CARDIFF

UNIVERSITY
PRIFYSGOL

Online Research @ Cardiff <&

This is an Open Access document downloaded from ORCA, Cardiff University©s institutional
repository: http://orca.cf.ac.uk/98251/

This is the author's version of a work that was submitted to / accepted for publication.
Citation for final published version:

Yaseen, Muhammad Usman, Anjum, Ashig, Rana, Omer and Hill, Richard 2018. Cloud-based
scalable object detection and classification in video streams. Future Generationt€ddystems
80, pp. 286-298. 10.1016/j.future.2017.02.003 file

Publishers page: http://dx.doi.org/10.1016/].future.2017.02.003
<http://dx.doi.org/10.1016/j.future.2017.02.003>

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page
numbers may not be reflected in this version. For the definitive version of this publication, please
refer to the published source. You are advised to consult the publisher's version if you wish to cite

this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications
made available in ORCA are retained by the copyright holders.

1formation services
gwasanaethau gwybodaeth

Cloud-based Scalable Object Detection and
Classi cation in Video Streams

Muhammad Usman Yaseen, Ashig Anjum, Omer RadaRichard Hill
College of Engineering and Technology, University of Derby, UK

aSchool of Computer Science and Informatics, Cardi University, UK

Abstract

Due to the recent advances in cameras, cell phones and candeos, par-
ticularly the resolution at which they can record an image/ deo, large
amounts of data are generated daily. This video data is ofteso large that
manually inspecting it for useful content can be time consuimg and error
prone, thereby it requires automated analysis to extract @ful information
and metadata. Existing video analysis systems lack automah, scalabil-
ity and operate under a supervised learning domain, requag substantial
amounts of labelled data and training time. We present a clalisbased, au-
tomated video analysis system to process large numbers ofled streams,
where the underlying infrastructure is able to scale basedhahe number
and size of the stream(s) being considered. The system autates the video
analysis process and reduces manual intervention. An opevatusing this
system only speci es which object of interest is to be locaderom the video
streams. Video streams are then automatically fetched fronné cloud stor-
age and analyzed in an unsupervised way. The proposed systeas able to
locate and classify an object of interest from one month of cerded video
streams comprising 175GB in size on a 15 node cloud in 6.52 t®uThe
GPU powered infrastructure took 3 hours to accomplish the sz task. Oc-
cupancy of GPU resources in cloud is optimized and data traesfbetween
CPU and GPU is minimized to achieve high performance. The daaility of

the system is demonstrated along with a classi cation accacy of 95%.

Email addresses: m.yaseen@derby.ac.uk (Muhammad Usman Yaseen),
a.anjum@derby.ac.uk (Ashiq Anjum), ranaof@cardiff.ac.uk (Omer Rana),
r.hill@derby.ac.uk (Richard Hill)

Preprint submitted to Future Generation Computer Systems January 6, 2017

Keywords:
Unsupervised Object Classi cation, Cloud Computing, GPUs, Hjh
Performance Video Analytics.

1. Introduction

The increasing availability and deployment of video camesahas resulted
in the generation of thousands of high resolution videos seims. Such videos
can be sub-divided into a number of frames of interest. Vartis types of
information can be extracted from these video frames, sucks alassi cation
of moving objects corresponding to a specic area of intetes The term
video analytics refers to the optimized processing of thes@leo frames by
using intelligent approaches such as a machine learning, that clusters of
information can be automatically extracted from them.

Video analytics systems mainly perform object detection anagcognition.
Object detection refers to the detection of all instances @ object belong-
ing to a known category, such as faces or cars, within a sequoerof frames.
Often a video may contain a number of objects. These objectarcreside at
any location within a frame, requiring the detection procesto investigate
di erent parts of a frame to locate the object of interest. Olect recogni-
tion, on the other hand, refers to the identi cation of deteted objects. A
video stream and some known labels are provided to the systerit then
assigns the correct labels to the detected objects in a vidstveam. [1][2][3]
describe how video frame analysis can be used to support deien, tracking
and recognition of objects. However, these systems are exgiga in terms of
processing time and cost [4], and require human monitoringnd intervention
[5] and address challenges that are often relevant for stithages [6]. These
systems are also resource intensive. Due to cognitive liadibns, an operator
cannot focus on recorded video streams for more than 20 miesf making it
challenging to perform e cient and robust large scale videanalysis. Scaling
such analysis to large data volumes remains a challenge. Alahally, to gain
greater insights into the analysed video content, computetnally intensive
algorithms (e.g. deep learning algorithms [7]) with large etage require-
ments are needed. This work utilizes the advantages of mawhilearning
based classi cation approaches to develop an automated eil analysis sys-
tem which overcomes these challenges. The focus of this wigko build a
cloud-based robust and scalable solution for the procesgiof large number

of video streams. We employed the detection and classi cati algorithms
in combination to combine the bene ts of both supervised andnsupervised
learning domains. The Haar Cascade Classi er [8] has been dmmstrated
to be highly accurate for object detection, especially foredecting faces in
still images [10]. We have therefore investigated its userfeideo sequences.
Similarly, the Local Binary Pattern Histogram [9] classi cdion algorithm
is widely used, primarily because of its computational sintigity and high
accuracy. Our system requires minimum human interaction fadentifying
objects in a large number of video frames. The system is basad a very
simple object matching concept based on local binary pattes. After the
extraction of desired objects, we employ an object matchinglgorithm to
perform object recognition. This enabled us to perform clascation with-
out any metric learning algorithm and labelled training daa.

An operator using the system only speci es which object of ietest is
to be located. The video streams are then automatically feted from cloud
storage and processed frame by frame. The object is rst deted in a frame
to provide a reference for the location of the object which oabe tracked in
the subsequent frames. It is cropped and saved as a separateage, SO
that the recognition step will have to process a smaller sdamage. The
moving object is then passed on to the subsequent object rgodion phase
for identi cation.

The recognition phase rst analyses the marked input objectit extracts
and stores features from it. This marked object is then compad with all
of the other frames. If the same object is identi ed in any otar frame its
instance is updated and its corresponding time and locatiois saved. If
the comparison fails then it means that the marked object isat present in
the video stream which is currently being processed. This mk&d object is
then fed to the next video stream and the same process is refggh De-
pending upon the features being considered, a decision isdeavhether the
object is present in the analysed video stream. If the obje located in the
video stream, its time and location is saved and updated. T&imechanism
is performed for all the video streams and cumulative time anlocations are
stored in a database. Statistical similarity measures aresad to compare
extracted frames. To support scalability and throughput, he system is de-
ployed on compute nodes that have a combination of CPU and GPWjjthin
a cloud system. This also enables on-the- y and on-demandalysis of video
streams.

The main contributions of this paper are as follows: Firstlya robust

3

video analysis system is proposed which employs two leargialgorithms in
combination, to perform quick analysis on large numbers oideo streams.
Secondly, we perform object classi cation on the extractedbjects in an au-
tomated and unsupervised way. No training or manually labeledataset is
required in our approach. Thirdly, the proposed system is alable with high
throughput as it is deployed on a cloud based infrastructuréhat have a com-
bination of CPU and GPU.

The paper is structured as follows: Section 2 compares our nkowith re-
lated approaches, providing a survey of the most recently ed features and
classi ers for object detection and recognition. The proped approach and
its architecture are explained in Sections 3 and 4 respeatly. The imple-
mentation of the proposed system is described in Section SecHon 6 details
the experimental setup and Section 7 reveals the results alpted from im-
plementation in terms of accuracy, scalability, performace and throughput.
The conclusions drawn from the work and the future directianare presented
in Section 8.

2. Related Work

Signi cant literature already exists for image and video pwcessing. How-
ever, the e ective use of these techniques for analysing ardea volume of
video data, the size of which may not be known ‘'a priori', is mited. Ad-
ditionally, carrying out such analysis on scalable/elastiinfrastructures also
remains limited at present.

Object Classi cation Approaches:Object classi cation has been an area
of great interest for the past decade. Yuanging et al. [11] gposed an
automated fast feature extraction approach for large scaimage classi cation
using Support Vector Machines. Similarly Nikam et al. [12] deloped a
scalable and parallel rule based system to classify largeage datasets and
concluded that the system is reliable, with computation tine decreasing as
the number of nodes increase.

Giang et al. [13] used CNN to di erentiate between pedestrianand non-
pedestrians in an urban environment. They scan input images di erent
scales, and at each scale all windows of xed size are proeesby a CNN
classi er to determine whether an input window is pedestria or not. Fea-
ture extraction and classi cation phases were integratechione single fully
adaptive structure. All three layers of CNN i.e. convolution ayers, sub-
sampling layers, and output layers were used to perform cta€ation. This

4

work showed that it is possible to lower training time while raintaining a
threshold classi cation rate.

In another study, Masayuki et al.[14] implemented a parallecascade of
classi ers consisting of a large number of stages. The rstage contains
a subset of features selected from training data that e cietty distinguish
two classes. The cascade is then applied on the training datghere more
false positives are observed. A new training set is formed lmpmbining
the misclassi cation which are then used for second stage cdiscade. This
procedure continues until an acceptable performance in aaining sequence
is achieved. According to the authors, the later stages are nexecuted too
often, so only early stages were executed in parallel, leagito a reduced total
processing time. To make such a cascade of classi ers moredive, Xusheng
et al. [15] exploited the use of genetic algorithms as a posptonization
procedure for each stage classi er and achieved a speedu22%o.

Xing et al. [16] used multiple independent features to train aet of classi-
ers online, which collaboratewith each other to classify the unlabelled data.
This newly labeled data is then used to update classi ers ugj co-training.
The independent features which were used are Histogram ofesried Gra-
dients(HoG) and color histograms. A Support Vector MachineSVM) was
trained by each feature and nal classi cation results wer@roduced by com-
bining the outputs of all SVMs.

Principle components of a face image generated from prinl@pcompo-
nent analysis(PCA)[35] are known as eigen faces and are usadvarious
works [36][37] for classi cation. Facial recognition pesfmed by PCA is in-
sensitive to facial expressions. However, performance dadgs in extreme
lighting conditions. Linear discriminant analysis(LDA) [38] was used to gen-
erate Fisher Faces and proved to outperform PCA in face recagion tasks
under complex conditions. LDA provided a way to overcome thghortcom-
ings of the PCA approach but it can face the small sample sizegblem.
Independent component analysis (ICA) [39] is a generalizati of principle
component analysis and was used in various works for faciatognition. The
objective of ICA is same as PCA but it generates spatially latized features.
In contrast to PCA, no information in images is destroyed by ugg this tech-
nique. But one also has to compromise on redundant informat present in
the images which makes this technique computationally expsive.

The analysis of video streams has been the focus of many conuia
vendors recently. An intelligent system Vi-System [40] was deloped for the
surveillance and monitoring of objects in crowds. It was bad on analytical

5

rules and was capable of generating alerts on de ned pararees. SmartC-
CTV [41] on the other hand is mainly used in UK transportation gstems
and provides optical based survey solutions and video ineidt detection sys-
tems. Project BESAFE [42] and Intelligent Vision [43] are tool$o perform
intelligent video analysis for fully automated video monitring of premises.
Their services include tracking of abnormal behaviour of pple and detec-
tion of their activities. One of the embedded video analytisystems is IVA
5.6 [44] which facilitates the detection and tracking of mamg objects. It
has the capability to detect inactive and removed objects,sawvell as loitering
and object trajectories. However, most of these commerciajstems have
the limitation of scalability for a large number of streams ad require high
bandwidth for video stream transmission.

Object Classi cation in the Clouds: When object classi cation is needed
to be performed on large scale datasets, it requires larg@stge and compu-
tational resources. E cient object classi cation using cbud systems has also
been explored in the literature, by managing distribution bvideo streams
and load balancing among various available cloud nodes [23} pervasive
cloud computing infrastructure was utilized in [24] to recgnize food images.
Cloud computing was used to process images of di erent kind$ foods using
di ering lighting conditions, in various colors and viewirg angles. However,
the authors concluded that it is not promising to use the cladi computing
paradigm for small datasets as job preparation overheadsdiece the perfor-
mance of the system.

A Hadoop based object classi cation system was implementeq [25] by
using two dimensional principle component analysis. In atiter study, a
massively parallel cloud computing architecture was prested [26] to clas-
sify astronomical images. A large scale video processingteyn was demon-
strated by [27][34] using MapReduce clusters. However, nhohancement in
the video processing routines was presented in these stidie

Recently, the use of GPUs as a high performance resource foe tpro-
cessing of large scale video data has become an active redearea [28], as
GPUs support a multi-threaded architecture and o er abundabh computa-
tional power. They have been used for various large scale eaprocessing
tasks such as object detection [29], motion estimation [3@nd object recog-
nition by using deep belief networks [31] and sparse codir82]. It has been
demonstrated in these studies that a speedup of 5 to 15 timeancbe achieved
as compared to the use of standard CPUs [33].

The accuracy and performance of an object classi cation g is highly

6

dependent on the similarity metric along with good visual neresentation.
Most of the recent object classi cation approaches do prade good visual
representation but also necessitate learning a dataset speenetric. It helps
to learn and understand the underlying regularities of a sgéec dataset which
in turn results in improved performance. However, this phemoenon is time
consuming because a large number of training examples mus btollected
and labeled manually. The collection of large number of traing examples
and their labeling is itself a major challenge. Although thestraining ex-
amples enable the system to capture variations in object apprances, they
also burden the training process [17, 18]. Machine learniagproaches such
as semi supervised learning and unsupervised learning arevay to reduce
the time required for the training process. They train the sstem with a
small number of completely labeled examples and another st unlabeled
examples which reduces computation time.

The focus of this paper is to propose a cloud based video arsidysystem
that has a combination of CPU and GPU-based compute nodes toenitify
objects of interest from a large number of video streams. Thmoposed sys-
tem requires minimum human interaction and performs objeatlassi cation
in an unsupervised way. It is scalable and supports procesgiof large num-
ber of recorded video streams as compared to existing cloudsked video
analytics approaches.

3. Video Analysis Approach

We present the approach behind our video analysis system ihig sec-
tion. Each video stream is rst decoded to extract individuhvideo frames.
The objects of interest are extracted from the video framesy/tetecting and
cropping around the area of detection. The local patterns &ach extracted
object are then generated and stored in the associated bu.e©bject match-
ing is then performed on the generated local features. Thergzated results
are then stored in the database. Algorithm 1 shows the apprdaased in our
object classi cation system.

The system applies multiple machine learning algorithms rfadetection
and recognition. The algorithms are employed in such a waydhthe results
produced by one algorithm are processed further by the foling algorithm.
The rst algorithm is used to extract the object of interest fom the whole
frame in such a way that it narrows down the image area. The resf the
frame which contains unwanted information is discarded toage processing

7

Algorithm 1 Object Classi cation
1: for all streams in the database do

2 for all decoded frames from streamdo

3 Launch object detection module

4 Extract (crop) desired object from frame

5: Generate local patterns for the extracted object
6 Store generated patterns in an associated bu er
7 end for

8 for all object recognition patterns in

9 the database do

10: Launch object matching module

11: Compare stored patterns with marked objects
12: Generate matching scores for each object
13: Store results in the database

14: end for

15: end for

time and resources. This algorithm independently operates all the frames
in a sequence. This results in the extraction of all the desid objects from
all the video frames. Figure 1 presents the process followedaur approach.

3.1. Object Detection and Classi cation

We have used the Haar Cascade Frontal Face Classi er algonithfor the
extraction of human faces. The extraction of desired face®in the frames
helps to improve the performance of the system in two ways:) (since the
frame area is reduced so the analysis algorithm now has to pess a smaller
sized frame as compared to original one. This reduces the pegsing time
of individual frames and in turn reduces the overall proceisg time of the
whole video. (ii) as the frame has been narrowed down to onhpject(s)
of interest, by removing the unwanted area of the frame, it mo contains
only the desired object. The illumination e ects and noise hich have the
possibility to be present in the unwanted area will not re etin the object
recognition process. This will lead to improvements in thecguracy of overall
system.

The extracted objects are then processed via the object regition phase,
which generates local binary patterns of all the extractedojects. These local
binary patterns serve as features which can be used for thecognition of a

Video Streams DataBase

Video Decoding
ot
Launch Object Detection

1)

Extract Desired Object

Loop until whole

video is decoded i \—

Generate Object
Recognition Signatures

Store Object Signatures in
buffer

(—

Launch Object e
Matching :“> Results
Storage

Module
DataBase

All frames
decoded?

Figure 1: Video Processing Work ow

known object. These features represent the extracted obfedn such a way
that they become highly discriminative to various gray-lesl changes in the
objects.

We have used the extended version of the local binary pattewperator
which makes the use of uniform patterns. The use of uniform parns helps
to decrease the size of feature vector. Since we are calaulgtthe local
binary patterns of a huge dataset, the use of uniform pattemhelps to lower
the computation cost. Uniform patterns work on the phenomenothat some
of the patterns occur more frequently than other patterns. Adattern is said
to be uniform if there are a maximum of two bit-wise transitios from 1 to O
or vice versa. The patterns 01110000 and 11001111 have twansitions and
are thus uniform. These uniform patterns are used during theomputation
of LBP labels with a separate label for each uniform patternThe rest of the

non-uniform patterns are labeled with a single label.

The computation of the local pattern features is a compute tansive pro-
cedure as it involves the manipulation of every pixel in theigeo frame. The
porting of this compute intensive procedure to GPUs is perfored to reduce
the computation demands. A GPU kernel is developed for thisuppose. It
performs the procedure of local pattern feature generation parallel instead
of sequential processing as in a CPU. Figure 2 shows the relatibetween
Haar Cascade Classi er and the LBPH algorithm.

The extracted human faces from the video streams are repreta in the
form of histograms by their binary pattern representation.The comparison
of the marked face has then been made with the faces extracttdm the
video streams by simply computing the similarity measure iween them.
The proposed system does not require learning a data specigetric in
order to compare faces. The representation of the faces igpahle enough
to distinguish the underlying irregularities of the datase The proposed
face matching algorithm (algorithm 2) has proved to be genierand is not
adapted to any dataset. It is capable of identifying faces dm the video
streams without requiring any complex similarity metric-earning algorithm,
pre-labeled dataset, any other supervised learning modelany outside data
from other sources.

An object matching algorithm is applied on the local pattern®f detected
objects for recognition. The recognition process is perfoed by comparing
the detected object features with the stored object infornteon. The com-
parison is made on the basis of histogram intersection whidh used as a
distance measure. The histogram intersection can be calatdd as [21]:

x
D(S;M) = min (Sy; Mp) 1)
b 1
where 'S' and 'M' are a pair of histograms of two video framesataining 'B'
bins.

Each comparison generates a score of each individual regisd in a
database. These scores obtained after performing the higtam intersec-
tion determine the recognition of a marked person which waslng searched
in the video streams. We have used a threshold of 90 percenttefain our
experiments. We obtained over 90 percent accuracy rate insgaof match-
ing individual objects. The matching scores for unmatchedcdividuals is
70 percent or below. The matching scores along with locatisrand time of

10

presence are stored in the database. This module is totallpsupervised and
is independent of any metric learning stage. The recognitiois performed
only on the basis of similarity measure between the feature$ two objects.

The performance of any object classi cation system can be ected by the
facial structure constraints (gender, ethnicity) and the iewing parameters
such as illumination and viewpoint. In addition, a humber ofperceptual
complications can occur due to the movement of objects in \&d streams.
The facial movements of a person can be classi ed as rigid avmrigid. The
rigid movements include tilting, nodding or shaking aroundhe vertical axis.
These movements can change the angle of a face from a staticnpoOn
the other hand, non-rigid movements take place due to faci&xpressions
and eye-gaze during speech. These movements can distort ttentifying
features of the face. A smiling facial expression can strdpgli er from a
surprised facial expression. This di erence occurs due tbé relative change
in position of the eyebrows with respect to nose, mouth or oén features.

It was observed during the experiments that because of thesdriminative
power of the LBPH operator, it is capable to perform well at kv level of
perceptual complications. The LBPH operator has shown itsgsformance
for various rigid and non-rigid movements by providing highaccuracy rates.
Also, since the dataset is generated under controlled conidits, it does not
pose signi cant changes to illumination or viewpoint.

Algorithm 2 Object Matching

1. procedure ObjectMatching

2. Compute LBP Histogram of Marked Object

3 Compute LBP Histograms of Objects in Video Streams

4 for all Objects in Video Streams do

5 Compute Histogramintersection of MarkedObject with Objed in
Streams

6: if IntersectionResult> 0.9 then
7. ObjectFound

8: else

9: ObjectNotFound

10: end for

11

S5 i‘? ncmon G ﬁ% fi’ﬁ
Compute Cluster \
% % #Cmudsmmgeé # $
(Compulel\lode1 ComputeNodeZ% o o o W
)

Classification

‘ Object Extraction Module ‘

Object
P [Recognition

Pa}i'ns

Object Matching Module I

i Object
Object Object =
RECOgN itioN| ee—py iatehin Matching |
Patterns g8 Results

Analytics

Object Desired
Detection Objects

\ 4

Database

Figure 2: System Architecture

4. System Architecture

The overall architecture of the system is illustrated in Figte 2. The
proposed system provides scalable and automated classtioa of objects in
a large number of video streams in an unsupervised way. It isdependent
of the need of labelled training data and metric learning stee. The use
of GPU-enabled cloud nodes enables the system to achieve htghough-
put. Scalability challenge is also addressed by leveragitige bene ts of
GPU mounted servers in the cloud. The transfer time overheaof moving
the video data from the camera to cloud storage is not consi@el in this
work. This overhead is dependent on the speed of the networkmmecting
the camera/data capture source to the cloud system.

The video streams are rst fetched from cloud storage and amaecoded
to extract individual video frames. The decoded individuaVideo frames are
stored in the input frame bu er. This bu er is a temporary storage in main
memory for decoded video frames. The recorded video streaane encoded
with the H.264 encoder to save storage space. Each video sitneia recorded

12

at 25 frames per second, with 3000 (120*25) video frames fovideo stream
of 120 seconds length. The number of decoded video frames epehdent
upon the length of video stream being analyzed.

Each frame is then processed individually for object detdonh and recog-
nition. The objects of interest are rst detected using the Har Cascade
Classi er algorithm. This detection helps to extract only he desired objects
from the overall frame. The extracted objects are stored in memory bu er
for further processing.

We have used the already trained frontal face classi er foredection of
human faces from video streams. Training is not performeds®ately and
saves the computation cost of training. The computation cosf the detector
is highly dependent on the number of features being evaludte The small
number of features means low computational cost but the clsiser will also
be less accurate. A classi er with more features results ingher classi er ac-
curacy. It was noted during the experiments that a frontal fae classi er built
on 25 feature stages provides a detection rate of 95 perceifihe computa-
tion time depends on the resolution of the video frame. So theeis a trade-o
between the computation cost and accuracy of the classi eEigure 3 shows
the elapsed time for various stages of the object detectorthin a CPU node.
We have also analysed the execution time of a video stream it a CPU
node for various processing stages including local binargtgern histogram.
Figure 3 also depicts the execution time of these stages.

The next module after the extraction of desired objects is @éture gener-
ation module. This module generates the local patterns agai each detected
object. These local patterns serve as features which arethar used to rec-
ognize the marked object. This module mainly consists of thexecution of
local binary pattern histogram. A histogram of each of the dected objects
is created and stored in the bu er as an output of this module.We have
used a pro ling mechanism to identify the compute intensivesteps of our
system. The generation of local pattern features is a computntensive pro-
cess. This compute intensive feature generation processteeen ported to
GPUs, through the design/ implementation of a kernel which pérms gen-
eration of local patterns on GPUs. Each pixel of the video fraenis mapped
to a thread. This thread is then responsible for launching keel for each
pixel and processing it in parallel. The size of the thread btk is depen-
dent on the size of the frame. These threads work in a synchars way to
process frame data in parallel. A high level of parallelisns iachieved since
each pixel in the video frame is processed in parallel. Ondeetprocessing

13

Function Name Elapsed Inclusive Time % Elapsed Exclusive Time %

= rain 8229 0.00
= ObjectDetection:detectbects T143 .00
e qe_lnveker 7089 1135
Cascedellossfiss 5953 3288

W evaliWeakC lassilier 18.26 1826

Total Execution Time

I R=ad/VWrits memorny aliocation

Figure 3: Execution Time of Various Modules

of frame bu er is completed, the resulting processed frams stored in an
output bu er.

5. System Implementation

This section provides a description of the system componentheir func-
tionality and implementation. The operations employed to mpcess video
streams to support object detection and recognition are aslescribed.

5.1. Video Decoding

The video streams are decoded to extract individual video fnees. These
frames are then transferred to the processing module to enalthe detec-
tion and recognition process to be carried out. Hence, eactarne can be
processed independently of each other. This approach erexbkhe process
ing of individual frames on cloud resources, leading to highroughput and
scalability.

5.2. Object Extraction

After the frame is decoded from the video stream, the next steig to
extract faces from frames using an object detection algdnin. We have

14

T 7 e T o I e) A

115] 2] 6 143 20126

FEEA Y E 8 |17]25(|34|

315 | 6] 4| [1125 3952

Original Image Integral Image
Figure 4. Extracted faces from Figure 5: Original and Integral Im-
video streams age

used Haar Cascade Classi er for this purpose. The input image cropped

automatically around the output of Haar Cascade algorithm fiothe next step

i.e. face recognition. This helps to narrow down the area ahage to a small
rectangle containing the desired face. Figure 4 shows somehd extracted

faces from the video streams. We also monitor the persistenof an object
across multiple frames of a video stream. In this way, althgin each frame
is individiually processed, tracking an object across mutile frames enables
us to monitor its presence over a particular time period.

The Haar Cascade Classi er is constructed on top of Haar feaes which
are extracted from objects present in video frames. In ordeéo make the
classi er scale-invariant, a frame pyramid approach [22]ds been used. The
pyramid represents the same frame in multiple scales and é&tes the detector
to be scale invariant. Objects with varying image sizes camgly be detected
through the pyramid approach. An object pyramid can be consticted by
using a down-sampling approach which samples the frame bysoscale in each
iteration. An integral image for each scale in the pyramid isten calculated to
speed up the process of generating a pixels sum. Integral geg19] helps to
compute the summation of pixels present in a rectangular rg by utilizing
only four pixel corners. This approach of using integral inges is highly
e cient, especially for the cases in which the pixel sum of ntey rectangular
regions of the same image need to be computed. Since the diteases the
sliding window approach and a pixel sum for each shifted wiod is required,
this approach reduces the complexity of the overall procesBigure 5 shows
a representation of the integral image.

The sliding window is used, pixel by pixel, on the whole framm search
of an object (e.g. a face). The area under the sliding window passed to the
cascaded classi er. As most of the image area is a non-faceioagt groups
the features into di erent stages based on the classiers ad. The region
that passes all stages of the cascaded classier is a face. eTérea under

15

the sliding window is required to be passed through all stag®f the cascade
classier. If at any stage, the input region is unable to pasthe stage by
not meeting the required threshold, it is immediately rejged. If the region

passes all the stages successfully, then it is consideredbt the face. On
detection, an object recognition algorithm is invoked.

5.3. Local Feature Generation

Each detected object of interest is then analysed, by usingBPH. The
algorithm computes local binary patterns in order to geneta feature vectors.
In order to compute LBP features, the examined window is digded into
multiple cells. Each cell contains a sub-block of 33 pixels. Then each pixel
in the sub-block is compared to its neighboring pixels. If # value of centre
pixel is greater than its neighbor pixel, 1 is stored at the lmation of that
pixel. If the values of centre pixel is less than the neighbiag pixel, the gray
value of that pixel is replaced with 0. This makes the sub-btik a binary
block containing 0 and 1 depending upon its pixel values. This known as
the labeling of pixels. These labelled pixels generate a by pattern which
is then converted into one decimal value. The gray value of riee pixel is
then replaced with the decimal value. This procedure is repged on the
whole image and an LBP image is obtained. A histogram is theralculated
over the frequency of each number occurrence. This histograives a feature
vector of the window.

In order to perform face recognition, the face image is dived into mul-
tiple blocks or regions. Then for each block or region, an LBRistogram is
computed as explained above. The feature vector of the whdlaeage is a
combination of all LBP histograms of all regions in an imagd-igure 6 shows
the original faces and the LBP computed faces from video sémas.

5.4. Similarity Measure

This procedure of LBP histogram generation is performed faall the
video frames and the image which is to be matched. Matching performed
by comparing the LBP histogram of the marked object frame wit all the
frames of a video stream. The histogram intersection is used a distance
measure to calculate the similarity between two frames. Aftex person's face
is authenticated correctly, the matching score associatdd it is stored in a
database. This phenomenon can be visualized in gure 7.

16

Figure 7: Visualization of matching
Figure 6: Original and LBP Faces process

5.5. Local Pattern Feature Generation on GPUs

Generation of local patterns from a video frame is a computatensive
procedure. It is therefore ported to GPUs to reduce the compation de-
mands. A GPU kernel is designed and implemented to performithproce-
dure. The processing of pixels is sequential in CPU based ilamentation.
The processing time even increases exponentially as the ran of video
frames increases.

Conversely, the GPU implementation works in a parallel fasbn. GPU
implementation is known as GPU kernel and is executed by a nirar of
threads generated by a GPU. The number of threads that a GPU cayenerate
depends upon the processing cores of a GPU, memory and regsstdt is
also dependent upon the size of thread block and grid. Sincach pixel is
mapped to an individual thread, the number of generated theels should be
equal to the number of pixels in a video frame. The availabijit of frame
data in GPU memory enables the parallel processing of eachxgli Upon
completion of the frame data processing, the processed framata is copied
back to a CPU memory bu er (host) from GPU memory bu er (host).

We have used Compute Unied Device Architecture(CUDA) to imple
ment and generate local pattern features on GPUs. It uses SIM{®ingle
Instruction Multiple Data) parallel programming model and provides a col-
lection of APIs to execute instructions on a GPU. A CUDA programnitiates
on a CPU and processes data on a GPU through CUDA kernels. The GP
memory is rst allocated, so that frame data can be transfead from CPU
to GPU. The size of the GPU memory is allocated according to theize of
video frame. Three di erent data transfer mechanisms inclling page-able
memory, pinned memory and zero copy have been implementeddaiested

17

in this work. Upon successful completion of frame processjrige results are
transferred back to the CPU memory.

The GPU kernel is executed by a number of threads. There can be
a maximum of 32 threads in a warp and each thread block has nuroas
warps. Thread blocks are further grouped into grid. It is thaesponsibility
of the CUDA Work Distributor (CWD) to allocate thread blocks on a GPU.
At the rst step of kernel execution, these thread blocks arallocated. Kernel
execution is performed in parallel with the help of CUDA strems.

The proposed system works partially on CPUs and partially on BUs.
The decoding of frames from video streams and extraction cicles is per-
formed on a CPU. The compute intensive process of generatiohlacal fea-
tures is performed on a GPU using the CUDA kernel. The proceskessults
are then transferred back to CPU. The results section providea more de-
tailed analysis of the accuracy of recognised objects ancetprocessing time
of the system.

6. Experimental Setup

This section provides the details of our experimental setupsed to eval-
uate the proposed system. The parameters used to evaluateetiperfor-
mance of the system are the accuracy of the algorithms, preseng speed-up
achieved, resource consumption, scalability, and procasgtime of each video
frame. The purpose of cloud based deployment is to evaluateet scalability
of the system. The cloud deployment with GPUs evaluates the germance,
throughput, resource consumption and processing time ofdgo streams.

The con guration of the cloud resources is as follows: theatld instance
has Ubuntu LTS 14.04.1 and is running OpenStack Icehouse. Theare six
server machines and each server machine is equipped with b?es. Each
server is running with 6-core Intel Xeon Processors at 2.4 Ghat has a
storage capacity of 2 Terabyte with 32GB RAM. The cloud instace is con-
gured with 192GB RAM, storage capacity of 12TB and 72 process cores.
OpenStack provides a dashboard to manage and control the oesces such
as storage, network and pool of computers.

A cluster consisting of 15 nodes is con gured to evaluate theroposed
system. The con guration of each node is as follows: 4 VCPU muning at
2.4GHz with 8GB RAM. Each node is con gured with a storage capéy of
100GB. The evaluation parameters to measure the performamnof the system
include total analysis time of the system, impact of task paillelism on each

18

node and the variations of compute nodes in the cloud. This pe&rimental
setup helps to measure the performance of the system for sdality and
robustness with varying cloud con gurations.

The Hadoop MapReduce framework is utilised to evaluate the sgm
in cloud resources. Hadoop comes with Yarn which is resporisilfor man-
aging resources and scheduling jobs for the running process It further
facilitates with a NameNode in charge for the management of nes, a
Data/ComputeNode to process and store the data, and a JobTraekfor the
tracking of running jobs. These components of Hadoop MapRetkI frame-
work help to schedule and analyze tasks on the available nsda parallel.

The accuracy and performance of the proposed system is ewdd on
cloud nodes with 2 GPUs. The nodes are equipped with Intel Coré 3.60
GHz processors with 16 GB RAM. Each node is supported with an ASUS
GeForce GTX 780 GPU. This Kepler architecture based GPU is eiched
with 12 Streaming Microprocessors (SM). It has 2304 CUDA c@eand a
memory of 3 GB. A total of 2048 threads can be generated in pded by
each streaming processor. These threads are executed in @4ps and each
warp has the capability to execute 32 threads in parallel. Aoktal memory of
512 KB is possessed by each thread and there are 255 regispansthread.
Each streaming microprocessor (SM) uses 16 thread blockshw2048 bytes
of shared memory per block.

The GT610 GPU has 48 CUDA cores with a memory of 1GB. The archi-
tecture of this GPU is Fermi-based and has one streaming maprocessor.
The streaming microprocessor can support a total of 8 thredalocks. It can
support 48 warps per SM and each warp contains 32 threads. Batread
has a total of 63 registers and a local memory of 512kb.

The dataset is self-generated consisting of videos of hunfaces of various
individuals. The video streams recorded for the experimentare relatively
simple (captured under controlled environmental condities with faces posing
towards a camera) and does not pose challenges such as ilhation or head
pose. The total video data used for the experimentation coisss of one
month of video streams. Each video stream has a duration of 2econds.
The video streams are encoded with H.264 format. The frame eafor each
video stream is 25fps. The data rate and bitrate for each videstream
are 421kbps and 461kbps respectively. The decoding of eadthew stream
generates a frame set of 3000 video frames. Each video framéds a data
size of 371kb.

19

7. Experimental Results

This section explains the results obtained by executing thexperiments
with the dataset and the experimental setup with two di erert con gurations
described in Section 6. This section is further divided intthree subsections.
The rst subsection explains the accuracy of the object clascation system
and the speedup achieved by the cropping process. The secoulsgction
explains the throughput and performance of the system for deo stream
decoding, transfer of data between CPU to GPU and vice versa perfor-
mance gains achieved by utilising the GPUs for compute inteine parts of
the algorithm. The third subsection explains the scalabtly and robustness
of the whole system by analysing decoded video streams andrtsferring
the video data from local storage to cloud nodes. It also meass the time
required to analyse video data on the cloud nodes and gathegithe results
after the completion of analysis. A discussion of the obsations from these
results is also provided in this section.

7.1. Performance of the unsupervised object classi cation

The performance of the unsupervised object classi catiolystem is evalu-
ated by measuring the accuracy to classify objects and theegxlup achieved
by the cropping process.

7.1.1. Object Classi cation Accuracy

The marked object which is to be identi ed in the video streanis matched
with all the frames of a video stream. Each video stream (amgnthree
testing video streams) contains video frames of a single imlual. The
target face is present in the rst testing video stream, the ther two testing
video streams have di erent individuals. The video streameecorded for the
experiments are relatively simple (captured under contridd environmental
conditions with faces posing towards camera) and do not poskallenges
such as illumination or head pose. All the three testing videstreams have
di erent individuals in each video stream. It is to be noted hat for a video
stream with a frame per second rate of 25, we decoded only 5nfies per
second. It is obvious that no change can occur in such a shontérval of
time, so processing all the frames would only increase theopessing time.
Table 1 shows the matching results of a marked object with mtiple frames
of multiple video streams.

20

Frames VideoStream1 | VideoStream?2 | VideoStream3
1 1 0.7437 0.7624
2 0.9613 0.7424 0.7594
3 0.9629 0.7434 0.758
4 0.963 0.7351 0.7546
5 0.9646 0.7339 0.7552
6 0.9665 0.7271 0.7573
7 0.9573 0.7266 0.7575
8 0.9525 0.7308 0.7512
9 0.9619 0.7285 0.7512
10 0.9453 0.7272 0.7626

AVG (120seconds) 0.943 0.745 0.756

STD (120seconds 0.0256 0.0127 0.0128

Table 1: Matching results of a person in multiple video streams

The values in the columns represent the distance measure cénked ob-
ject against di erent objects of multiple video streams usig the LBPH algo-
rithm. The values near to 1 depict a closer match of marked obgt. It can be
seen from the table that all values in the column of video staen 1 are above
90 percent. This shows that the marked object is present in ¢hvideo stream
1. On the other hand, all values in the second and third videdreams are
below 90 percent and depict that the marked object is not prest in these
video streams. We have used a threshold of 90 percent to digfuish between
the matched and unmatched objects. Figure 8 shows the videaedms in
which the marked object is most likely to reside.

It can be seen from the gure that video stream 1 has the higheproba-
bility of having the marked object. The other two streams arenot probable
to contain the marked object. Local binary pattern histogran hence provides
a good measure for the presence of marked objects in videceans.

7.1.2. Cropped Frame Processing Time

A signi cant amount of speedup is achieved in the processirtime of
each frame due to the object detection approach. Cropping ofvadeo frame
around the detected object helped to reduce the processingafor the LBPH
algorithm. The resolution of overall video frame is decread which in turn

21

Presence of marked object Frarme Processing Time

I Ul Frame Time
I Cropped Frame Time

N —-8—-Video Stream1
| S S —&— Video Stream2
0951 ——*— Video Stream3 [

Accuracy
o
w
&
Time({ms)
o = ow A& o o 4 ® @

% r | | |
071 é é lll é é "/ é é 10 0 2 4‘1| IE;L g 10 12 14 1!3 18
MNumber of Frames Number of Frames
Figure 8: Presence of marked object Figure 9: Frame processing time of
in multiple streams individual frames

reduced the overall processing time of each frame. The presmg time of
each individual frame before cropping and after cropping salculated and is
shown in Figure 9.

The decrease in processing time is because of the fact thag tkesolution is
reduced signi cantly because of cropping. The video used tihis experiment
had a frame resolution of 640 480. However, the detected object which
was extracted from the whole frame and later used by LBPH foromparison
had a resolution of around 160 160 in most of the cases. This decrease in
resolution improved the total frame processing time by alnsd 90%.

7.2. Object Classi cation on GPUs

This section describes the throughput and performance ofdtobject clas-
si cation system. The analysis of object classi cation syem on GPU can
be divided into two major steps i) time required for decodin@ video stream
and transferring it from CPU to GPU memory, ii) time requiredto process
the video frame data for object classi cation. The performace measures of
these two major steps are explained in the rest of this subsien.

7.2.1. Data Transfer Time

We have tested three di erent memory allocation techniqueto transfer
data from CPU to GPU and then back from GPU to CPU. The three tech
niques are page-able memory, pinned memory and zero copy.eTéect of
these three techniques has been demonstrated by varying tember of video
streams from 1 to 10. A total memory allocation of 371.712 KBs required
by each video frame with a resolution of 704 528. A video stream recorded

22

at 25 frames per second has a data transfer rate of 10.89 MB m&cond.
For a varying number of video streams from 1 to 10, the data tresfer per
second varied from 10.89 MB to 108.9 MB. It has been observduht zero
copy memory allocation technique remained fastest amongethhree tech-
niques for transferring video frame data from CPU to GPU andige versa.
The time taken by each technique is summarised in Table 2.

CUDA Data Transfer Time (in Milliseconds)
Streams CPL.J to GPU GPL-J to CPU
Pageable| Pinned | Zero Copy | Pageable| Pinned | Zero Copy

1 0.113 0.104 0.001 0.123 0.1 0.001
2 0.212 0.117 0.025 0.16 0.151 0.011
3 0.321 0.208 0.12 0.311 0.233 0.0869
4 0.36 0.215 0.126 0.374 0.293 0.126
5 0.42 0.286 0.197 0.438 0.415 0.196
6 0.471 0.313 0.216 0.489 0.502 0.275
7 0.56 0.373 0.267 0.597 0.686 0.328
8 0.612 0.431 0.316 0.65 0.83 0.38
9 0.643 0.499 0.322 0.795 0.878 0.485
10 0.733 0.517 0.397 0.872 0.982 0.509

Table 2: Data Transfer Time from CPU to GPU and GPU to CPU

7.2.2. Frame Processing Time

The total time taken to process an individual frame of a videstream
is calculated by using the three memory allocation technigs discussed in
the previous section. The total time required to process amdividual video
frame is the sum of time required to read and decode a frameafisfer time
from CPU to GPU and GPU to CPU and the time required to compute
local binary pattern of frame. Figure 10 depicts the elapsedne of di erent
frame processing operations by each memory allocation teaue. It has
been observed that zero copy remained the most e cient mechesm because
of direct video frame data access from GPU to CPU. GPU memory drkess

23

=
2

I Frame Reading & Decoding
[CPU to GPU Data Transfer

[GPUto CPU Data Transfer []
I Frame Processing

oy
@

= e} = o}
[9%} I o
T

Total Frame Processing Time {ms)

e]
=

FPageable Memory Pinned Memary Zero Copy

Figure 10: Comparison across di erent memory allocation techniques

space is mapped to CPU memory address space in the zero copglmaism,
so a GPU can access CPU memory as its own address space. Thippiray
also enables the GPU to access a particular memory locationhost memory
whenever data is copied from host to device. The same proceelis followed
to copy data back to the host from GPU memory.

Another way to quantify the performance of the system is to meare the
number of frames processed per second. The number of framexcpssed per
second using the three memory allocation mechanisms is cééted and de-
picted in gure 11. As it was predicted, the highest throughptiis achieved
by the zero copy mechanism with varying number of video strass. It is
observed that two video streams per GPU provided the most aptum per-
formance by processing almost 100 frames per second. Theadafnsfer
time from CPU to GPU and GPU to CPU remained optimized with two
CUDA streams as described in Table 2.

7.2.3. Computation Time with Varying Video Resolutions

The processing time of a video frame is highly dependent orethesolution
of a video frame. For a high resolution video frame, more comm@ation time
is required as more data is needed to be processed. We haveetksi erent
video streams with varying resolutions on the system and cqmted the total
processing time. This time includes the time required to paess the frame

24

140

T 100
I Pageable Memory I Stand-alone CPU node ||
[Pinned Memory 90| =] Cloud node with GT610
I Zero Copy I Cloud node with GTX 780

120+

100+

80

ssing Per Second

60

es Proce:

am

40r
20

07 N Iﬂl IHI |H| |D| IUI Elul]

1

256x144 352x240 480x360 640x4B0 704x528 1280x720 1920x1080
Varying Video Resolutions

Number of Video Streams

Figure 11: Frame processing time Figure 12: Video Processing com-
and number of video streams parison on di erent platforms

as well as the video decoding time. The generated results also compared
with the results produced by stand-alone CPU node as depicen Figure
12.

It has been observed that optimum utilization of GPUs can be &geved
by having the videos with high resolution. The processing &dw resolution
videos on GPUs will not generate much speedup as compared tol@P This
is because of the fact that a CPU processes each pixel seqisiyt On the
other hand a GPU performs the processing of pixels in pardlley mapping
each pixel to individual thread. This elevates the processy speed of indi-
vidual frames. However, if the video frame is of low resolutio no signi cant
speedup in the processing time of video frame is observed ampared to
CPU due to data transfer overheads.

7.3. Object Classi cation on the Cloud

In order to evaluate the scalability of our approach, we havexecuted it
on the cloud infrastructure described in the experimentalesup section. The
evaluation is performed on the following three parameters) Time taken to
transfer video stream data from storage server to the clouddes, ii) Analysis
time of video streams on cloud nodes, iii) Time required to tect results
from cloud nodes. Hadoop File System (HDFS) is used for storinges.
The MapReduce framework is used to analyse video streams Iyeeuting
unsupervised object classi cation algorithm explained irSection 3. The
analysis results are then stored in the database.

7.3.1. Hadoop Sequence File Creation
The video streams are rst decoded to extract individual vido frames
from the input video. The total size of one month of recordedideo streams

25

is 175GB. Each video stream is recorded at 25 frames per setofhe number
of decoded video frames is dependent upon the length of vidgceam being
analysed. These individual frames are not suitable for dicdy processing
on the compute nodes with the MapReduce framework. This is teuse of
the fact that MapReduce is designed to process large les. ¢uessing small
les will only result in the decrease of overall performance These small
les are bundled into a large le referred to as Hadoop sequeacle and

then transferred to the cloud nodes for processing. The seece le is then

moved to cloud storage for unsupervised object classi cati.

7.3.2. Hadoop Sequence File Creation Time

The time required to generate a sequence le is directly praptional to
the size of dataset. Multiple datasets of varying sizes fro®GB to 175GB
have been used in this paper to generate results. The datasstvarying
sizes helped to evaluate numerous aspects of our system. Tinge taken to
create a sequence le for sizes ranging from 5GB to 175GB \edifrom 6.15
minutes to 10.73 hours respectively. The larger the datasenhore time it will
require to generate the sequence le. However, it is a one-gnprocess and
once the sequence le has been generated, it can be storedhe tloud data
storage for future analysis tasks.

7.3.3. Sequence File Transfer Time

The generated sequence le is moved to cloud data storage dsjent
classi cation will be performed on cloud nodes. The transfdime required
to transfer the le to cloud data storage depends on variousgpameters.
These parameters include network bandwidth, data replicetn factor and
cloud data storage block size. The data transfer time variegith the size of
the dataset. For the dataset sizes reported in this paper (3o 175GB), the
data transfer time varied from 2 minutes to 3.17 hours. Figurg3 depicts the
data transfer time of various dataset sizes with varying cla storage block
size.

7.3.4. Object Classi cation on Cloud Nodes

We have evaluated the scalability and robustness of the sgsh by exe-
cuting object classi cation on large numbers of video streas. The datasets
have also been varied from 5GB to 175GB to observe the e ects the cloud
nodes. The HDFS block sizes have also been varied to measuresekecution
time and resources consumed during the analysis tasks onudlanodes. The

26

Figure 13: Data Transfer Time to Cloud Storage

VWideo Stream Analysis Time on the Cloud Modes

——GAMB —w—128ME Vi

—te 1R MAE -25&MEB

Execution Time {Hours|

[T R N T R S T R~ RN |

o 30 &0 a0 120 150 1s0
Dat Set Size (GB}

Figure 14: Video Stream Analysis Time on Cloud Nodes

performance of the system is measured by monitoring the tinrequired to
analyse the dataset of various sizes and the resources coned during the
analysis task.

We have varied the block size from 64MB to 256MB, in order to clerve
the e ect of varying block size on Map task execution. It has é&en observed
that the execution time of Map task increases by increasinye¢ size of dataset
as depicted in Figure 14. But the variation in block sizes hasonmajor
impact on the execution time of Map/Reduce tasks. For the daiset size
varying between 5GB and 175GB, the total execution time variebetween
6.38 minutes and 5.83 hours.

The memory consumption of all the block sizes remained thersa except
for the 64MB block. The requirement of physical memory for th 64MB
block size is higher than other block sizes as depicted in Frgul4. The
default block size of cloud storage is 128MB. A 64MB block sithus produces
more data blocks which are needed to be processed by cloud emdausing
memory overhead. More memory is required to process smalbthk sizes as
the number of map tasks turn out to be de cient with the smalle block sizes.

27

Figure 15: Memory Consumed for Analysis in the Cloud

Tasks Execution
Nodes | Tasks per Node Time (Hours)
15 94 5.83
12 117 7.10
9 156 7.95
6 234 14.01
3 467 27.80

Table 3: Analysis Task Execution Time with Varying Cloud Nodes

Figure 15 shows the memory required with varying datasets fanalysis on
the cloud.

7.3.5. Robustness with changing cluster size

The robustness of the system is evaluated by measuring theédabanalysis
time and the speed-up achieved by increasing the number obgtl nodes. We
have measured the total time required for the analysis of daset with varying
number of nodes. The total analysis time of whole dataset deases as the
number of nodes increases in the cloud. Table 3 shows the exEm time
required to analyse the dataset with varying nodes.

We have also measured the total time required for analysis @fhole
dataset with varying number of nodes and block sizes. Figuré tlepicts that
the execution time decreases as the number of nodes in theudoncreases.
A decreasing trend has been observed in the analysis of whdktaset. A
total execution time of 27.80 hours was required for the pressing of 175 GB
dataset with 3 nodes, whereas, it took only 5.83 hours to press the same
amount of data with a 15 node cloud.

28

Figure 16: Analysis Time with Varying Number of Cloud Nodes

7.3.6. Task parallelism on Compute Nodes

The total number of analysis tasks executing on a compute neds directly
proportional to the number of input splits. The number of inut splits are
further dependent on the dataset size, cloud data storagedak size and
available physical resources. The dataset size of 175GBagwise to 1400
map/reduce tasks with a default cloud storage block size o2&8MB. It has
been observed during the experiments that the number of anals tasks on
each node increases as the number of nodes decreases. Wed/étne number
of nodes between 3 and 15 in these experiments. As the numbernadks
per node increases, the performance of the overall systengi@deles. This is
because of the fact that the increase in number of tasks perde saturates
resources and each subsequent task has to wait longer forestiling and
execution. A summary of task execution time correspondingta varying
number of nodes is shown in table 3.

We have also calculated the analysis time of varying datasetvith varying
block sizes. It is observed that if the block size is large,s computation
time will be required to analyse the data as compared to smeil block size.
The large block size will have less number of map tasks, reédcmemory
requirement and management overhead as compared to smati¢k size. This
will result in the faster processing of dataset. However, isito be noted that
varying block sizes does not a ect the execution time of Map &k. The block
size of 512MB required the same processing time as 256MB klsize for the
175GB dataset. The same phenomenon is observed with otheodk sizes as
well. However, the time required to transfer the data with lager block sizes
is greater and required larger compute nodes to process thatal

29

8. Conclusion & Future Work

A cloud based video analysis system based on Haar Cascade ilas
and the Local Binary Pattern Histogram is presented in this paer. The
proposed system requires minimum human interaction and praes auto-
mated object classi cation from large number of video streas. The system
performs classi cation under unsupervised learning donraiand without re-
quiring any metric learning stage or labelled training datset. An accuracy of
more than 95 percent is achieved when the application is test on multiple
video streams.

The proposed system is capable of coping with the challeng#gsncreased
volume of data. The objects are detected and classi ed froorme month of
video data comprising a size of 175 GB. It took 6.52 hours to alyse this
data on a 15 node cloud. By increasing the number of nodes iretiloud, a
decreasing trend in processing time is observed in analygithe video data.
A reduction from 27.80 hours to 5.83 hours is observed, whelet number
of cloud nodes increased from 3 to 15. However, the analysisé is also
dependent on the amount of data being analysed. The analysisne varied
from 6.38 minutes to 5.83 hours for the dataset sizes rangifrpm 5GB to
175GB in the cloud.

The processing time further reduced to 3 hours for 175GB datehen the
video stream analysis is performed on GPU mounted cloud nadeSeveral
factors contributed to achieving high throughput such as dpnized resource
utilization of GPUSs, e cient and optimal data transfer techniques, improved
occupancy and e cient memory allocation. The mapping of edcpixel of a
video frame to individual light-weight GPU threads played amajor role in
achieving high performance in the system.

In future, we would like to make the system more generic by dstting and
recognizing other objects from di erent object classes du@s cars, bicycles
and pedestrians. The optimization of detection and recogion algorithms
by analysing them in the frequency domain will also be the fas of our
future work. We would also like to achieve more speed-up andasability by
using in-memory processing cluster coupled with the compitton power of
GPUs. This will help to overcome the delays which occur due taxious /O
operations.

30

References

[1] L. Zhang, M. Yang and X. Feng, Sparse representation or taidorative
representation: Which helps face recognition, IEEE Interrteonal Con-
ference on Computer Vision, pp. 471478, 2011.

[2] X.Zhu and D. Ramanan, "Face detection, pose estimationnd landmark
localization in the wild, IEEE International Conference onComputer Vi-
sion and Pattern Recognition, pp. 28792886, 2012.

[3] H. Cevikalp, B. Triggs and V. Franc, Face and landmark det¢ion by
using cascade of classi ers, IEEE International Confereacon Face and
Gesture Recognition, pp. 17, 2013.

[4] J.S.Bae and T. L. Song, Image tracking algorithm using tegphate match-
ing and PSNF-m, International Journal of Control, Automation ard Sys-
tems, vol. 6, pp. 413-423, 2008.

[5] Project BESAFE (Behavior IEarning in Surveilled Areas withFeature
Extraction), http://imagelab.ing.unimore.it/besafe/, Last accessed: 20-
02-2016

[6] A. Jain, B. Klare and U. Park, Face recognition: Some challges in
forensics IEEE International Conference on Automatic Facenal Gesture
Recognition and Workshops, 2011.

[7] Y. Taigman, M. Yang and L. Wolf, "DeepFace: Closing the ga human-
level performance in face veri cation, IEEE Conference ondnputer Vi-
sion and Pattern Recognition, pp.1701-1708, 2014.

[8] H. Wang, X. Gu, X. Li and Z.Li, Occluded face detection basednoad-
aboost technology, IEEE Eighth International Conference ro Internet
Computing for Science and Engineering, pp. 8790, 2015.

[9] A. Suruliandi, K. Meena, and R. Reena, Local binary patters and its
derivatives for face recognition. IET Computer Vision, pp. 80-488, 2012.

[10] R. Lienhart, L. Liang, and A. Kuranov, A detector tree of lmosted classi-
ers for real-time object detection and tracking, Internaional Conference
on Multimedia and Expo, pp. 27780, 2003.

31

[11] Y. Lin, F. Lv, S. Zhu, M.Yang and L.Cao. Large-scale Imagel&ssi -
cation: Fast Feature Extraction and SVM Training. IEEE Internatioanl
Conference on Computer Vision and Pattern Recognition, pp689-1696,
2011.

[12] V. B. Nikam and B. B. Meshram, Parallel and Scalable RulesaBed
Classi er using Map-Reduce Paradigm on Hadoop Cloud. Inteational
Journal of Advanced Technology in Engineering and Science, [\
pp.558-568, 2014.

[13] G. H. Nguyen, S. L. Phung and A. Bouzerdoum, Reduced Trainingf
Convolutional Neural Networks for Pedestrian Detection. Thé&th Inter-
national Conference on Information Technology and Applicans, pp.
61-66, 2009

[14] H. Tan and L. Chen, An Approach for Fast and Parallel Video Pro
cessing on Apache Hadoop Clusters. IEEE International Confarce on
Multimedia and Expo, pp. 1-6, 2014.

[15] X. Tang, Z. Ou, T. Su and P. Zhao, Cascade AdaBoost Classiswith
Stage Features Optimization for Cellular Phone Embedded Ea Detec-
tion System, Advances in Natural Computation, vol 3612, pp. 68897,
2005.

[16] B. Zhou, W. Wang and X. Zhang, Training Backpropagation Neal
Network in MapReduce, International Conference on ComputeiCom-
munications and Information Technology, pp. 22-25, 2014.

[17] C. Rosenberg, M. Hebert and H. Schneiderman, Semi-Supsed Self-
Training of Object Detection Models. IEEE International Canference on
Application of Computer Vision. 2014.

[18] B. Pfahringer, G. Holmes and E. Frank Classi er chains fanulti-label
classi cation, Machine Learning Springer, pp. 333 359, 201

[19] T. Wu and A. Toet, Speed-up template matching through irégral image
based weak classi ers, Journal of Pattern Recognition Reseh, Volume
12, 2014.

32

[20] T. Wu and A. Toet, Speed-up template matching through irggral im-
age based weak classi ers, Journal of Pattern Recognition &=arch, pp.
192199, 2014.

[21] G. Sharma and F. Jurie "A novel approach for e cient SVM clasi ca-
tion with histogram intersection kernel," British Machine Vision Confer-
ence, 2013.

[22] D. Nguyen Ta, W. Chen, N. Gelfand and K. Pulli, "SURFTrac: E cient
tracking and continuous object recognition using local féare descrip-
tors,” IEEE Conference on Computer Vision and Pattern Recogtion,
pp.2937-2944, June 2009.

[23] Y. Wu, C. Wu, B. Li and F. Lau, CloudMedia: When cloud on demaah
meets video on demand, 31st international conference on fisuted
Computing Systems, pp. 268-277, 2011

[24] W. Wang, W. Zhang, F. Gong, P. Zhang and Y. Rao, Towards a Perva
sive Cloud Computing based Food Image Recognition, IEEE itnational
conference on Cyber, Physical and Social Computing, pp.&2244, 2013

[25] J. Fan, F. Han and H. Liu, Challenges of Big Data Analysis, Natil
Science Review, pp 293-314, 2013

[26] K. Wiley, A. Connolly, S. Krugho and B.Howe, Astronomical Data
Analysis Software and Systems, p.93, 2011

[27] L. Zhu, X. Zheng, P. Liand Y. Wang, A Cloud Based Object Regmition
Platform for 10S, International Conference on Identi cation, Information
and Knowledge in the Internet of Things, pp. 68-71, 2014

[28] R. Raina, A. Madhavan and A. Y. Ng, Large scale deep unsupesed
learning using graphics processors, 26th ACM Annual Intertianal Con-
ference in Machine Learning, pp. 873-880, 2009

[29] W. Wang, Y. Zhang, S. Yan and H. Jia, Parallelization and pesfmance
optimization on face detection algorithm with OpenCL: A Cas Study,
Tsinghua Science and Technology, vol. 17, no. 3, pp 287-22812

[30] Z. Jing, J. liangbao and C. Xuehong, Implementation of palial full
search algorithm for motion estimation on multi-core proasors, IEEE

33

2nd International Conference on Next Generation Informatio Technol-
ogy, pp 31-35, 2011

[31] A. Mohamed, G. Dahl and G. Hinton, Acousting modeling usingeep
belief networks, IEEE Transactions on Audio, Speech and Langge Pro-
cessing, vol. 20, issue 1, pp. 14-22, 2011

[32] S. Gao, I. Tsang and L. Chia, Laplacian sparse coding, gergraph
laplacian sparse coding and applications , IEEE Transactis on Pattern
Analysis and Machine Intelligence, pp. 92-104, 2012

[33] D. oro, C. Fernandez, J.R. Saeta, X. Martorell and J. HernaagReal
time GPU based face detection in HD video sequences, |IEEE Inte-
tional Conference on Computer Vision Workshops, pp. 530-532011

[34] A. Anjum, T. Abdullah, M. F. Tariq, Y. Baltaci and N. Antonopoulo s,
"Video Stream Analysis in Clouds: An Object Detection and Clasga-
tion Framework for High Performance Video Analytics", IEEE Transac-
tions on Cloud Computing, pp. 1-14, 2015

[35] A.Herv, L.Williams, Principal component analysis, Wiley mterdisci-
plinary Reviews: Computational Statistics, pp. 586-591,(0

[36] M. A. Turk, A. P. Pentland, "Face recognition using eigers#ces," IEEE
Computer Society Conference on Computer Vision and PatterneRogni-
tion, pp. 586-591, 1991

[37] F. Tsalakanidoua, , D. Tzovarasb, M.G Strintzis, Use of g¢h and
colour eigenfaces for face recognition, Pattern Recogoiti Letters, pp.
1427-1435, 2003

[38] A.M. Martinez, A.C.Kak, PCA versus LDA. IEEE Transactionson Pat-
tern Analysis and Machine Intelligence, pp. 228-233, 2001

[39] B. Marian, M. Javier, S. Terrence, Face recognition by dependent
component analysis. IEEE Transactions on Neural Networks, pd450 -
1464, 2002

[40] http://v-i-systems.com/ [Last accessed: 24/11/201p

[41] http://www.smartcctvitd.com/ [Last accessed: 24/112016]

34

[42] https://www.besafe.uk.com/ [Last accessed: 24/11/216]
[43] http://www.intelligentvision.com.au/ [Last accessd: 24/11/2016]
[44] http://www.boschsecurity.com/ [Last accessed: 24/1/2016]

35

