation to stall. Overall, it is apparent that the efficiency of the load

and store operation is impacted in the case that memory accesses are required across a high

number of different previous iterations.

In Fig. 6.10 the other recorded CUDA metrics are presented. Compared to previous

testing, the occupancy metric has reduced by upto 8% in some instances. This indicates that

the GPU is not executing as many warps as it could be, and thus the GPU is not being kept

busy. However, in contrast to this, the recorded metrics for the branch and warp divergence

are very similar to those observed in previous testing, if marginally reduced. These results

reinforce the theory that the memory access pattern is having an impact on the overall

efficiency of the model. As occupancy has been reduced, but the branch and warp metrics

have stayed similar, the negative impact on the occupancy therefore must have been caused

by waiting for memory transactions.

Varying Item Set Size

Next we consider changing the size of the item set that is used during testing, whilst keeping

the capacity constant at 50,000. Changing the amount of items within the set, will have the

affect of altering the scoring grid in a different dimension to changing the capacity. Therefore

we would expect similar results to previous knapsack problem testing.

Results of these tests are presented in Fig. 6.11, with the load and store metrics in Fig.

6.11a and the other CUDA metrics in 6.11b. These results present an interesting pattern not

observed thus far, of an upwards trend in the memory efficiency metrics, and the occupancy

metrics as the size of the item set increases. Also note, the same trend is not observed in

either the branch or warp efficiency metrics. As the item set grows, the scoring grid becomes

closer to being square, therefore this is likely the root cause for the small performance gains.

Due to this, we assume that as the grid become more square, less bounds checking is required

and cells from previous iterations can be accessed more efficiently improving the overall
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operations as the size of the knapsack item set is
altered

0

10

20

30

40

50

60

70

80

90

100

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

R
EC

O
R

D
ED

 M
ET

R
IC

SIZE OF ITEM SET (AS % OF CAPACITY)

GTX Titan (Warp) GTX 960 (Warp) GTX Titan (Branch)

GTX 960 (Branch) GTX Titan (Occupancy) GTX 960 (Occupancy)

(b) Other CUDA metrics recorded as the size of
the knapsack item set is altered

Fig. 6.11 Metrics recorded when sovling the 0/1 knapsack problem with a fixed capacity of
50,000, and the size of the item set is altered between runs

efficiency of the model. This would also provide explanation as to why the longest common

sub-sequence problem appears to perform more efficiently, as across testing of that problem,

the scoring grid was often perfectly square.

Bounded Knapsack Variant

Next, we run the bounded variant of the knapsack problem, where each item is permitted to

be picked xi times, where x is a vector of integers equal in length to the size of the item set.

We assume in this case, that results should be very similar to those observed in the previous

knapsack testing. Changing the problem variant further demonstrates that the model can be

adapted for a range of problems and uses. As with the initial 0/1 knapsack problem testing,

the size of the item set is fixed at 1% of the capacity.

Load and store metrics for these tests are provided in Fig. 6.12a and results for other

CUDA metrics are showing in Fig. 6.12b. As expected, these results show very similar

values to the previously run experiments, although marginally better across all tests. The

reason for this very small improvement is difficult to isolate, although it is most likely due to

the simpler problem definition of the bounded version.
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Fig. 6.12 Metrics recorded when running the bounded knapsack problem with varying
capacities, and a fixed item set size of 1% of the capacity

Instructions per Clock

Finally we consider the instructions per clock values recorded whilst testing the knapsack

problem. The recorded average IPC values are given in Table 6.3.

Observed in the table are some of the lowest values for the instructions per clock recorded

during test. For the initial tests focusing on the 0/1 variant of the problem, the IPC value

drops below 0.5 for the first time. This shows that when running the knapsack problem, the

model spends time stalled waiting for memory transactions to complete. Therefore, whilst

the model is applicable to multiple different problems and variants, the inherent memory

access model the problem requires has an effect on the observed performance. It should be

noted however that the user is free to restructure memory requests to behave in an optimal

manner, the end user has control over how much data is stored in the GPU, and what cells

are loaded for each iteration of the wave front, and where results are written back. Therefore

if the user can design a more complex and efficient memory access pattern, they are free to

do so through the API design of our model. This implementation of the knapsack problem is

a very simplistic example, and can be improved upon.
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Table 6.3 Average instructions per clock values recorded during the performance testing of
the 0/1 knapsack problem

Capacity Item Set Size IPC
10000 100 0.49
20000 200 0.48
30000 300 0.49
40000 400 0.49
50000 500 0.5
60000 600 0.49
70000 700 0.5
80000 800 0.5
90000 900 0.51
1000000 1000 0.5
50000 400 0.49
50000 500 0.5
50000 600 0.5
50000 700 0.52
50000 800 0.51
Bounded
10000 100 0.52
20000 200 0.52
30000 300 0.52
40000 400 0.53
50000 500 0.52
60000 600 0.51
70000 700 0.52
80000 800 0.52
90000 900 0.51
1000000 1000 0.51

6.1.4 The Manhattan Tourist Problem

Next, we consider another distinct problem, the Manhattan tourist problem. Whilst the

application of the Manhattan tourist problem is quite different to the previous problems

tested, the core of the algorithm similar to that of the longest common subsequence problem.

As is the case with the LCS problem, the data is represented as two pieces of input data.

In this case though, the input data consists of the vertical and horizontal weights for each

column and row of the grid respectively.

We therefore expect similar results to those of the longest common subsequence problem,

however it is still beneficial to show the model adapting to a further problem.

Figure 6.13 shows the recorded global load and store efficiency for the Manhattan tourist

problem. There are two interesting features of the graph – firstly, these are the highest

recorded metrics observed since the reference benchmarks were carried out, and these results
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Fig. 6.13 Recorded global load and store efficiency whilst solving the Manhattan tourist
problem, as the dimension of the city grid increases
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Fig. 6.14 Other recorded CUDA metrics whilst sovling the Manhattan tourist problem, as the
dimension of the city grid increases
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also seem to show the largest variance between steps fluctuating as high as 10% between

steps of increasing size.

Firstly we consider the reason for the strong performance the model demonstrates running

this problem, and what the cause of this is likely to be. From the problem definition it can be

seen that this problem has a very simple memory access pattern, only requiring data from

the previous iteration, and a single piece of data from each of the two pieces of input data.

This is a similar memory structure to that of the longest common subsequence problem

only differing in the number of previous iterations required by one, therefore is not enough

alone to account for the improved performance. The other difference between the problem

definitions is the presence of an if clause in the core definition of the longest common

subseqence problem, and there is not one in the Manhattan tourist problem. This indicates

the lack of branching in this problem is providing a performance improvement, which is

aided by the reduced number of memory transactions.

The fluctuations are very challenging to explain. As with previous tests, we can run

multiple tests at each point using different problem instances to smooth the trend, but using

the same test data repeatedly at each point leads to the non-smooth graph presented. We must

therefore assume that this problem is input data dependent, however it is hard to identify

where as there is minimal branching within the problem definition which could have this

affect. Due to this the only explanation remaining is some input data sets are structured more

favourably for the CUDA execution engine due to the values they contain.

The second graph which details the other CUDA metrics of occupancy and warp and

branch efficiency, presented in Fig. 6.14 demonstrates a similar picture. All of the metrics

are extremely high, approaching the values attained during the reference benchmarks. The

lowest recorded metrics are the warp efficiency at 90%, and the branch efficiency and

occupancy average at 95% or above. This reinforces our earlier assumption that the improved

performance of the algorithm is predominately due to the lack of branching present in the
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Table 6.4 Average instructions per clock values recorded during the performance testing of
the Manhattan tourist problem

City Dimension IPC
5000 0.66
10000 0.65
15000 0.66
20000 0.66
25000 0.65
30000 0.66

core problem definition. Another point to observe from this graph is the fluctuations which

were present in the memory efficiency graph are far less prominent now. This potentially

indicates that the reason for the fluctuations in the memory graph is a hardware specific result

of loading and storing the required values, as the other metrics are far more stable.

In the previous test problem, the knapsack problem, we observed that performance was

reduced due to the memory access pattern, now we observe that performance is considerably

improved based on the structure of the problem. This indicates that the performance of the

model is sensitive to the structure of the underlying problem.

Instructions Per Clock

Finally, we consider the instructions per clock metric for the Manhattan tourist problem

which are given in Table 6.4. These values remain constant, at the highest values observed so

far throughout the testing.

Based on the last two problems tested, we can draw the conclusion that the memory

efficiency, as well as the branch and occupancy efficiency are directly linked to the recorded

instructions per clock – when these metrics are higher, the IPC value also raises. An

interesting point of note however is that even in this problem, when all recorded metrics are

very high, the IPC count is still some distance away from hypothetical ideal result of 1. This

indicates even when running our model on problems that are structured to allow the model to

run highly efficiently, it is still an inherently memory bound algorithm.
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Fig. 6.15 Recorded global load and store efficiency whilst solving the travelling salesman
problem, as the number of cities increases

6.1.5 The Travelling Salesman Problem

Finally we consider the travelling salesman problem. This problem is very different from

all the previous problems implemented, to an extent it requires hard coded adaptations as

detailed in Sect. 4.3. This also makes profiling challenging, as multiple sub-scoring grids are

spawned through multiple kernels, it may not be clear what is causing any observed results.

Therefore, we expect the results of this test vary considerably from what has been presented

thus far.

Considering the global store and load efficiency value as presented in Fig. 6.15, the

results clearly show a different trend to those observed during testing so far. Both store and

load values are the lowest that have been recorded, dropping as low as 42% for the smaller

instances, then levelling at roughly 63%. As well as the results being low overall, the trend

of the metrics starting at a low value, then raising and levelling is also a new observation.
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As aforementioned, determining the reason for these results is hard to isolate due to

the nature of the multiple kernels being launched, and the profiler simply averaging results

recorded across these. A key observation from the profiling results reported during testing is

that the maximum value for the load and store metric recorded at any point during execution

did in fact raise as high at 90%, more in line with previous results. Therefore, at points of

the execution of the model efficiency was very high, although it averaged the observed low

results.

Based on this we can draw a hypothesis on the reasons for the low results. Launching the

sub kernels means increasingly smaller scoring grids are continually launched and executed,

which will run less efficiently than the larger grids, as the size of the memory transactions to

global memory are smaller. Therefore in the smaller problem sizes, the number of kernels

spawned that execute small ‘sub optimal’ memory transactions is of a greater proportion

compared to larger scoring grids, thus reducing the overall efficiency. We believe this is the

reason for the trend of the metrics raising then reaching a plateau. The same hypothesis can be

applied to the overall degradation in the efficiency, with the very small scoring grids required

during execution bringing down the average efficiency metrics. We believe that the high

recorded maximum value for both the load and store metrics is representative of the memory

transactions taking place during the execution of the larger scoring grids, demonstrating

the model performs more in line with previous results assuming the scoring grid is of an

appropriate size.

Whilst the average result of 60% is lower than we have observed so far, it is still a strong

result for the model when considering the complexity of the problem, and the large reliance

on global memory operations, thus we consider this a positive result.

We now consider the other CUDA metrics recorded during the execution of the travelling

salesman problem, which are given in Fig. 6.16. These results follow a very similar trend

to the previous metrics recorded for the TSP problem, with a pattern of beginning low and
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Fig. 6.16 Other recorded CUDA metrics whilst solving the travelling salesman problem, as
the number of cities increases

raising to a point at which they level out as the problem size grows. However, in the case of

these metrics compared to the previous, the rise of the initial slope is of a lower gradient, and

it requires a larger problem sizes before the results begin to plateau.

Also, compared to the previous tests these results are lower still and again are the lowest

observed metrics so far. This, however, is line with the overall pattern throughout testing

where the second set of metrics concerning warp efficiency, branch efficiency, and occupancy

are lower than the load and store metrics for the same test problem.

We believe that the reasons for the low values recorded for these metrics are the same

as those which contributed to the low memory efficiency metrics. The warp and occupancy

metrics are linked to the size of the memory operations that are taking place, and the size of

the wave front. For example, if the size of the wave front is very small in one of the small

sub kernels of the TSP, this will mean that a warp is spawned but not all threads are used

impacting the efficiency. Similarly this will impact the occupancy, as multi-processors on the
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Table 6.5 Average instructions per clock recorded during the performance testing of the
travelling salesman problem

Number of cities IPC
280 0.52
532 0.55
1002 0.55
1379 0.56
2152 0.55
4461 0.56

GPU are idling during execution. The branch efficiency will also be affected if small scoring

grids are being solved, as more often the code within a warp will be required to take different

paths as the bounds of the grid are reached.

It should be noted that whilst these metrics are low, they are not representative of the

model more generally. The implementation of the TSP problem is highly specialised, and

requires significant changes from the original model. However additional problems in the

future could need to be implemented using similar techniques, so it is beneficial to have

investigated the performance and associated drawbacks. We are still pleased with the metrics,

as 60% efficiency is still a strong result and demonstrates a solid baseline for performance

when multiple scoring grids are required, which can be built on in the future.

Instructions Per Clock

Finally we consider the instructions per clock recorded during the performance testing of the

TSP problem. As with all testing for the TSP, we have little prior indication what to expect

from these results, although based on testing thus far we expect them to be low.

Recorded IPC metrics are given in Table 6.5, and these show the unexpected result

of values more in line with those observed in previous testing such as the LCS problem

or the edit distance problem. We now seek to rationalise these surprising results. Whilst

the implementation of the TSP problem is clearly highly memory bound, and the core

definition to fill the cell is relatively simple which led us to expect a low IPC, there are many
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small memory transactions taking place in the small wave fronts of the small scoring grid.

Therefore, whilst these memory transactions are inefficiently not using the full warp size,

and reduce the associated metrics, they are small and take place quickly. We believe that the

relatively high IPC metrics are due to the small memory transactions completing quickly,

causing the algorithm to stall less during execution.

6.2 Comparative Benchmarks

We will now consider the performance of the model within the context of other published

works. As aforementioned, some of the results presented here should not to be used for

direct comparison, as re-implementing all similar algorithms and models is outside the scope

of this thesis. In some instances we use other authors results directly which have been

run on different hardware and software configurations. However providing comparisons is

still useful, for example if our model were to outperform another algorithm with a speedup

of many orders of magnitude, it is clear this is likely due to more than simple hardware

differences. In other instances, where possible, we re-implement other authors work.

This section also provides simple empirical data for our algorithm such as run times and

memory usage which has been not been presented thus far in the thesis, where we focused

more on analysing CUDA metrics.

All comparative publications and algorithms used here are introduced in Sect. 5.3.3, with

our rationale for selecting these.

6.2.1 Sequential CPU

First, we begin by comparing our model to the sequential CPU implementations available

in the literature, or ones we have re-implemented for illustrative purposes. It should be

apparent that we expect our model to perform significantly faster than classical single
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Table 6.6 Comparative runtimes for sequential CPU based LCS algorithm, and our parallel
model

Runtime (s) Mem (mb)
String Length WM NM MM Us Us
5000 9.31 12.3 15.78 0.14 145
10000 18.61 24.6 31.56 0.28 147
15000 27.92 36.91 47.34 0.43 139
20000 37.22 49.21 63.12 0.57 140
25000 46.53 61.52 78.9 0.78 120
30000 55.83 73.82 94.68 0.82 130

core CPU implementations, however in the interest of evaluating the model thoroughly we

systematically compare against a range of alternate solving methodologies.

The Longest Common Subsequence Problem

Beginning with the LCS problem we consider the algorithm presented in a survey paper

from 2000 [11] where the authors re-implement three different diagonal based methods,

similar in structure to our model. Due to the age of this paper we re-implement the same

three diagonal based methods for local execution to provide a comparison on more modern

hardware. The three sequential algorithms we compare against are the works of Wu, Nakatsu,

and Miller [96, 67, 64], and we abbreviate these to WM, NM and MM respectively. This test

will provide a clear comparison to what our proposed model offers compared to a similar

algorithm running on the CPU. In these tests, both strings used during testing are of identical

length, and the match percentage is fixed at 50%. Note the significantly reduced string sizes

as the CPU implementation has no memory management and therefore the whole scoring

grid must be maintained in system memory.

The results are given in Table 6.6, and shows the expected strong performance for our

model, with our GPU implementation executing upto 115x faster than an equivalent CPU

algorithm in the best case. An interesting point is the memory usage appears to drop as the

size of the input string increases. This is due to the fact with our memory management less
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Fig. 6.17 Runtime for sequential CPU algorithms, compared to our proposed model when
solving the longest common subsequence problem, as the size of the string grows

than 20 megabytes is required to be maintained on the GPU during such small scale testing,

therefore any recorded memory values are only CUDA overheads.

Edit Distance Problem

Next we consider the edit distance problem. For this problem we re-implement the simple

dynamic programming algorithm on the CPU. As with the previous tests, both strings are of

the same size, and the size of the strings are considerably restricted due to memory limitations

of the CPU version.

Table 6.7 Comparative runtimes for a sequential CPU based edit distance algorithms, and our
parallel model

Runtime (s) Mem (mb)
String Length CPU Us Us
5000 19.64 0.16 149
10000 39.28 0.32 147
15000 58.93 0.48 144
20000 78.57 0.64 148
25000 98.21 0.8 148
30000 117.86 0.97 146
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Table 6.8 Comparative runtimes for a sequential CPU based manhattan distance problem,
and our parallel model

Runtime (s) Mem (mb)
City Dimension CPU Us Us
5000 20.63 0.64 148
10000 41.26 1.28 143
15000 61.89 1.92 142
20000 82.52 2.56 140
25000 103.16 3.21 147
30000 123.79 3.85 144

Unsurprisingly, the results for the Edit Distance problem (shown in Table 6.7) follow a

similar pattern to the previous tests, where the GPU algorithm considerably outperforms the

CPU equivalent by a large margin (a 121x speedup in the best case for our model compared

to the CPU), using very little memory in the process.

Manhattan Tourist Problem

In the interest of completeness, testing of the Manhattan tourist problem is also carried out,

although we expect very little deviation from the already observed pattern during testing due

to the similarity of the problem structures. As with the previous test, we create a simple CPU

based dynamic programming version, and limit the problem size as the whole scoring grid

must be maintained.

In line with the previous testing, the observed GPU run-time in Table 6.8 is a fraction

of the CPU runtime, and the memory usage for our model is minimal utilising a barely

perceptible amount beyond the standard CUDA overhead.

Knapsack Problem

Next we consider the knapsack problem. As noted during the previous performance testing,

the knapsack problem has a more challenging memory structure when running through the

model.
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Table 6.9 Comparative runtimes for a sequential CPU based 0/1 knapsack problem algorithm,
and our parallel model

Runtime (s) Mem (mb)
Knapsack Capacity CPU PI Us Us
10000 15 9.88 2.34 193
20000 27.48 16.12 3.52 202
30000 39.66 21.18 4.49 213
40000 65.65 29.2 6.44 229
50000 101.56 38.14 9.82 240
60000 187.5 44.92 12.63 263
70000 290.91 51.13 15.92 271
80000 501.31 81.15 18.97 299
90000 740.57 126.56 29.17 301
100000 1258.26 160.34 31.14 310

As well as implementing a basic dynamic programming based algorithm on the CPU

we also re-implement a dynamic programming algorithm from 1994 [77] (PI), which was

re-investigated again in 2000 [61]. During the testing, the capacity of the knapsack was

altered, and the size of the item set was fixed at 1% of the capacity. Items within the item set

were generated using the same parameters as in the previous performance testing. Due to

the structure of the scoring grid for this problem, we can test instances using the CPU of a

similar size to that of the GPU – although the CPU version requires more memory, enough is

available on the test hardware.

Results for the comparative tests are given in Table 6.9, and shown in Fig 6.18. The

results, again, clearly demonstrate our model out performing the CPU implementation, with

a runtime improvement of upto 40x in the best case. When running this problem we observe

memory usage rising for the first time in the comparative testing as the problem size grows.

However, memory usage is still minimal even as the problem size grows, for example only

using 300mb when the capacity grows as high as 100,000. This is a demonstration of our

memory model in action, showing that our approach to only keeping the needed iterations of

the wave front in memory allows very large problem instances to be solved.
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Fig. 6.18 Runtime of sequential CPU algorithms, compared to our parallel model when
solving the 0/1 knapsack problem, as the capacity of the knapsack grows

Travelling Salesman Problem

The travelling salesman problem is considerably harder to test, as there is little focus in the

literature on developing exact methods to solve it using only a single CPU core. Therefore

we implement a CPU based method of our solving methodology, using multiple scoring grids.

However, this is lacking any kind of memory management, and as such testing is limited

only to very small instances.

Due to this we are required to select much smaller instances from the TSPLib for use

during this phase of testing, and we select br17, fri26, bays29, ftv33, p43, hk48.

The results for the travelling salesman problem are given in Table 6.10 and Fig. 6.19.

These results demonstrate our parallel implementation outperforming the CPU equivalent by

upto 10x in the best case. Whilst in previous tests, our model has consistently performed more

quickly than the equivalent CPU counterpart, this problem demonstrates the smallest speedup

factor observed thus far. Also considering the memory we can see the TSP records the largest
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Table 6.10 Comparative runtimes for a sequential CPU based travelling salesman problem
solver, and our parallel model

Runtime (s) Mem (mb)
City Dimension CPU Us Us
17 17.93 31.39 325
26 56.67 40.78 388
29 179.44 47.38 426
33 652.48 60.01 472
44 1852.66 117.64 613
48 2472.43 233.88 690
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Fig. 6.19 Runtime for a sequential CPU algorithm, compared to our parallel model when
solving the travelling salesman problem as the number of cities grows
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results observed throughout comparative testing, using roughly 700MB for a 48 city instance.

The equivalent problem running on the CPU based implementation required over 3GB of

system memory, further demonstrating the effectiveness of the memory management in use

our proposed model

6.2.2 Parallel CPU

The next phase of our comparative testing is concerned with comparing our implementation

against parallel CPU based algorithms. This will serve to give a more representative perfor-

mance comparison of the model against CPU based equivalents, as parallel algorithms are

far more likely to be used in the practical settings, rather than classic sequential methods.

Longest Common Subsequence Problem

We begin by considering the longest common subsequence problem. For comparison we

are using a relatively modern algorithm from 2006 [54] (KR), which solves chunks of the

scoring grid, then moves on to solve others as dependencies become satisfied. The algorithm

is built upon the earlier work of Crochemore [21], which is a bit-parallel approach. This

paper was easy to re-implement as the work it details is based on batch sequential processing

(BSP), and built upon the Oxford BSPlib toolbox, therefore we could quickly replicate the

authors work.

Although the toolbox allows for deployment across a cluster style system, in line with

previous testing we ran it locally on the single machine using MPI for local communication.

All cores of the machine were used, including virtual as well as physical cores, meaning the

CPU version was deployed on 12 cores. The length of the string was varied through testing,

and the match percentage was fixed at 50%. The bit parallel representation of the data in

the comparative algorithm means the CPU memory requirement has dropped allowing us to

compare larger problem instances.
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Table 6.11 Comparative runtimes for a parallel CPU based longest common subsequence
problem solver, and our parallel model

Runtime (s) Mem (mb)
String Length KR Us Us
25000 6.94 0.58 145
50000 11.20 1.05 148
75000 17.52 1.94 147
100000 25.87 2.39 148
125000 38.29 3.37 145
150000 56.39 4.18 145
175000 81.22 5.19 147
200000 117.90 6.78 149
225000 170.02 8.62 147
250000 245.07 11.3 149
275000 352.82 14.09 148
300000 507.22 17.62 148

0

50

100

150

200

250

0 200000 400000 600000 800000 1000000 1200000 1400000

R
U

N
TI

M
E 

(S
EC

O
N

D
S)

STRING LENGTH

KR Us

Fig. 6.20 Runtime for parallel CPU algorithms, compared to our parallel model when solving
the longest common subequence problem as the string length grows
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The results of the parallel CPU test are given in Fig. 6.20 and in Table 6.11. These show

our model still comfortably out performing the parallel CPU version by a speedup factor of

28x, even when it is deployed across 12 cores. Another point to note is the memory usage of

our model is still remaining constant as the problem size is growing. This is due to the fact in

the implementation of this problem, only 3 iterations are required to be maintained on the

GPU, and we are choosing not to maintain the entire scoring grid on the host.

We now continue our investigation into the performance of the parallel CPU algorithm

and attempt to determine how many CPU cores would be required to match the performance

of our GPU model. To achieve this we observe the performance of the KR algorithm using

different numbers of cores to identify the additional runtime improvement as more cores are

added, which allows us to extrapolate the number of cores needed to match the performance

of our GPU model. This will only serve to provide a rough estimate as factors such as

overheads, scaling and communication costs are not taking into account, and this assumes

the run-time continues to drop linearly as more cores are added which is unlikely. Therefore

this is an estimate of best case performance for the CPU algorithm. During these tests, the

string length is fixed at 300,000, and the number of cores is varied between 1 and 6, so only

the physical cores of the CPU are being utilised to give consistent results across testing.

The recorded values as the number of cores increase are presented in Fig. 6.21. Based on

the observed trend in these results, we can assume that if the scaling continued in this manner,

the CPU parallel version would require approximately 250 cores to match the performance

of the GPU. This is a testament to the efficiency of our model, and also GPU programming

more generally, where one discrete GPU card can deliver similar performance to a cluster

sized CPU system.

As outlined in the testing methodology discussed in Sect. 5.3.3, due to the similarity of

the problem structures of the LCS problem, the edit distance problem, and the Manhattan

tourist problem, we do not perform comparative CPU parallel tests for each individual
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Fig. 6.21 Runtime for the parallel CPU based KR algorithm solving the longest common
subsequence problem as the number of cores is increased

problem. Instead we use the results of the CPU parallel LCS tests as an indicator to the

performance of these other problems. This assumption is valid, based on the similarity of the

results observed throughout testing thus far.

The Knapsack Problem

Next, we consider the knapsack problem, comparing against the work of a recent review

paper focused on parallel CPU based algorithms for solving the KSP [80]. The paper focuses

on parallelising the basic knpasack dynamic programming recursion using two methods,

the classic method of solving each row in parallel, and a parallel pipeline method proposed

by Morales [66]. We compare against both these methods, and refer to them as CLA and

MOR respectively. The paper also decomposes the scoring grid into blocks to improve the

performance of each thread.

Due to the explicit pseudo-code provided in this paper it was easy to replicate the

implementation of the algorithms. As with previous Knapsack testing we alter the capacity,

and fix the size of the item set at 1% of the capacity.
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Table 6.12 Runtimes for our model compared to two parallel CPU based knapsack problem
solvers

Runtime (s) Mem (mb)
Capacity CLA MOR Us Us
10000 11.26 9.10 2.34 200
20000 16.03 11.53 2.66 215
30000 23.42 17.58 3.85 218
40000 31.45 20.23 5.02 241
50000 42.8 28.6 6.86 252
60000 60.54 36.51 10.31 261
70000 96.09 54.24 12.89 280
80000 110.22 74.76 18.24 310
90000 156.33 119.08 25.48 315
100000 204.29 159.81 35.52 364
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Fig. 6.22 Runtime for parallel CPU algorithms, compared to our proposed parallel model
when solving the 0/1 knapsack problem, as the capacity of the knapsack grows
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Fig. 6.23 Runtime for the parallel CPU based CLA and MOR algorithm solving the knapsack
problem as the number of cores is increased

Results of these tests are shown in Fig. 6.22 and detailed in Table 6.12. In line with

previous results our algorithm demonstrates a clear performance improvement over the

competing parallel CPU algorithms, showing upto a 5x runtime improvement. Also, the

memory usage remains low as observed in previous testing.

We next consider how many CPUs would be required when using these algorithms

to provide comparative performance to that of our model. This is done using the same

methodology as calculating the parallel CPU scaling for the longest common subsequence

problem: by simply recording the performance as the number of cores used increases and

extrapolating this value beyond the number of cores available. During these tests, the capacity

of the Knapsack is fixed at 100,000 and the only parameter changing between tests is the

number of cores the parallel CPU algorithm is running on.

The results of the scaling test are given in Fig. 6.23. Based on the results observed

here, we can assume that if scaling continued in the same manner beyond 6 cores to n

cores, the parallel CLA algorithm would require a system of approximately 85 cores to

offer comparative performance to our algorithm, and the MOR algorithm would require a
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system of approximately 50 cores to achieve this. This result is surprising – a parallel CPU

algorithm requires approximately 50 cores to offer similar performance to a GPU algorithm

which is deployed across thousands of cores. Whilst it is common knowledge that, generally,

fewer CPUs are required to provide performance similar to a GPU, this is a bigger gap than

expected. However, this result is promising as it demonstrates that even when the CPU is

running an efficient, parallel algorithm, with enough cores to offer similar performance, our

model is still the considerably cheaper and more power efficient solution.

6.2.3 Parallel GPU

Finally we consider the performance of competing GPU algorithms. These comparisons are

the most important that will be drawn, as they demonstrate the performance of our proposed

model directly compared to modern algorithms targeting the same hardware platform. During

the comparative GPU testing we seek to use test data that is larger than has been used thus

far during the comparative benchmarks.

Longest Common Subsequence Problem

We begin by considering the longest common subsequence problem. Comparisons will be

drawn against the 2008 algorithm of Kloetzli (KLO) [53] which is similar to our parallel

model, as well the 2010 algorithm of Yang (YAN) et al. [99].

As with our model, Kloetzli also traverses through the scoring grid using a diagonal wave

front, and transforms how the data is stored in memory such that each diagonal iteration

can be accessed using a linear memory request. The scoring grid is broken down into small

subgrids, allowing smaller sub-problems to be solved which are reconstructed into the final

solution. A key difference between our model and this algorithm however is Klotezli stores

the entire scoring grid on the GPU, and offers no solution to memory management as the

size of the test data grows. Yang et al. similarly traverses the grid filling cells in parallel
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Table 6.13 Runtimes for our model compared to two parallel GPU based longest common
subsequence solvers

Runtime (s) Mem (mb)
Strnig Length KLO YAN Us Us
10000 3.66 1.78 0.1 145
20000 6.61 3.33 2.1 147
30000 10.2 5.28 9.66 146
40000 16.1 8.56 14.08 146
50000 24.23 12.43 19 145
60000 36.15 18.46 26.91 148
70000 53.52 26.9 35.79 149
80000 78.11 39.57 44.85 190
90000 112.55 57.59 53.88 212
100000 162.83 83.47 71.81 253
120000 235.09 120.32 91.96 359
110000 338.55 173.79 115.44 398

as dependencies become satisfied, but the dependencies of the algorithm are restructured

such that larger proportions of the scoring grid can be filled simultaneously. This paper is

interesting as the results provided by the author demonstrate it running faster than a traditional

diagonal parallel method.

Both of these algorithms have been re-implemented by ourselves for use in an earlier

publication [74], using the pseduo-code provided by the authors. During testing, the match

length was fixed at 50% of the string, and the length of the string was varied. Through all the

testing, the lengths of both strings was equal.

Results of these tests are shown in Fig. 6.24 and presented in Table 6.13. The results

show a clear advantage for our model compared to the competing algorithms, with a runtime

improvement of upto a factor 3x. Note however that for small problem instances, the

YAN algorithm performs marginally quicker than our model and it is only as the problem

size grows that our model has an advantage. We hypothesise this is due to the additional

synchronisation required by our model between iterations of the wave front. Also, in these
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Fig. 6.24 recorded run-times for our our model when solving the longest common subse-
quence problem as the string length varies, compared to other GPU based algorithms

larger instances we observe the memory usage of our model beginning to rise for the first

time during the testing of the longest common subsequence problem.

As with the previous testing, we elect to use the results of the longest common subse-

quence testing as an indicator of the performance of the edit distance problem, and for the

Manhattan tourist problem.

The Knapsack Problem

To perform the comparative testing for the Knapsack Problem on the GPU we use the

algorithm (BOY) described in the 2012 paper by Boyer et al. [14]. This paper demonstrates

an algorithm tailored to solving the knapsack problem, showing multiple techniques to solve

this problem efficiently using the GPU: it is a row parallel algorithm, which also has elements

of bit parallel processing in order to further accelerate the algorithm. Also, it demonstrates

compressing data in memory such that the GPU can solve larger problems, and the transfer

time to retrieve data from the GPU is reduced.
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Table 6.14 Comparative runtimes for parallel GPU based 0/1 knapsack algorithm compared
to our model

Runtime (s) Mem (mb)
Capacity BOY Us Us
50000 11.19 12.15 330
100000 14.58 14.5 429
150000 22.93 16.12 557
200000 26.69 18.53 725
250000 35.07 25.94 942
300000 51.51 38.25 1225
350000 64.73 46.21 1592
400000 79.91 70.7 2070
450000 120.81 89.82 2691
500000 184.62 123.1 3499

For comparative testing of this algorithm we kept the size of the item set fixed at 1% of

the capacity, and the capacity was altered between tests. Due to the memory management

offered by both algorithms being considered we can investigate considerably larger instance

than previously.

Results of these tests are shown in Fig. 6.25 and shown in Table 6.14. Whilst the results

show our model performs more quickly than the competing algorithm, this is only by a small

margin. Also, the BOY runs more quickly when executing smaller instances. Although these

results are close, this is a very encouraging result for our model, as it demonstrates that it can

achieve performance that is quicker than a specialised GPU algorithm dedicated to solving

the problem. Finally, we also note the memory usage is considerably higher than has been

observed so far during testing, but this is to be expected as these are considerably larger test

instances than has been used before.

The Travelling Salesman Problem

As with the previous comparative benchmarks, there is a lack of literature pertaining to the

parallel implementation of the TSP in an exact manner on GPUs, so no comparative testing

can be carried out.
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Fig. 6.25 Runtimes for our our model when solving the 0/1 knapsack problem as the capacity
varies, compared to another GPU based algorithm

6.3 Key Findings

We will now identify the key points that have been observed during the testing of the model.

• The model was successful in allowing problems to be solved, using different dynamic

programming algorithms.

• Global memory load and store metrics are consistently high, averaging above 85%

across nearly all test instances.

• Warp divergence and observed occupancy were also consistently high, averaging above

75% across most test instances.

• The recorded IPC metric was lower than expected universally, indicating a high reliance

on memory operations.

• Compared to sequential CPU implementations, a speedup was observed of upto a 121x

run-time improvement. For all problems other than the travelling salesman problem,

our model offered at least a 40x improvement of run-time.
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• Our proposed model performed quicker than parallel CPU implementations, providing

a speedup of up-to 28x compared to a 12 core CPU.

• Based on our findings, we hypothesise a CPU cluster of at least 50 cores would be

required to offer similar performance to our GPU based model.

• Our proposed model performs twice as fast as some specialised GPU parallel algo-

rithms, and offers performance comparable to others. Never does our model perform

more slowly on average than competing GPU algorithms.

Summary

This chapter has analysed the performance of the generic parallel model when it is applied

to the different problems that have been introduced in this thesis. The analysis has allowed

conclusions to be drawn on the overall effectiveness of the model.

The model was evaluated through the implementation five different test problems record-

ing a range of CUDA metrics, including memory efficiency metrics, divergence metrics, and

instructions per clock. This allowed for an insight into how effectively the model is using

the resources of the GPU, also considering hardware of different ages providing different

amounts of CUDA cores.

Comparisons have been drawn against results from the literature to demonstrate what our

model offers compared to existing solutions, and to better provide context to the contributions

of our algorithm.





Chapter 7

Conclusion

Overview

This chapter presents the conclusions that have been drawn from the work detailed in this

thesis. Over arching findings are presented followed by discussions around more detailed

conclusions. Future extensions for the model described in this thesis are also discussed.
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7.1 Introduction

The model that has been introduced in this thesis has been presented as a method that allows

the mapping of dynamic programming based algorithms to the GPU quickly and easily,

and enables a single paradigm to be used to solve a range of different problems. Through

the use of the test problems examined in this thesis we have determined that considerable

performance advantages are available through the use of our model, and GPU solutions to

multiple problems can be implemented. However, not all problems are implemented. Also,

the performance benefits offered by the model vary from problem to problem.

When the model is running on ‘simple’ problems such as the longest common subse-

quence problem, the edit distance problem or the Manhattan tourist problem, there are large

performance improvements available – an average of over a 100x run-time improvement

compared to serial CPU implementations. The recorded CUDA metrics when running these

problems of an average 85% or higher demonstrates the hardware of the GPU is very effec-

tively used. This is likely due to the fact these problems were the starting point for our model,

and the original inspiration for the parallel structure.

However moving onto problems such as the travelling salesman problem, whilst imple-

mentation is possible and there is a 10x speedup offered by running the algorithm on the

GPU, considerable adjustments are required to the implementation to support this. Also,

memory is very much a limiting factor for this problem, as even with memory management

techniques and discarding as much old data as possible, quickly large instances become

unfeasible to solve. Furthermore, a solution to the all pairs shortest path problem cannot be

implemented using our model.

The test case of the knapsack problem is very promising for our model however, as this

is an implementation that could be described as less than ideal with the large dependence

on previous iterations, and a less simple access pattern to memory compared to the LCS

problem. However, this problem still shows an extremely strong 40x speed up compared
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to a serial CPU implementation, 5x compared to a parallel CPU implementation, and 1.5x

compared to a GPU algorithm.

Code divergence metrics, such as warp efficiency and branch efficiency for our model

are extremely promising, consistently about 75% in all but the TSP, and demonstrate the

memory management of the model is highly effective, as well as the overall design pattern.

A limiting factor of the model surprisingly proved to be the instructions per cycle metric,

which indicates the GPU spends a lot of time waiting for memory based operations.

The toolbox developed during the course of this thesis is available to download from

http://jfoconnell.net/research/phd. The bundle available for download contains a Makefile

to build the software into the executable cuda-generic. Code to generate test problem

instances can be found in gen-data, and reference CUDA kernel implementations to solve

the test problems used in this work are found in gpu/reference-implementations.

7.2 Overall Model Performance

Compared to CPU implementations, as discussed, our GPU implementation outperforms

sequential versions comprehensively across all test problems, including the test problems

where our model is running at less than ideal efficiency such as the travelling salesman

problem. Furthermore, our GPU version runs universally quicker than parallel CPU imple-

mentations designed to run on a multi-core processors. As the results section demonstrates,

in the majority of cases we estimate it would require over 50 CPU cores to move close the

speed of our GPU implementation.

A wide range of problems can be solved successfully using the presented model, and we

have demonstrated the implementation of the longest common subsequence, edit distance,

Manhattan tourist, knapsack, and travelling salesman problems. However, additional prob-

lems can be implemented through the definition of input files; for example, problems such as

the uncapacitated facility location problem, and minimum delay problem can both be solved

http://jfoconnell.net/research/phd
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by only changing the input file, and dynamic programming case. These are but two examples,

as any problem meeting the criteria defined in Sec. 4.3.3 can be successfully be solved. Also,

should small adaptations be made to the model, as also outlined in Sec. 4.3.3, problems such

as chain matrix multiplication, and the subset sum problem can be solved by the model.

Compared to existing GPU implementations from the literature, our model also performs

favourably. Based on the results, the overarching pattern demonstrates that our model

is highly competitive compared to the literature, although highly specialised algorithms

targeting single problems can sometimes be as quick, or quicker in some problem instances.

As well as comparing to GPU implementations from the literature, we also implemented

our model on different GPU hardware in order to draw conclusions as to how the model

scales, and to better isolate how well the resources of the GPU are being used. Our proposed

model demonstrably scales well moving from a CUDA environment providing roughly a

thousand cores (the GTX 960), to an environment proving two and a half times as many (the

GTX Titan), with the recorded CUDA metrics barely changing between the two systems.

7.3 Memory Management

Our memory management model is clearly very effective in terms of both restricting the

amount of memory required on the GPU, as well as transferring memory asynchronously of

computation through the use of CUDA streams.

Throughout our testing GPU memory rarely proved to be a limiting factor, with the

exception of running the larger test cases for the travelling salesman problem. Instead

host memory was still the limiting factor when we were trying to maintain the complete

scoring grid. With our mechanism of only maintaining on the GPU the minimal amount of

dependencies required for future iterations, in problems such as the edit distance problem

where there is a very small amount of data to be maintained on the GPU, the largest problem

that could be computed would be strings with lengths in the order of 100s of millions.
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The asynchronous queue performed flawlessly throughout testing, never encountering

issues such as queue overflows when the queue became too large to store data on the

GPU which could not be transferred back to the host quickly enough. This proved to be

an invaluable asset to the model, the amount of time spent transferring memory whilst

computation is taking place, is nearly the whole time the model is running. Therefore if

the transfer and execution had to happen independently it would double the run time of the

execution of the model, if not more due to the additional synchronisation required.

Recorded metrics also support the memory model, showing very strong results for the

global load efficiency, and global store efficiency metrics, which demonstrate the steps that

we have taken to ensure that memory requests are aligned, and no memory transactions are

required to branch. This is an important result for the model, as global memory transactions

are the slowest CUDA operation available, therefore it is crucial these are running at a high

efficiency value.

7.4 CUDA Efficiency

The recorded CUDA metrics relating to performance, and code efficiency, also show strong

results. This is important as it shows how effectively the resources of the GPU are being used,

and therefore how well the model will port between different GPUs with different hardware

configurations, as well as how well it is likely to scale when future hardware is released.

The branch efficiency and warp efficiency metrics are generally recorded at 75% or

higher, although they are dictated to a small degree by the problem being considered. Whilst

we ensure that memory requests to the previous iterations stored locally on the GPU are

optimised, and the data is padded, we do not have the same control over the test data that is

available globally, nor the pattern in which this is accessed.

The achieved occupancy is also very high, as this metric is linked to the previous two

metrics of branch and warp efficiency, as well as to the block size used. Whilst the block size
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was hard coded and is selected by the programmer based on the specific hardware, rather

than being set by the model, this metric still demonstrates that should an appropriate block

size be set, the model is capable of taking full advantage of the resources available.

The only slightly negative metric that was recorded was the instructions per clock (IPC)

metric. This is somewhat harder to isolate the reasons why, as this is linked to the generated

machine level instructions that actually run on the GPU.

The GPU has theoretical maximum of 2 instructions per clock when using 64 bit data.

In our implementation we use 32 bit data, therefore we have a theoretical limit of 1. The

recorded results show the model struggles to attain this value almost universally. Firstly,

it should be noted that the maximum IPC value of 1 is theoretical, and would require a

specially crafted, highly CPU bound implementation to reach this. And secondly, we believe

the low IPC value is due to the memory bound nature of our model, where clock cycles are

used loading and storing data from and to the previous diagonals currently residing on the

GPU, rather than performing CPU operations.

7.5 File Format Effectiveness

The support for implementing methods to solve different problems quickly and easily was a

big success of the presented model, demonstrating how alternate problems can be quickly

solved on the GPU with only the minimal amount of programming and CUDA knowledge.

There were some limitations of this, for example the dynamic programming definition

obviously needs to be present at compile time which can limit usability. Also as mentioned

there are some problems that could not be represented using the input file, however this is

more a limitation of the model as a whole rather than the specific format of the input file.

We believe our approach of leaving the core definition of the function that is to be run on

the GPU blank, and furnishing it with information about the current cell that is being filled,

requiring the user to only input information on how this cell is filled is a unique concept.
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There is naturally some overhead associated with using an approach that is applicable

to multiple problems, the primary complaint being that it is unlikely to perform as quickly

as a specialised implementation. Also, certain additional overheads are present in the

implementation, such as having to translate the indices every time a memory request happens

to hide the complexity of the memory pattern from the user. However, as demonstrated the

model still performs exceptionally well, and such small overheads are acceptable in order to

allow the model to be accessible to all as was the original aim.

7.6 Future Work

We will now discuss future works which could take place to improve or extend the model,

and describe the direction in which the research could be taken in the future.

Firstly, a level of auto tuning and auto optimisation would greatly aid the algorithm. As a

contribution of the model is the fact it is generic and supports multiple problems, the obvious

extension would be that it changes the underlying CUDA parameters automatically to optimal

values for the hardware that it is running on seamlessly without input from the user. This

should be a quick adjustment to make, as there have been a collection of works relating to

this issue, however it would require the algorithm to run for a short period of time initially to

monitor how much memory it needs and how it operates before it tunes these values. Should

this be implemented though, performance could be slightly improved, without any additional

expertise required from the user.

The next logical extension would be to enable the model to take advantage of multiple

GPUs. This also should be a fairly easy extension to implement as CUDA now offers

programming constructs that allow the deployment of code on multiple GPUs easily and

quickly. Care would have to be taken to ensure that managing the memory accesses for

different devices does not in fact slow the model down more than the increased core count

would speed up execution, and it is likely steps would have to be taken to slightly alter the
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memory pattern if multiple GPUs were being targeted. However, this would add a huge

performance benefit to the model, and furthermore would potentially allow it to run in large

scale multi-GPU clusters.

Beyond these small implementation based improvements, longer term the research should

be taken in a direction that allows a wider range of problems to be implemented, that have

more complex dependency access patterns – for example the all pairs shortest path problem.

We would suggest the starting point for such research would be to consider dividing the

scoring grid down into smaller blocks in some way, and storing multiple different sub blocks

in memory, potentially giving the wave front access to an increased number of dependencies

at different locations around the scoring grid. This will then cause issues with increased

memory usage on the GPU and will most likely require a considerably different approach to

memory management. However this would be a very beneficial improvement to the model,

as allowing the user to input a wider range of problems can only be beneficial.
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