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ABSTRACT

The in silico prediction of the functional conse-
quences of mutations is an important goal of hu-
man pathogenetics. However, bioinformatic tools
that classify mutations according to their function-
ality employ different algorithms so that predictions
may vary markedly between tools. We therefore in-
tegrated nine popular prediction tools (PolyPhen-
2, SNPs&GO, MutPred, SIFT, MutationTaster2, Muta-
tion Assessor and FATHMM as well as conservation-
based Grantham Score and PhyloP) into a single
predictor. The optimal combination of these tools
was selected by means of a wide range of statistical
modeling techniques, drawing upon 10 029 disease-
causing single nucleotide variants (SNVs) from Hu-
man Gene Mutation Database and 10 002 putatively
‘benign’ non-synonymous SNVs from UCSC. Predic-
tive performance was found to be markedly improved
by model-based integration, whilst maximum predic-
tive capability was obtained with either random for-
est, decision tree or logistic regression analysis. A
combination of PolyPhen-2, SNPs&GO, MutPred, Mu-
tationTaster2 and FATHMM was found to perform as
well as all tools combined. Comparison of our ap-
proach with other integrative approaches such as
Condel, CoVEC, CAROL, CADD, MetaSVM and Met-
aLR using an independent validation dataset, re-
vealed the superiority of our newly proposed integra-
tive approach. An online implementation of this ap-
proach, IMHOTEP (‘Integrating Molecular Heuristics
and Other Tools for Effect Prediction’), is provided at
http://www.uni-kiel.de/medinfo/cgi-bin/predictor/.

INTRODUCTION

Unravelling the genetic basis of inherited diseases has been
a major focus of human genetics research for decades. Over
the last 10 years, the development of fast, accurate and inex-
pensive DNA sequencing technologies has brought within
reach the comprehensive characterization of all genetic vari-
ants carried by a given individual, many of them rare or even
private. As a consequence, one of the major challenges of
human genetics research has been to distinguish those rel-
atively few sequence variants that are functionally signifi-
cant from the many thousands that are not. To tackle this
problem, a number of ‘pathogenicity prediction tools’ have
been developed that profess in silico assessment of the struc-
tural and functional impact of a given gene mutation upon
its corresponding gene product (1). Particular progress has
been made in this regard for non-synonymous (ns) vari-
ants because their consequences for the structural and func-
tional characteristics of a given gene product are the easiest
to infer.

Currently available prediction tools for ns variants em-
ploy different algorithms and exploit different types of in-
formation, including amino acid sequence, limited DNA se-
quence context (e.g. CpG) and protein structure as well as
functional annotation (2). In addition, the performance of
the tools depends critically upon the training data used for
their development (3,4). Consequently, predictions made by
different tools can differ greatly when applied to one and the
same variant, which is why in practice the combined use of
different tools has been recommended (2,5,6).

A number of software packages are available for the an-
notation of DNA genetic variation, including dbNSFP (7,8)
and ANNOVAR (9). These annotation tools also provide
output of selected prediction tools, including PolyPhen-2
(10) and SIFT (11) etc. However, to our knowledge, only
dbNSFP also integrates the output of different prediction
tools (MetaSVM and MetaLR scores) so as to yield a single
‘consensus’ prediction that should be useful in practice, for
example, when evaluating the clinical significance of a newly
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detected genetic variant. Moreover, in a research context,
the inconsistent classification of variants may render their
prioritization for further analysis difficult. Whilst ‘consen-
sus’ prediction is undoubtedly useful, it is not straightfor-
ward computationally for two main reasons. First, differ-
ent tools usually employ different definitions of whether a
variant is ‘consequential’ or ‘inconsequential’. Second, the
scores generated by different tools usually scale differently
and are therefore not directly comparable.

The above notwithstanding, all currently available pre-
diction tools are designed to reflect the influence of the ge-
netic variant of interest on the respective gene product. An
efficient strategy is therefore required to standardize and
combine the quantitative output of the different tools into
a single numerical value that could form the basis of a con-
sensus prediction. Integration approaches such as Condel
(12), CoVEC (13), CAROL (14), MetaSVM and MetaLR
(15) provide some kind of solution to this problem and have
consistently been found to perform better than single tools
do on their own (13). However, most of the pipelines only
integrate tools at the level of running batch queries (12,16)
so that interactive tools like SNPs&GO (17) and MutPred
(18) had to be excluded, despite their evidently good perfor-
mance (5).

In the present study, we combined the output of nine pop-
ular prediction tools, namely PolyPhen-2 (10), SNPs&GO
(17), MutPred (18), SIFT (11), MutationTaster2 (19), Mu-
tation Assessor (20) and FATHMM (21) as sensu stricto
predictors, and the conservation-based PhyloP (22) and
Grantham Score (23), into a single composite score. In
contrast to other integration approaches, we took differ-
ent statistical methods systematically into consideration to
generate such a score, including (i) simple summation (bi-
nary and continuous), (ii) majority vote, (iii) logistic re-
gression, (iv) decision tree and (v) random forest. Our fi-
nal choice of methods drew upon the analysis of 10 029
putatively consequential ns single nucleotide variants (nsS-
NVs) from the Human Gene Mutation Database (HGMD)
(24), and 10002 putatively ‘inconsequential’ nsSNVs ob-
tained using the UCSC Genome Browser (http://genome.
ucsc.edu/cgi-bin/hgTables). We also demonstrate that the
inclusion of imputed predictions does not notably im-
pede tool integration, which implies that variants that can-
not be handled by one or the other tool can still be as-
signed a valid composite score. Finally, we validated our
newly proposed integration approach in an independent
set of variants and compared the results to the output
of established analysis pipelines. An online implementa-
tion of our integration approach is provided under the
acronym IMHOTEP (‘Integrating Molecular Heuristics
and Other Tools for Effect Prediction’) at http://www.uni-
kiel.de/medinfo/cgi-bin/predictor/. Imhotep was an Egyp-
tian polymath who was chief minister to Djoser, the sec-
ond king of the third dynasty who reigned 2630-2611 BCE.
Imhotep, whose name means ‘he who cometh in peace’, is
thought to have been the architect of the step pyramid of
Saqqara. He was described as being ‘the first figure of a
physician to stand out clearly from the mists of antiquity’ by
the eminent Canadian physician Sir William Osler (http://
www.gutenberg.org/files/1566/1566-h/1566-h.htm) (25). In
525 BCE, Imhotep was deified as a god of medicine. He

is associated with the Greek god of medicine, Asclepios
(https://www.britannica.com/biography/Imhotep) (26).

MATERIALS AND METHODS

Mutation data

Two sets of nsSNVs with putatively known functional con-
sequences were used to construct and evaluate a composite
prediction score. The first set of data was retrieved by means
of the UCSC Genome Browser (http://genome.ucsc.edu/
cgi-bin/hgTables, table: snp135Common) and filtered ac-
cording to the following criteria: (i) minor allele frequency
(MAF) >10%, (ii) missense variant, (iii) validated by at
least two methods (e.g. presence in both HapMap and 1000
Genomes project), (iv) no more than two alleles reported so
far and (v) absent from HGMD. For some of the variants,
different transcripts of the affected gene were found to be
logged in UCSC. In these instances, the variant in question
was mapped to the longest transcript available. This proce-
dure yielded 10 801 UCSC nsSNVs from 5666 genes suit-
able for further analysis. Owing to their high MAF, these
variants were deemed likely to lack any significant delete-
rious effect and were therefore classified as ‘inconsequen-
tial’ for the purpose of the present study. We deliberately
chose not to label these variants ‘neutral’ because ‘neutral’
has an established meaning in population genetics (27). The
corresponding amino acid substitutions were derived from
dbSNP (http://www.ncbi.nlm.nih.gov/SNP/) and the under-
lying amino acid sequences were downloaded from UCSC.
All information was combined using an in-house Perl script.
The second set of data was provided by HGMD Pro 2015.3
(24) and comprised 12 355 nsSNVs from 2165 genes that
were added to HGMD after 1 January 2013. The SNVs
were annotated as ‘disease-causing’ in HGMD and were
therefore deemed to be ‘consequential’ for the purpose of
the present study. We considered only post-2013 HGMD
data to ensure that the SNVs under study were not used for
the development of any prediction tool investigated here,
thereby avoiding an overlap between the testing and train-
ing sets.

Integration models were validated by 10-fold cross-
validation using cross-validation datasets of ∼1000 conse-
quential and inconsequential variants each. To ensure that
the cross-validation datasets contained roughly the same
number of genes and that all variants of a gene were in
one dataset, we pursued the following strategy separately
for each type of variant (consequential and inconsequen-
tial): for each cross-validation dataset, genes were repeat-
edly drawn at random without replacement and all variants
in a given gene allocated to the respective cross-validation
dataset. This procedure was repeated until the total num-
ber of variants of the variant type in question exceeded
1000 in the dataset. If the excess number of variants was
smaller than the deficit without the last gene included (i.e.
if the number of variants including the last gene minus 1000
was smaller than 1000 minus the number of variants with-
out the last gene), all variants of the last gene were indeed
added to the dataset. Otherwise, the last gene and its vari-
ants were returned to the pool. This procedure resulted in
10 equally large cross-validation sets with comparable num-
ber of genes. The resulting 10 datasets, henceforth referred
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to as ‘the cross-validation data’, contained a total of 10 002
putatively inconsequential nsSNVs from UCSC and 10 029
putatively consequential nsSNVs from HGMD (see Supple-
mentary Table S1 for the exact number of variants and genes
per individual dataset).

As with the cross-validation data, an additional dataset
was generated for use as an external validation base and
for comparison with other integration approaches. This
dataset, termed ‘the external validation data’, contained 800
consequential and 799 inconsequential variants each. Note
that cross-validation and external validation data were gen-
erated such that they did not overlap in terms of the variants
included. If required, the combination of both datasets will
be referred to as ‘the complete data’.

Prediction tools

We considered nine prediction tools in our study, namely
PhyloP (22), Grantham Score (23), PolyPhen-2 (HumVar
model) (10), SNPs&GO (17), MutPred (18), SIFT (11), Mu-
tationTaster2 (19), Mutation Assessor (20) and FATHMM
(inherited disease model) (21). These tools were selected be-
cause of their popularity and their previously demonstrated
fine performance (5).

Note that PhyloP and the Grantham Score are not pre-
diction tools sensu stricto because they do not classify vari-
ants as either consequential or inconsequential. Instead,
PhyloP evaluates the difference in evolutionary conserva-
tion between nucleotides from different species at a given
genomic position whilst the Grantham Score quantifies
the biochemical difference between two amino acids. This
notwithstanding, for a given nsSNV, the scores of both tools
are likely to be related to the impact of the nsSNV upon
the functionality of the respective gene product, which is
why both tools have been used extensively to prioritize ge-
netic variants for functional follow-up (28). Moreover, both
tools are embedded into other integrative bioinformatics
platforms, including ANNOVAR (9). To facilitate consis-
tent binary categorization in our study, we used classifica-
tion schemes previously described for PhyloP (7) and the
Grantham Score (29).

Other than PhyloP and the Grantham Score, the re-
maining tools considered in our study were genuine ef-
fect predictors that use different statistical methods to
classify variants as either consequential or inconsequen-
tial. Thus, PolyPhen-2 and MutationTaster2 employ naı̈ve
Bayes classifiers, which are usually both simple and robust.
SNPs&GO and MutPred follow classical machine learning
approaches, namely support vector machine and random
forest, respectively, with SNPs&GO also utilizing Gene On-
tology information. A more sophisticated hidden Markov
model is implemented in FATHMM to represent multiple
alignments of homologous protein sequences. SIFT is also
based upon sequence conservation information and is the
only prediction tool sensu stricto that needs no training on
variant data of known effect. Finally, Mutation Assessor in-
volves a statistical technique termed ‘combinatorial entropy
optimization’ to find an ‘optimal’ hierarchical clustering of
proteins into subfamilies. In addition to a binary classifica-
tion into consequential or inconsequential, all tools consid-

ered here also provide some kind of continuous score (Table
1).

The output of PhyloP was generated by means of the
UCSC Genome Browser (using the phyloP46wayAll table
of hg19). The Grantham Score was calculated with R
on the basis of Grantham’s original data (http://www.
genome.jp/dbget-bin/www bget?aax2:GRAR740104).
PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/),
SIFT (http://sift.bii.a-star.edu.sg), MutationTaster2
(http://www.mutationtaster.org/), Mutation Asses-
sor (http://mutationassessor.org/r3/) and FATHMM
(http://fathmm.biocompute.org.uk/inherited.html) were
accessed by way of batch queries. Owing to the large
number of queries necessary, the output of MutPred
(http://mutpred.mutdb.org/) had to be generated locally
by staff from the School of Informatics and Com-
puting, Indiana University. The output of SNPs&GO
(http://snps-and-go.biocomp.unibo.it/snps-and-go/) was
obtained using a Perl script. All result files were merged and
processed with R (R v.3.2.2, https://www.R-project.org.)
(30).

To ensure comparability between the nine tools, we nor-
malized each score to the interval [0,1] such that the maxi-
mum evidence in favor of a functional consequence equalled
unity. For PhyloP, PolyPhen-2, SNPs&GO, MutPred and
MutationTaster2, the corresponding output already had
this format. The output of SIFT was transformed by sim-
ple inversion, xSIFT new = 1-xSIFT. The Grantham Score,
was normalized by division through its maximum value, i.e.
xGrantham new = xGrantham/215. Since the ensuing threshold
t0 distinguishing consequential from inconsequential vari-
ants still differed between tools, we applied a second trans-
formation to each score so as to allow use of a universal
threshold t0 new = 0.5. If necessary, score x was thus re-
placed by xnew = 0.5 × x/t0 if x ≤ t0 or by xnew = 0.5
+ 0.5 × (x-t0)/(1-t0) otherwise. Since the scores produced
by Mutation Assessor and FATHMM can also be nega-
tive, the output of these tools was normalized as follows:
xMutAss new = 0.5 × (xMutAss + 5.545)/7.483 if xMutAss ≤
1.938 and xMutAss new = 0.5 + 0.5 × (xMutAss -1.938)/3.999
otherwise; xFATHMM new = 0.5 × (10.64-xFATHMM)/12.14 if
xFATHMM > −1.5 and xFATHMM new = 0.5-0.5 × (xFATHMM
+1.5)/14.63 otherwise. MutationTaster2 offers additional
functionality to assess the pathogenicity of variants. Vari-
ants are predicted as ‘polymorphism automatic’ if either
all three corresponding genotypes are observed in at least
one HapMap population, or a variant was found in the
homozygous state in more than four participants from the
1000 Genomes Project (31). Moreover, if a variant is termed
as ‘probable-pathogenic’ or ‘pathogenic’ in ClinVar (32) it
is labeled as ‘disease causing automatic’. Despite the auto-
matic prediction, the score of the Bayes classification model
is given as well. Since the automatic classifications involving
‘looking up’ a variant in existing databases is an intrinsic
feature of MutationTaster2, we decided to include the au-
tomatic predictions in our evaluation. For the generation
of the normalized score, we used both the binary prediction
(irrespective of being automatic or not) and the Bayes score:
xMutTas2 new = 0.5 − 0.5 × xMutTas2 if prediction is inconse-
quential and xMutTas2 new = 0.5 + 0.5 × xMutTas2 otherwise.
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Table 1. Description of the prediction tools studied

Prediction tool Score range Classification scheme Additional output Algorithmic basis

PhyloP [0;1]* >0.95 (conserved) phylogenetic
≤0.95 (non-conserved) analysis

Grantham Score [0;215] ≤50 (conservative)# biochemical distances
51-100 (moderately
conservative)

between amino acids

101-150 (moderately
radical)
≥151 (radical)

PolyPhen-2 [0;1] probably damaging false positive rate naı̈ve Bayes classifier
possibly damaging true positive rate
benign
unknown

SNPs&GO [0;1] ≤0.5 (neutral) reliability index support vector machine
>0.5 (disease)

MutPred [0;1] ≤0.5 (not deleterious) hypotheses about
molecular cause of amino
acid substitution

random forest

>0.5 (deleterious)
>0.75 (more confidently
deleterious)

SIFT [0;1] ≥0.05 (tolerated) median information protein sequence alignment
<0.05 (damaging) number of sequences

aligned at position
MutationTaster2 [0;1] disease causing affected features naı̈ve Bayes classifier

disease causing automatic
polymorphism
polymorphism automatic

Mutation Assessor [−5.545,5.937] >3.5 (high functional
impact)

combinatorial entropy
optimization

1.938-3.5 (medium)
0.8-1.938 (low)
≤0.8 (neutral)

FATHMM [−16.13;10.64] ≤−1.5 (damaging) hidden Markov model
>−1.5 (tolerated)

*Transformation by Liu et al. (7).
#classification by Li et al. (29).

Missing predictions

For some variants, one or more prediction tools failed to
yield any output. Therefore, all analyses were performed
twice. First, variants lacking an output (henceforth called
‘failure variants’) were excluded from further analysis, leav-
ing 14 233 variants (8163 from HGMD, 6070 from UCSC)
with complete prediction by all tools. For the second round
of analysis, missing output values were imputed for failure
variants as described below.

Imputation was performed with R using one of three dif-
ferent methods, namely (i) random imputation from a uni-
form distribution on [0,1], (ii) use of R package AMELIA
(33) and (iii) use of R package mice (34). Both AMELIA
and mice are multiple imputation methods that take into
account potential interdependencies between variables, i.e.
data missing for one variable are imputed from data on the
other variables, if present. While AMELIA combines boot-
strapping with the expectation-maximization algorithm,
mice employs a Gibbs sampler. The performance of each
imputation method was measured separately for each tool
using the Matthews correlation coefficient (MCC, see be-
low). The MCC was calculated on two disjoint sets of vari-
ants for each tool, namely those for which output was avail-
able (‘reference’; MCCref) and those for which output had
to be imputed (MCCimp). Imputation can be deemed most

satisfactory when the two MCCs are as similar as possible
for as many tools as possible. Therefore, we aimed to mini-
mize the Euclidean distance between MCCref and MCCimp,
weighting each tool by the number of missing output values,
i.e

√√√√∑9

k=1

(MCCref,k − MCCimp,k)2

∑9
i=1 ni

· nk.

Here, ni denotes the number of failure variants for the ith
tool. PhyloP, the Grantham Score and MutPred yielded too
few failure variants to sensibly call for imputation. There-
fore, these three tools were omitted from the calculation
of the Euclidean distance, which rendered the optimization
criterion a sum over just six tools. The imputation method
with the lowest Euclidean distance between MCCref and
MCCimp was eventually selected for further analysis.

Statistical analysis

All statistical analyses were performed with R v.3.2.2 (30).
Agreement analysis of categorical tool output involved
computation of the proportion of agreement and Cohen’s
kappa, together with 95% confidence intervals, using R-
package vcd v.1.4-1 (35). A third output category was
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added to the original classification in order to allow for fail-
ure variants. Agreement analysis of continuous tool output
was performed drawing upon Spearman rank correlation
coefficients.

The performance of a particular tool on a given set of
nsSNVs was quantified by means of the MCC (36), calcu-
lated from the number of true positives (tp), true negatives
(tn), false positives (fp) and false negatives (fn) as:

MCC = tp × tn − f n × f p√
(tp + f n)(tp + f p)(tn + f n)(tn + f p)

.

The MCC is often used in the context of prediction tool
validation and is generally held to provide a more balanced
assessment of prediction performance than other measures
such as sensitivity and specificity (37). The MCC was cal-
culated here taking the origin of an nsSNV from either
HGMD or UCSC as the gold standard.

The primary aim of our study was to develop and vali-
date a composite score that combines the output of differ-
ent prediction tools. For binary output, this combination
was fashioned by either logistic regression modeling or ma-
jority vote; for continuous output, we carried out decision
tree and random forest analysis. In addition, we evaluated
the simple sum of scores. All composite prediction models
were validated by 10-fold cross-validation in two indepen-
dent runs, with failure variants either excluded or imputed.

In the logistic regression analysis, the binary classifica-
tions of a given nsSNV by the different prediction tools were
treated as explanatory variables. The statistical significance
of including a given tool in a regression model via backward
selection was assessed by means of a Wald test (38) at the
5% significance level. An optimal cut-off for the model out-
put was obtained by maximizing the sum of sensitivity and
specificity with R package pROC v.1.8 (39). Majority vote
was also based upon the binary output of different predic-
tion tools and, starting with the inclusion of all tools, back-
ward selection of voters was carried out by maximization of
the MCC.

In the decision tree and random forest analyses, the con-
tinuous prediction scores were treated as explanatory vari-
ables. Decision tree analysis was carried out with rpart
v.4.1-10 (40) whilst package randomForest v.4.6-2 was
used for random forest analysis (41). For the latter, the ran-
dom number of explanatory variables (e.g. the prediction
scores) included at a given split was calculated using the
tuneRF command.

Finally, the sum of the different (binary or continuous)
tool output values was calculated without any additional
modifications, and an optimal cut-off for classification was
determined maximizing the sum of sensitivity and speci-
ficity with R package pROC.

The integration methods that performed best, both with
and without imputed tool output, were random forest, deci-
sion tree and logistic regression (see below). These methods
were finally trained on the complete cross-validation data.
To evaluate their performance specifically for imputed data,
the methods were also trained on the cross-validation data
with only half of the failure variants included, and validated
on the output imputed for the other half.

Random forest, decision tree and logistic regression as
well as simple summation were also evaluated by 10-fold
cross-validation under the inclusion of only those five tools
that had the strongest impact upon prediction performance.
The latter was judged from the complete data either by the
Gini indices (random forest), the variable selection (logistic
regression) or the contribution to the final decision tree (de-
cision tree). In view of the apparently similar performance
achieved by a combination of just the five top tools, we re-
peated random forest, decision tree and logistic regression
and, for comparison, simple summation for these tools in
the cross-validation complete data.

For external validation and comparison to other ap-
proaches, our top integration methods (random forest, de-
cision tree and logistic regression) and six commonly used
integration approaches, namely Condel (12), CoVEC (13),
CAROL (14), CADD (with a threshold of 20 for the scaled
score) (16), MetaSVM and MetaLR (15), were also applied
to the external validation data.

Receiver operating characteristic (ROC) curves were
plotted on the one hand for the nine individual tools (com-
plete data) and on the other hand for the two integration
methods random forest and logistic regression of this study,
and for the six integration approaches under evaluation
(Condel, CoVEC, CAROL, CADD, MetaSVM and Met-
aLR; all applied to the external validation data excluding
failure variants). ROC curves were derived with the R pack-
age pROC and the corresponding area under curve (AUC)
values calculated. The decision tree is a binary classifica-
tion method and therefore only classifies variants as conse-
quential or inconsequential, but does not yield a continu-
ous score. Therefore, no ROC curves could be derived for
this method.

All relevant model parameters of the logistic regression
analysis and the final decision tree can be found in Figure
1 and Supplementary Table S12. Furthermore, a web server
has been set-up which automatically scores variants accord-
ing to our best integration models (http://www.uni-kiel.de/
medinfo/cgi-bin/predictor/). The input for this web server is
the prediction scores of the individual prediction tools (e.g.
SIFT) which can either be entered directly or uploaded from
a file. The server offers the opportunity to choose between
either all nine individual tools or only the five top tools as
input.

RESULTS

Performance and agreement of individual prediction tools

The nine prediction tools (sensu stricto or conservation
score-based) considered in our study varied widely in terms
of their classification of the 21 630 variants of the com-
plete data used for training and external validation (Table
2). Thus, the proportion of nsSNVs predicted to be incon-
sequential ranged from 38% (PhyloP) to 71% (Grantham
Score). Moreover, the proportion of nsSNVs for which no
prediction was possible (i.e. failure variants) ranged from
0% (Grantham Score) to 25% (SNPs&GO). The perfor-
mance of the different tools was also found to vary con-
siderably (MCC: 0.21 to 0.87, Table 3) which is also high-
lighted by the corresponding ROC curves (Figure 2). Out-
standing performance was achieved by MutationTaster2,

http://www.uni-kiel.de/medinfo/cgi-bin/predictor/
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MutPred
< 0.3304

FATHMM
< 0.4503

MutationTaster2
≥ 0.2594

PolyPhen-2
< 0.001121

MutationTaster2 
< 0.6254
5592/7532

5341/701

0
4318/172

1023/529

0
774/147

249/382

0
76/0

173/382

0
78/11

1
95/371

1
251/6831

Figure 1. Decision tree developed on complete cross-validation data.
Numbers refer to inconsequential (left) and consequential variants (right).
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Figure 2. ROC curves of individual prediction tools (based upon complete
data). Numbers in brackets are the AUCs of the respective tools.

which had the highest specificity (0.96) and––together with
PhyloP––the highest sensitivity (0.90). Its MCC (0.87) by
far exceeded that of the other eight tools. Because of its low
specificity (0.66), PhyloP yielded an MCC of only 0.58. Ow-
ing to the large proportion of variants predicted to be incon-
sequential, the Grantham Score had high specificity (0.81)
but rather low sensitivity (0.38). Consequently, its MCC was

only 0.21 (the smallest MCC of all). The MCC of the other
six tools ranged between 0.58 and 0.68.

The pairwise level of agreement between tools was gen-
erally low, ranging from 0.49 (SNPs&GO and Grantham
Score) to 0.81 (MutPred and MutationTaster2) (Supple-
mentary Table S2). When measured by the Spearman
rank correlation coefficient (Supplementary Table S3), the
Grantham Score and FATHMM exhibited the poorest
agreement (0.17). Categorical and continuous tool output
showed generally similar degrees of agreement.

Missing predictions and imputation

For some variants, one or more tools failed to yield a predic-
tion. The number of such ‘failure variants’ differed greatly
between tools (Table 2), from none for the Grantham Score
via one for PhyloP to 43 for MutPred and over 600 for
MutationTaster2. PolyPhen-2 and SIFT both failed for
>1000 variants whilst Mutation Assessor and FATHMM
failed with >3000 predictions and SNPs&GO even failed
for >5000 variants.

We adopted two different strategies to deal with missing
predictions in our integrative analyses. In the first tier, a
variant was excluded altogether if no prediction was possi-
ble with at least one tool. In the second tier, missing pre-
dictions were imputed using one of three different meth-
ods, namely random sampling from a uniform distribution
on [0,1] and the application of either the AMELIA or the
mice R package. Judged by the ensuing tool-wise sensi-
tivity, specificity and MCC values (Supplementary Table
S4), AMELIA and mice were found to perform similarly.
However, since the weighted Euclidean distance between
the reference and the imputed MCCs was as low as 0.08 for
AMELIA, but 0.10 formice and 0.62 for chance imputation,
we opted to use AMELIA in our study.

Performance of different tool integration methods

Various methods to integrate the normalized output of
the different prediction tools were evaluated in our study,
namely (i) simple summation (binary and continuous), (ii)
majority vote, (iii) logistic regression, (iv) decision tree and
(v) random forest. As judged by their MCCs, random forest
performed best, closely followed by decision tree and logis-
tic regression analysis. Simple summation showed the poor-
est predictive performance by far (Table 4 and Supplemen-
tary Tables S5–10).

No notable differences were observed between an exclu-
sion of failure variants and the use of imputed data. There-
fore, we shall henceforth present detailed results only for
those analyses from which failure variants were excluded;
the results of analyses involving imputed predictions can be
found in the Supplementary Data. Binary and continuous
summation performed worst (MCC equal to 0.80 and 0.79,
respectively; Table 4; Supplementary Tables S5a and 6a).
With majority voting, PhyloP, SNPs&GO, MutPred, Muta-
tionTaster2 and FATHMM were retained in the model in all
validation rounds, sometimes together with PolyPhen-2 and
Mutation Assessor, whereas the Grantham Score and SIFT
were never retained. The average MCC of majority voting
was 0.83 (Table 4 and Supplementary Table S7a). With lo-
gistic regression analysis, the same tools always remained
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Table 2. Binary variant classification provided by prediction tools on the complete data (10 829 consequential, 10 801 inconsequential variants)

Variant type Prediction tool

PhyloP
Grantham
Score PolyPhen-2 SNPs&GO MutPred SIFT

Mutation
Taster2

Mutation
Assessor FATHMM

Consequential 13 446 6180 9888 6355 9701 9699 10008 8218 7257
(62%) (29%) (46%) (29%) (45%) (45%) (46%) (38%) (34%)

Inconsequential 8183 15450 9859 9891 11887 10583 10998 9636 11008
(38%) (71%) (46%) (46%) (55%) (49%) (51%) (45%) (51%)

Failure 1 0 1883 5384 42 1348 624 3776 3365
(0%) (0%) (9%) (25%) (0%) (6%) (3%) (17%) (15%)

Table 3. Individual performance of prediction tools on the complete data (10 829 consequential, 10 801 inconsequential variants)

Performance measure Prediction tool

PhyloP
Grantham
Score PolyPhen-2 SNPs&GO MutPred SIFT

Mutation
Taster2

Mutation
Assessor FATHMM

Sensitivity* 0.90 0.38 0.82 0.67 0.79 0.78 0.90 0.74 0.68
Specificity* 0.66 0.81 0.83 0.95 0.89 0.84 0.96 0.87 0.89
MCC* 0.58 0.21 0.65 0.63 0.68 0.61 0.87 0.61 0.58
Accuracy* 0.78 0.59 0.82 0.80 0.84 0.81 0.93 0.80 0.79
AUC* 0.89 0.63 0.90 0.91 0.92 0.88 0.95 0.89 0.89
Number of variants with
prediction

21 629 21 630 19 747 16 246 21 588 20 282 21 006 17 854 18 265

*Performance measures were calculated for each tool only from variants with prediction. MCC: Matthews correlation coefficient; AUC: area under ROC
curve.

Table 4. Cross-validation of integration methods (all tools)

Integration method Matthews correlation coefficient

failure variants excluded (n = 13 124) failure variants imputed (n = 20 031)

Random forest 0.90 0.89
Decision tree 0.88 0.86
Logistic regression 0.87 0.87
Majority vote 0.83 0.83
Summation binary 0.80 0.79
Summation continuous 0.79 0.80

Matthews correlation coefficients are averages taken over 10 cross-validation datasets. For detailed results, see Supplementary Tables S5–10.

in the model upon backward selection, namely PolyPhen-
2, SNPs&GO, MutPred, MutationTaster2 and FATHMM.
The average MCC for logistic regression analysis equalled
0.87 (Table 4 and Supplementary Table S8a). Decision tree
analysis performed well, with an average MCC of 0.88. Only
MutationTaster2 was consistently retained, occasionally
complemented by PolyPhen-2, MutPred and FATHMM
(Table 4 and Supplementary Table S9a). The other tools
were never included. Finally, random forest was found to
perform best of all integration methods, with an average
MCC of 0.90 (Table 4 and Supplementary Table S10a).

Performance of different integration methods after ‘smart se-
lection’ of tools

Owing to their superior performance in different settings,
random forest, decision tree and logistic regression analysis
were selected for final composite score definition. For com-
parison, and because of its simplicity, binary summation
was also considered. Inspection of the Gini indices (random
forest), tree topology (decision tree) and variable selection
(logistic regression) suggests that PolyPhen-2, SNPs&GO,
MutPred, MutationTaster2 and FATHMM represent the

best choice of tools when it comes to composite nsSNV
classification. Random forest, decision tree and logistic re-
gression analysis performed almost as well with these five
tools as with all tools combined (Table 5). Notably, the sim-
ple summation performed even better when confined to the
selected tools (MCC = 0.84 versus MCC = 0.80 for all
tools included). For the detailed results of the 10-fold cross-
validation, see Supplementary Table S11.

Final model definition and performance on imputed data

The three best integration methods, namely random for-
est, decision tree and logistic regression analysis, were fi-
nally trained on the whole cross-validation data (i.e. 7532
consequential variants from HGMD, 5592 inconsequen-
tial variants from UCSC, failure variants excluded). The
parameter estimates of the logistic regression analysis and
the Gini indices of the random forest model are summa-
rized in Supplementary Tables S12 and 13, for all tools
as well as for the five tools of the smart selection. The fi-
nal decision tree is included in Figure 1. An online imple-
mentation of the integration approach developed in this
study (IMHOTEP) is provided at http://www.uni-kiel.de/

http://www.uni-kiel.de/medinfo/cgi-bin/predictor/


e13 Nucleic Acids Research, 2017, Vol. 45, No. 3 PAGE 8 OF 12

Table 5. Cross-validation of integration methods (PolyPhen-2, SNPs&GO, MutPred, MutationTaster2 and FATHMM only; failure variants excluded)

Performance measure Integration method

Summation binary Logistic regression Decision tree Random forest

Sensitivity 0.94 0.93 0.94 0.95
Specificity 0.90 0.95 0.93 0.94
MCC 0.84 0.87 0.88 0.90
Accuracy 0.92 0.93 0.94 0.95

Performance measures are averages taken over 10 cross-validation datasets. MCC: Matthews correlation coefficient. For detailed results, see Supplementary
Table S11.

medinfo/cgi-bin/predictor/. To assess how the three best in-
tegration approaches performed on imputed data alone,
training was also carried out on data comprising all vari-
ants with complete predictions and half of the failure vari-
ants (with imputed predictions). Validation using the other
half of the imputed predictions revealed that the methods
performed almost equally well (MCC = 0.83 for logistic re-
gression analysis, MCC = 0.85 for both decision tree and
random forest; see Table 6).

Evaluation of performance and comparison to other integra-
tion approaches

The performance of our three best integration models was
also evaluated on the external validation data comprising
631 putatively consequential variants from HGMD and 478
putatively inconsequential variants from UCSC for which
all individual nine tools returned a prediction. These exter-
nal validation data did not overlap with the cross-validation
data on which the final models were trained. For compar-
ison, the commonly used integration approaches Condel,
CoVEC, CAROL, CADD, MetaSVM and MetaLR as well
as the best individual prediction tool, MutationTaster2,
were also investigated. Being included only for comparison
and because of its simplicity, binary summation not surpris-
ingly performed worst of all integration methods consid-
ered in our study (Table 7). Random forest, decision tree
and logistic regression showed excellent performance, with
sensitivity, specificity and accuracy values of ≈0.95 and an
MCC between 0.89 and 0.93. Again, random forest per-
formed best (sensitivity = 0.97, specificity = 0.96, accuracy
= 0.97, MCC = 0.93). When considering only the five top
tools of the smart selection, no difference in performance
was observed.

Of the established integration approaches, Condel out-
performed CoVEC, CAROL and CADD (sensitivity =
0.85, specificity = 0.95, accuracy = 0.89, MCC = 0.79). In-
terestingly, individual prediction tool MutationTaster2 per-
formed better than the other six established integration ap-
proaches (sensitivity = 0.92, specificity = 0.96, accuracy =
0.94, MCC = 0.88). Inspection of the ROC curves mainly
confirmed these results. The best ROC curves and largest
AUCs were obtained for the two integration approaches de-
veloped in this study, random forest and logistic regression,
and for MetaLR (Figure 3). No ROC curve could be de-
rived for binary summation and decision tree because these
integration methods do not provide a continuous score.

Specificity
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Figure 3. ROC curves of integration approaches random forest, logistic
regression, Condel, CoVEC, CAROL, CADD, MetaSVM, MetaLR and
individual prediction tool MutationTaster2 (based upon external valida-
tion data, excluding failure variants). Integration approaches of this study
(random forest and logistic regression (all nine tools)) are in bold. Num-
bers in brackets are the AUCs of the respective approaches.

DISCUSSION

The present study aimed at integrating the output of ex-
isting functionality prediction tools into a single numer-
ical score. In contrast to previous integration endeavors
(12,13,16,42), we systematically scrutinized all popular sta-
tistical techniques fit to such a task, from simple summation
via decision tree analysis to random forest, most of which
allowed the integration of both binary and continuous tool
output. Since even the normalized continuous output of the
tools was still not normally distributed, but had maxima at 0
and 1, integration by discriminant analysis was not deemed
sensible. Also distinct from other approaches, we not only
included software that was accessible by batch queries but
also developed an in-house Perl script to integrate interac-
tive tool SNPs&GO. The output of interactive tool Mut-
Pred had to be calculated locally by staff of the School of In-
formatics and Computing, Indiana University, owing to the
large number of queries necessary. Such efforts nevertheless

http://www.uni-kiel.de/medinfo/cgi-bin/predictor/
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Table 6. Performance of best integration methods on imputed output (complete data)

Performance measure Integration method

Summation binary Logistic regression Decision tree Random forest

Sensitivity 0.87 0.89 0.87 0.90
Specificity 0.89 0.94 0.97 0.95
MCC 0.75 0.83 0.85 0.85
Accuracy 0.88 0.92 0.93 0.93

Integration methods were trained on a combination of 14 233 variants with complete predictions and 3700 failure variants with imputed predictions from
the complete data. Performance measures refer to the remaining 3697 failure variants with imputed predictions. MCC: Matthews correlation coefficient.

Table 7. External validation of integration methods (failure variants excluded)

Integration method Tool selection Performance measure

Sensitivity Specificity MCC Accuracy AUC

Summation binary All 0.91 0.91 0.82 0.91 n.a.
Smart 0.93 0.94 0.86 0.93 n.a.

Logistic regression All 0.94 0.95 0.89 0.94 0.99
Smart 0.94 0.95 0.89 0.94 0.99

Decision tree All 0.96 0.95 0.91 0.96 n.a.
Smart 0.96 0.95 0.91 0.96 n.a.

Random forest All 0.97 0.96 0.93 0.97 0.99
Smart 0.97 0.96 0.93 0.97 0.99

Condel 0.85 0.95 0.79 0.89 0.96
CoVEC 0.83 0.91 0.74 0.86 0.95
CAROL 0.80 0.86 0.65 0.83 0.90
CADD 0.93 0.81 0.75 0.88 0.92
MetaSVM 0.73 1.00 0.73 0.84 0.96
MetaLR 0.75 1.00 0.75 0.86 0.99
MutationTaster2 0.92 0.96 0.88 0.94 0.95

Integration methods considered in the present study (summation binary, logistic regression, decision tree) were trained on the complete cross-validation
data. MCC: Matthews correlation coefficient; AUC: area under ROC curve; n.a.: not applicable; ‘smart’ tool selection: PolyPhen-2, SNPs&GO, MutPred,
MutationTaster2, FATHMM.

appeared well warranted because MutPred and SNPs&GO,
in particular, have been found to be of high predictive capa-
bility, both by ourselves and others (5).

We confirmed that the integration of individual predic-
tion tools is usually a worthwhile undertaking because the
best integration methods identified here outperformed all
individual tools. With hindsight, such a result is not sur-
prising because we also noted that the output of individual
tools was only weakly correlated between tools. Moreover,
the nine tools considered here employed a wide range of
statistical methods and different types of biological infor-
mation so that a combination of such complementary char-
acteristics should almost inevitably enhance the predictive
performance of the individual tools.

Decision tree, logistic regression analysis and especially
random forest were found to perform best of all integration
methods tested. Whilst all three allow classification of vari-
ants as consequential or inconsequential, logistic regression
analysis additionally yields a posterior probability for each
class, which might be of extra value when it comes to prior-
itizing variants for experimental follow-up.

Simple summation and majority vote were found to per-
form rather poorly, which was unfortunate because both
methods are easy to interpret, computationally fast and re-
quire no training of a statistical model. However, simple
summation and majority vote have the obvious drawback
of not weighting individual tools according to their pre-
dictive performance. Since both sensitivity and specificity

were found in our study to vary markedly between tools,
such a lack of discrimination may indeed be one reason
for the poor performance observed. Both methods therefore
seem appropriate only in cases where other integration ap-
proaches are either inappropriate or impracticable, for ex-
ample, when new tools are to be included that have not yet
been related to other tools in the context of composite mod-
eling.

Compared to existing integration approaches, Condel,
CoVEC, CAROL and CADD, our prediction models
achieved not only slightly higher specificity (random for-
est: 0.96, decision tree: 0.95, logistic regression: 0.95 versus
Condel: 0.95, CoVEC: 0.91, CAROL: 0.86, CADD:0.81)
but also considerably higher sensitivity (random forest:
0.97, decision tree: 0.96, logistic regression:0.94 versus Con-
del: 0.85, CoVEC: 0.83, CAROL:0.80 and CADD: 0.93)
based upon the external validation data. This superior-
ity was also reflected by higher MCC values and a gen-
erally higher accuracy of our approaches (e.g. random
forest: MCC = 0.93, accuracy = 0.97) compared to the
other four above mentioned existing integration approaches
(where the best performance was observed for Condel:
MCC = 0.79 and accuracy = 0.89). Integration approaches
MetaSVM and MetaLR both achieved a specificity of al-
most unity in combination with a rather low sensitivity
of 0.73 and 0.75, respectively. Especially for MetaLR, the
sensitivity could be considerably improved without losing
too much specificity. Currently, MetaLR applies a standard
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threshold of 0.5 to the output of a logistic regression model
which, in view of its AUC value of 0.99, does not appear to
be an optimal choice. Instead, use of a different threshold
should render the approach much more useful in practice.

Five of the seven sensu stricto prediction tools, namely
PolyPhen-2, SNPs&GO, MutPred, MutationTaster2 and
FATHMM, were found to perform particularly well in our
study. Use of these tools alone led to almost the same pre-
dictive performance as the integration of all tools so that
it may be sensible for reasons of efficiency to confine any
practical implementation of the composite prediction mod-
els accordingly. Our study also revealed that failure variants,
i.e. variants that lack a prediction for at least one tool, do
not need to be excluded from integrated prediction even al-
though neither random forest nor decision tree nor logistic
regression analysis, by definition, can handle missing data.
Missing predictions can be imputed, and their inclusion led
to an acceptable overall performance with all integration
methods studied.

MutationTaster2, which was trained on HGMD data
(variants added up to February 2012), showed a particu-
larly convincing performance and was clearly superior to
all other individual tools. Since HGMD data were also
used in the present study, although from a later time of
inclusion, adaptation of MutationTaster2 to some intrin-
sic characteristics of these variants may have contributed
to its exceptional performance. However, this cannot be
the sole explanation since other tools, including Mut-
Pred and FATHMM, were trained on HGMD data as
well. Moreover, there is a considerable overlap between
HGMD and other publicly accessible databases like Clin-
Var, UniProt or dbSNP. Besides predictions, Mutation-
Taster2 provides ‘look up’ variants in existing databases
e.g. the 1000 Genomes Project (for inconsequential predic-
tion) and in ClinVar (for consequential prediction) to gen-
erate automatic predictions. This is especially important for
inconsequential variants. In our data, we found only 12
consequential variants which were predicted to be ‘auto-
matic disease causing’. All of these would have been pre-
dicted as consequential by the corresponding scores as well.
However, out of our 10 801 inconsequential variants, 9552
were predicted to be ‘automatic polymorphism’. If only the
scores were regarded, 1583 of these variants would have
been falsely predicted as consequential. Thus, without the
look-up feature, the sensitivity of MutationTaster2 would
not have changed but the specificity would have decreased
from 0.96 to 0.81 highlighting the utility of the look-up
feature. The inclusion of MutationTaster2 is also a prob-
able reason for the stronger composite predictive capability
achieved in our study as compared to established integra-
tion approaches that do not include this rather new tool.
It is also fair to say that the use of MutationTaster2 alone
may be a simple second-best alternative to tool integration
in cases where the latter appears impracticable.

Grimm et al. (4) recently gave a detailed account of two
potential sources of error in the development of variant ef-
fect prediction tools, namely type1 and type 2 circularity.
Both flaws affect individual prediction tools and may accu-
mulate in integration approaches. Type 1 circularity refers
to an actual overlap of training and test data that could re-
sult in an overly optimistic judgement of the predictive per-

formance of a given tool. To avoid this type of circularity, we
included only HGMD data that were added to the database
after 1 January 2013 because none of the tools considered
here used any of these data for development. Moreover, we
not only cross-validated our approaches internally but also
compared their performance to that of other integration ap-
proaches in independent external validation data. Type 2
circularity refers to the intrinsic tendency of some predic-
tion tools to predict the effect of a given variant mainly
by the effect of variants on the same gene. Such bias can
arise if variants in one and the same gene are more likely
to be logged under the same functional label in mutation
databases used for tool development. To counteract the con-
sequence of type 2 circularity, we followed a variant selec-
tion strategy such that all variants of a gene were allocated
to the same dataset thereby ensuring an almost even dis-
tribution of the number of variants per gene across the 10
cross-validation and the external validation datasets.

The Grantham Score performed somewhat worse than
other tools in our study, which is not surprising bearing in
mind that the Grantham Score was developed more than
40 years ago (a trailblazer at that time!) and was not orig-
inally intended for the classification of pathogenic variants
but rather to explore protein evolution (23). Nevertheless,
since the Grantham Score quantifies the biochemical dif-
ference between two amino acids in terms of their compo-
sition, polarity and molecular volume, the score can also
reasonably be assumed to reflect the functional impact of
missense mutations. However, all other tools considered in
our study use additional information for prediction, such
as secondary structure or evolutionary conservation, with
the latter being particularly predictive (43). It seems likely
that the lack of such information is the main reason for the
poor predictive performance of the Grantham Score. More-
over, we used a threshold for the binary classification of
Grantham Scores that was recommended decades ago (29).
In the light of our own results, a revision of this threshold
seems warranted and could well lead to better prediction in
future studies.

Some of the tools considered in our study, particularly
SNPs&GO, failed to yield predictions for a considerable
proportion of variants. This shortcoming is largely explica-
ble by the requirement of SNPs&GO to provide the tool
with an accession number from UNIPROT, which may
not be available in all cases. Moreover, the transcript that
SNPs&GO associates with a given UNIPROT-ID may not
be unequivocally defined which could have contributed to
the large proportion of failure variants in our study be-
cause we consistently considered the longest transcript for
UCSC variants. By contrast, for the consequential vari-
ants, HGMD provided transcripts that were chosen by cri-
teria more likely to match those used by the developers of
SNPs&GO. Not surprisingly, the number of failure vari-
ants was considerably smaller in the HGMD-derived than
in the UCSC-derived data. However, since composite pre-
diction worked equally well with imputed and non-imputed
SNPs&GO output, we surmise that the large proportion of
failure variants noted for this tool did not invalidate the gen-
eral conclusions drawn from our study.
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CONCLUSION

We systematically studied different statistical techniques
suitable to combine the output of nine popular predic-
tion tools to identify putatively consequential missense vari-
ants. For our best integration approaches, the correspond-
ing composite score clearly outperformed each single pre-
diction tool in terms of both sensitivity and specificity. Al-
though the best results were obtained with integrative meth-
ods random forest, decision tree and logistic regression, sin-
gle tool prediction with MutationTaster2 was also found
to work exceptionally well. The three top integration ap-
proaches allow prioritization of variants even in large num-
bers, such as can be expected to arise from whole exome se-
quencing. We also showed that, in cases where predictions
by one or more tools were missing, imputation is an appro-
priate means to obtain a composite score for these variants
as well. Finally, as is the case for all types of in silico predic-
tion, even variants classified as consequential by the most
sophisticated integration approaches are not necessarily of
strong impact on a certain phenotype and additional exper-
imental investigations will usually be required for their in-
dividual validation (2,44).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank Predrag Radivojac, Biao Li and Vikas Rao Pe-
javer, Indiana University, Bloomington, USA, for assis-
tance in calculating the MutPred scores. The authors grate-
fully acknowledge the continuous support of Almut Nebel
and Friederike Flachsbart from Kiel University, Germany.

FUNDING

Deutsche Forschungsgemeinschaft [NE1191/1-1]; Bun-
desministerium für Bildung und Forschung [sysIN-
FLAME; 01ZX1306A]; Qiagen Inc through a Li-
cense Agreement with Cardiff University (to D.N.C.,
M.M.). Funding for open access charge: sysINFLAME
[01ZX1306A].
Conflict of interest statement. D.N.C. and M.M. acknowl-
edge financial support from Qiagen Inc through a License
Agreement with Cardiff University.

REFERENCES
1. Coassin,S., Brandstatter,A. and Kronenberg,F. (2010) Lost in the

space of bioinformatic tools: a constantly updated survival guide for
genetic epidemiology. The GenEpi Toolbox. Atherosclerosis, 209,
321–335.

2. Knecht,C. and Krawczak,M. (2014) Molecular genetic epidemiology
of human diseases: from patterns to predictions. Hum. Genet., 133,
425–430.

3. Care,M.A., Needham,C.J., Bulpitt,A.J. and Westhead,D.R. (2007)
Deleterious SNP prediction: be mindful of your training data!
Bioinformatics, 23, 664–672.

4. Grimm,D.G., Azencott,C.A., Aicheler,F., Gieraths,U.,
MacArthur,D.G., Samocha,K.E., Cooper,D.N., Stenson,P.D.,
Daly,M.J., Smoller,J.W. et al. (2015) The evaluation of tools used to
predict the impact of missense variants is hindered by two types of
circularity. Hum. Mutat., 36, 513–523.

5. Thusberg,J., Olatubosun,A. and Vihinen,M. (2011) Performance of
mutation pathogenicity prediction methods on missense variants.
Hum. Mutat., 32, 358–368.

6. Wu,J.X. and Jiang,R. (2013) Prediction of deleterious
nonsynonymous single-nucleotide polymorphism for human diseases.
Sci. World J., 2013, 675851.

7. Liu,X., Jian,X. and Boerwinkle,E. (2011) dbNSFP: a lightweight
database of human nonsynonymous SNPs and their functional
predictions. Hum. Mutat., 32, 894–899.

8. Liu,X., Wu,C., Li,C. and Boerwinkle,E. (2016) dbNSFP v3.0: a
one-stop database of functional predictions and annotations for
human nonsynonymous and splice-site SNVs. Hum. Mutat., 37,
235–241.

9. Wang,K., Li,M.Y. and Hakonarson,H. (2010) ANNOVAR:
functional annotation of genetic variants from high-throughput
sequencing data. Nucleic Acids Res., 38, e164.

10. Adzhubei,I.A., Schmidt,S., Peshkin,L., Ramensky,V.E.,
Gerasimova,A., Bork,P., Kondrashov,A.S. and Sunyaev,S.R. (2010)
A method and server for predicting damaging missense mutations.
Nat. Methods, 7, 248–249.

11. Ng,P.C. and Henikoff,S. (2001) Predicting deleterious amino acid
substitutions. Genome Res., 11, 863–874.

12. Gonzalez-Perez,A. and Lopez-Bigas,N. (2011) Improving the
assessment of the outcome of nonsynonymous SNVs with a
consensus deleteriousness score, Condel. Am. J. Hum. Genet., 88,
440–449.

13. Frousios,K., Iliopoulos,C.S., Schlitt,T. and Simpson,M.A. (2013)
Predicting the functional consequences of non-synonymous DNA
sequence variants–evaluation of bioinformatics tools and
development of a consensus strategy. Genomics, 102, 223–228.

14. Lopes,M.C., Joyce,C., Ritchie,G.R., John,S.L., Cunningham,F.,
Asimit,J. and Zeggini,E. (2012) A combined functional annotation
score for non-synonymous variants. Hum. Hered., 73, 47–51.

15. Dong,C., Wei,P., Jian,X., Gibbs,R., Boerwinkle,E., Wang,K. and
Liu,X. (2015) Comparison and integration of deleteriousness
prediction methods for nonsynonymous SNVs in whole exome
sequencing studies. Hum. Mol. Genet., 24, 2125–2137.

16. Kircher,M., Witten,D.M., Jain,P., O’Roak,B.J., Cooper,G.M. and
Shendure,J. (2014) A general framework for estimating the relative
pathogenicity of human genetic variants. Nat. Genet., 46, 310–315.

17. Calabrese,R., Capriotti,E., Fariselli,P., Martelli,P.L. and Casadio,R.
(2009) Functional annotations improve the predictive score of human
disease-related mutations in proteins. Hum. Mutat., 30, 1237–1244.

18. Li,B., Krishnan,V.G., Mort,M.E., Xin,F., Kamati,K.K.,
Cooper,D.N., Mooney,S.D. and Radivojac,P. (2009) Automated
inference of molecular mechanisms of disease from amino acid
substitutions. Bioinformatics, 25, 2744–2750.

19. Schwarz,J.M., Cooper,D.N., Schuelke,M. and Seelow,D. (2014)
MutationTaster2: mutation prediction for the deep-sequencing age.
Nat. Methods, 11, 361–36.

20. Reva,B., Antipin,Y. and Sander,C. (2011) Predicting the functional
impact of protein mutations: application to cancer genomics. Nucleic
Acids Res., 39, e118.

21. Shihab,H.A., Gough,J., Cooper,D.N., Stenson,P.D., Barker,G.L.,
Edwards,K.J., Day,I.N. and Gaunt,T.R. (2013) Predicting the
functional, molecular, and phenotypic consequences of amino acid
substitutions using hidden Markov models. Hum. Mutat., 34, 57–65.

22. Pollard,K.S., Hubisz,M.J., Rosenbloom,K.R. and Siepel,A. (2010)
Detection of nonneutral substitution rates on mammalian
phylogenies. Genome Res., 20, 110–121.

23. Grantham,R. (1974) Amino-acid difference formula to help explain
protein evolution. Science, 185, 862–864.

24. Stenson,P.D., Mort,M., Ball,E.V., Shaw,K., Phillips,A. and
Cooper,D.N. (2014) The Human Gene Mutation Database: building
a comprehensive mutation repository for clinical and molecular
genetics, diagnostic testing and personalized genomic medicine. Hum.
Genet., 133, 1–9.

25. Osler,W. (1921) The Evolution of Modern Medicine. Yale University
Press, New Haven.

26. Imhotep. Encyclopaedia Britannica Online. 16 September 2016, date
last accessed.

27. Kimura,M. (1983) The Neutral Theory of Molecular Evolution.
Cambridge University Press, Cambridge.



e13 Nucleic Acids Research, 2017, Vol. 45, No. 3 PAGE 12 OF 12

28. Gilissen,C., Hoischen,A., Brunner,H.G. and Veltman,J.A. (2012)
Disease gene identification strategies for exome sequencing. Eur. J.
Hum. Genet., 20, 490–497.

29. Li,W.H., Wu,C.I. and Luo,C.C. (1984) Nonrandomness of point
mutation as reflected in nucleotide substitutions in pseudogenes and
its evolutionary implications. J. Mol. Evol., 21, 58–71.

30. R Core Team (2015) A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna.

31. The 1000 Genomes Project Consortium. (2015) A global reference for
human genetic variation. Nature, 526, 68–74.

32. Landrum,M.J., Lee,J.M., Benson,M., Brown,G., Chao,C.,
Chitipiralla,S., Gu,B., Hart,J., Hoffman,D., Hoover,J. et al. (2016)
ClinVar: public archive of interpretations of clinically relevant
variants. Nucleic Acids Res., 44, D862–D868.

33. Honaker,J., King,G. and Blackwell,M. (2011) Amelia II: a program
for missing data. J. Stat. Softw., 45, 1–47.

34. van Buuren,S. and Groothuis-Oudshoorn,K. (2011) mice:
Multivariate Imputation by Chained Equations in R. J. Stat. Softw.,
45, 1–67.

35. Meyer,D., Zeileis,A. and Hornik,K. (2015) vcd: Visualizing
Categorical Data. R Package Version , 1, 4–1.

36. Matthews,B.W. (1975) Comparison of the predicted and observed
secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta,
405, 442–451.

37. Baldi,P., Brunak,S., Chauvin,Y., Andersen,C.A.F. and Nielsen,H.
(2000) Assessing the accuracy of prediction algorithms for
classification: an overview. Bioinformatics, 16, 412–424.

38. Wald,A. (1943) On a statistical generalization of metric spaces. Proc.
Natl. Acad. Sci. U.S.A., 29, 196–197.

39. Robin,X., Turck,N., Hainard,A., Tiberti,N., Lisacek,F., Sanchez,J.C.
and Muller,M. (2011) pROC: an open-source package for R and S+
to analyze and compare ROC curves. BMC Bioinformatics, 12, 77.

40. Therneau,T., Atkinson,B. and Ripley,B. (2015) rpart: Recursive
Partinioning and Regression Trees. R Package Version 4.1-10.

41. Liaw,A. and Wiener,M. (2002) Classification and regression by
randomForest. R. News, 2, 18–22.

42. Olatubosun,A., Valiaho,J., Harkonen,J., Thusberg,J. and Vihinen,M.
(2012) PON-P: integrated predictor for pathogenicity of missense
variants. Hum. Mutat., 33, 1166–1174.

43. Ng,P.C. and Henikoff,S. (2006) Predicting the effects of amino acid
substitutions on protein function. Annu. Rev. Genomics Hum. Genet.,
7, 61–80.

44. Cline,M.S. and Karchin,R. (2011) Using bioinformatics to predict the
functional impact of SNVs. Bioinformatics, 27, 441–448.


