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Abstract

Due to the recent advances in cameras, cell phones and camcorders, par-
ticularly the resolution at which they can record an image/ video, large
amounts of data are generated daily. This video data is oftenso large that
manually inspecting it for useful content can be time consuming and error
prone, thereby it requires automated analysis to extract useful information
and metadata. Existing video analysis systems lack automation, scalabil-
ity and operate under a supervised learning domain, requiring substantial
amounts of labelled data and training time. We present a cloud-based, au-
tomated video analysis system to process large numbers of video streams,
where the underlying infrastructure is able to scale based on the number
and size of the stream(s) being considered. The system automates the video
analysis process and reduces manual intervention. An operator using this
system only speci�es which object of interest is to be located from the video
streams. Video streams are then automatically fetched from the cloud stor-
age and analyzed in an unsupervised way. The proposed systemwas able to
locate and classify an object of interest from one month of recorded video
streams comprising 175GB in size on a 15 node cloud in 6.52 hours. The
GPU powered infrastructure took 3 hours to accomplish the same task. Oc-
cupancy of GPU resources in cloud is optimized and data transfer between
CPU and GPU is minimized to achieve high performance. The scalability of
the system is demonstrated along with a classi�cation accuracy of 95%.
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1. Introduction

The increasing availability and deployment of video cameras has resulted
in the generation of thousands of high resolution videos streams. Such videos
can be sub-divided into a number of frames of interest. Various types of
information can be extracted from these video frames, such as classi�cation
of moving objects corresponding to a speci�c area of interest. The term
video analytics refers to the optimized processing of thesevideo frames by
using intelligent approaches such as a machine learning, sothat clusters of
information can be automatically extracted from them.

Video analytics systems mainly perform object detection and recognition.
Object detection refers to the detection of all instances ofan object belong-
ing to a known category, such as faces or cars, within a sequence of frames.
Often a video may contain a number of objects. These objects can reside at
any location within a frame, requiring the detection process to investigate
di�erent parts of a frame to locate the object of interest. Object recogni-
tion, on the other hand, refers to the identi�cation of detected objects. A
video stream and some known labels are provided to the system. It then
assigns the correct labels to the detected objects in a videostream. [1][2][3]
describe how video frame analysis can be used to support detection, tracking
and recognition of objects. However, these systems are expensive in terms of
processing time and cost [4], and require human monitoring and intervention
[5] and address challenges that are often relevant for stillimages [6]. These
systems are also resource intensive. Due to cognitive limitations, an operator
cannot focus on recorded video streams for more than 20 minutes, making it
challenging to perform e�cient and robust large scale videoanalysis. Scaling
such analysis to large data volumes remains a challenge. Additionally, to gain
greater insights into the analysed video content, computationally intensive
algorithms (e.g. deep learning algorithms [7]) with large storage require-
ments are needed. This work utilizes the advantages of machine learning
based classi�cation approaches to develop an automated video analysis sys-
tem which overcomes these challenges. The focus of this workis to build a
cloud-based robust and scalable solution for the processing of large number
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of video streams. We employed the detection and classi�cation algorithms
in combination to combine the bene�ts of both supervised andunsupervised
learning domains. The Haar Cascade Classi�er [8] has been demonstrated
to be highly accurate for object detection, especially for detecting faces in
still images [10]. We have therefore investigated its use for video sequences.
Similarly, the Local Binary Pattern Histogram [9] classi�cation algorithm
is widely used, primarily because of its computational simplicity and high
accuracy. Our system requires minimum human interaction for identifying
objects in a large number of video frames. The system is basedon a very
simple object matching concept based on local binary patterns. After the
extraction of desired objects, we employ an object matchingalgorithm to
perform object recognition. This enabled us to perform classi�cation with-
out any metric learning algorithm and labelled training data.

An operator using the system only speci�es which object of interest is
to be located. The video streams are then automatically fetched from cloud
storage and processed frame by frame. The object is �rst detected in a frame
to provide a reference for the location of the object which can be tracked in
the subsequent frames. It is cropped and saved as a separate image, so
that the recognition step will have to process a smaller sized image. The
moving object is then passed on to the subsequent object recognition phase
for identi�cation.

The recognition phase �rst analyses the marked input object. It extracts
and stores features from it. This marked object is then compared with all
of the other frames. If the same object is identi�ed in any other frame its
instance is updated and its corresponding time and locationis saved. If
the comparison fails then it means that the marked object is not present in
the video stream which is currently being processed. This marked object is
then fed to the next video stream and the same process is repeated. De-
pending upon the features being considered, a decision is made whether the
object is present in the analysed video stream. If the objectis located in the
video stream, its time and location is saved and updated. This mechanism
is performed for all the video streams and cumulative time and locations are
stored in a database. Statistical similarity measures are used to compare
extracted frames. To support scalability and throughput, the system is de-
ployed on compute nodes that have a combination of CPU and GPU,within
a cloud system. This also enables on-the-y and on-demand analysis of video
streams.

The main contributions of this paper are as follows: Firstly,a robust
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video analysis system is proposed which employs two learning algorithms in
combination, to perform quick analysis on large numbers of video streams.
Secondly, we perform object classi�cation on the extractedobjects in an au-
tomated and unsupervised way. No training or manually labeled dataset is
required in our approach. Thirdly, the proposed system is scalable with high
throughput as it is deployed on a cloud based infrastructurethat have a com-
bination of CPU and GPU.
The paper is structured as follows: Section 2 compares our work with re-
lated approaches, providing a survey of the most recently used features and
classi�ers for object detection and recognition. The proposed approach and
its architecture are explained in Sections 3 and 4 respectively. The imple-
mentation of the proposed system is described in Section 5. Section 6 details
the experimental setup and Section 7 reveals the results obtained from im-
plementation in terms of accuracy, scalability, performance and throughput.
The conclusions drawn from the work and the future directions are presented
in Section 8.

2. Related Work

Signi�cant literature already exists for image and video processing. How-
ever, the e�ective use of these techniques for analysing a large volume of
video data, the size of which may not be known 'a priori', is limited. Ad-
ditionally, carrying out such analysis on scalable/elastic infrastructures also
remains limited at present.

Object Classi�cation Approaches:Object classi�cation has been an area
of great interest for the past decade. Yuanqing et al. [11] proposed an
automated fast feature extraction approach for large scaleimage classi�cation
using Support Vector Machines. Similarly Nikam et al. [12] developed a
scalable and parallel rule based system to classify large image datasets and
concluded that the system is reliable, with computation time decreasing as
the number of nodes increase.

Giang et al. [13] used CNN to di�erentiate between pedestrians and non-
pedestrians in an urban environment. They scan input imagesat di�erent
scales, and at each scale all windows of �xed size are processed by a CNN
classi�er to determine whether an input window is pedestrian or not. Fea-
ture extraction and classi�cation phases were integrated in one single fully
adaptive structure. All three layers of CNN i.e. convolution layers, sub-
sampling layers, and output layers were used to perform classi�cation. This
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work showed that it is possible to lower training time while maintaining a
threshold classi�cation rate.

In another study, Masayuki et al.[14] implemented a parallel cascade of
classi�ers consisting of a large number of stages. The �rst stage contains
a subset of features selected from training data that e�ciently distinguish
two classes. The cascade is then applied on the training datawhere more
false positives are observed. A new training set is formed bycombining
the misclassi�cation which are then used for second stage ofcascade. This
procedure continues until an acceptable performance in a training sequence
is achieved. According to the authors, the later stages are not executed too
often, so only early stages were executed in parallel, leading to a reduced total
processing time. To make such a cascade of classi�ers more e�ective, Xusheng
et al. [15] exploited the use of genetic algorithms as a post optimization
procedure for each stage classi�er and achieved a speedup of22%.

Xing et al. [16] used multiple independent features to train aset of classi-
�ers online, which collaboratewith each other to classify the unlabelled data.
This newly labeled data is then used to update classi�ers using co-training.
The independent features which were used are Histogram of oriented Gra-
dients(HoG) and color histograms. A Support Vector Machine (SVM) was
trained by each feature and �nal classi�cation results wereproduced by com-
bining the outputs of all SVMs.

Principle components of a face image generated from principle compo-
nent analysis(PCA)[35] are known as eigen faces and are used in various
works [36][37] for classi�cation. Facial recognition performed by PCA is in-
sensitive to facial expressions. However, performance degrades in extreme
lighting conditions. Linear discriminant analysis(LDA) [38] was used to gen-
erate Fisher Faces and proved to outperform PCA in face recognition tasks
under complex conditions. LDA provided a way to overcome theshortcom-
ings of the PCA approach but it can face the small sample size problem.
Independent component analysis (ICA) [39] is a generalization of principle
component analysis and was used in various works for facial recognition. The
objective of ICA is same as PCA but it generates spatially localized features.
In contrast to PCA, no information in images is destroyed by using this tech-
nique. But one also has to compromise on redundant information present in
the images which makes this technique computationally expensive.

The analysis of video streams has been the focus of many commercial
vendors recently. An intelligent system Vi-System [40] was developed for the
surveillance and monitoring of objects in crowds. It was based on analytical
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rules and was capable of generating alerts on de�ned parameters. SmartC-
CTV [41] on the other hand is mainly used in UK transportation systems
and provides optical based survey solutions and video incident detection sys-
tems. Project BESAFE [42] and Intelligent Vision [43] are toolsto perform
intelligent video analysis for fully automated video monitoring of premises.
Their services include tracking of abnormal behaviour of people and detec-
tion of their activities. One of the embedded video analyticsystems is IVA
5.6 [44] which facilitates the detection and tracking of moving objects. It
has the capability to detect inactive and removed objects, as well as loitering
and object trajectories. However, most of these commercial systems have
the limitation of scalability for a large number of streams and require high
bandwidth for video stream transmission.

Object Classi�cation in the Clouds: When object classi�cation is needed
to be performed on large scale datasets, it requires large storage and compu-
tational resources. E�cient object classi�cation using cloud systems has also
been explored in the literature, by managing distribution of video streams
and load balancing among various available cloud nodes [23]. A pervasive
cloud computing infrastructure was utilized in [24] to recognize food images.
Cloud computing was used to process images of di�erent kindsof foods using
di�ering lighting conditions, in various colors and viewing angles. However,
the authors concluded that it is not promising to use the cloud computing
paradigm for small datasets as job preparation overheads reduce the perfor-
mance of the system.

A Hadoop based object classi�cation system was implemented in [25] by
using two dimensional principle component analysis. In another study, a
massively parallel cloud computing architecture was presented [26] to clas-
sify astronomical images. A large scale video processing system was demon-
strated by [27][34] using MapReduce clusters. However, no enhancement in
the video processing routines was presented in these studies.

Recently, the use of GPUs as a high performance resource for the pro-
cessing of large scale video data has become an active research area [28], as
GPUs support a multi-threaded architecture and o�er abundant computa-
tional power. They have been used for various large scale video processing
tasks such as object detection [29], motion estimation [30], and object recog-
nition by using deep belief networks [31] and sparse coding [32]. It has been
demonstrated in these studies that a speedup of 5 to 15 times can be achieved
as compared to the use of standard CPUs [33].

The accuracy and performance of an object classi�cation system is highly
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dependent on the similarity metric along with good visual representation.
Most of the recent object classi�cation approaches do provide good visual
representation but also necessitate learning a dataset speci�c metric. It helps
to learn and understand the underlying regularities of a speci�c dataset which
in turn results in improved performance. However, this phenomenon is time
consuming because a large number of training examples must be collected
and labeled manually. The collection of large number of training examples
and their labeling is itself a major challenge. Although these training ex-
amples enable the system to capture variations in object appearances, they
also burden the training process [17, 18]. Machine learningapproaches such
as semi supervised learning and unsupervised learning are away to reduce
the time required for the training process. They train the system with a
small number of completely labeled examples and another setof unlabeled
examples which reduces computation time.

The focus of this paper is to propose a cloud based video analysis system
that has a combination of CPU and GPU-based compute nodes to identify
objects of interest from a large number of video streams. Theproposed sys-
tem requires minimum human interaction and performs objectclassi�cation
in an unsupervised way. It is scalable and supports processing of large num-
ber of recorded video streams as compared to existing cloud based video
analytics approaches.

3. Video Analysis Approach

We present the approach behind our video analysis system in this sec-
tion. Each video stream is �rst decoded to extract individual video frames.
The objects of interest are extracted from the video frames by detecting and
cropping around the area of detection. The local patterns ofeach extracted
object are then generated and stored in the associated bu�er. Object match-
ing is then performed on the generated local features. The generated results
are then stored in the database. Algorithm 1 shows the approach used in our
object classi�cation system.

The system applies multiple machine learning algorithms for detection
and recognition. The algorithms are employed in such a way that the results
produced by one algorithm are processed further by the following algorithm.
The �rst algorithm is used to extract the object of interest from the whole
frame in such a way that it narrows down the image area. The rest of the
frame which contains unwanted information is discarded to save processing
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Algorithm 1 Object Classi�cation

1: for all streams in the database do
2: for all decoded frames from stream do
3: Launch object detection module
4: Extract (crop) desired object from frame
5: Generate local patterns for the extracted object
6: Store generated patterns in an associated bu�er
7: end for
8: for all object recognition patterns in
9: the database do
10: Launch object matching module
11: Compare stored patterns with marked objects
12: Generate matching scores for each object
13: Store results in the database
14: end for
15: end for

time and resources. This algorithm independently operateson all the frames
in a sequence. This results in the extraction of all the desired objects from
all the video frames. Figure 1 presents the process followed in our approach.

3.1. Object Detection and Classi�cation

We have used the Haar Cascade Frontal Face Classi�er algorithm for the
extraction of human faces. The extraction of desired faces from the frames
helps to improve the performance of the system in two ways: (i) since the
frame area is reduced so the analysis algorithm now has to process a smaller
sized frame as compared to original one. This reduces the processing time
of individual frames and in turn reduces the overall processing time of the
whole video. (ii) as the frame has been narrowed down to only object(s)
of interest, by removing the unwanted area of the frame, it now contains
only the desired object. The illumination e�ects and noise which have the
possibility to be present in the unwanted area will not reect in the object
recognition process. This will lead to improvements in the accuracy of overall
system.

The extracted objects are then processed via the object recognition phase,
which generates local binary patterns of all the extracted objects. These local
binary patterns serve as features which can be used for the recognition of a
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Figure 1: Video Processing Workow

known object. These features represent the extracted objects in such a way
that they become highly discriminative to various gray-level changes in the
objects.

We have used the extended version of the local binary patternoperator
which makes the use of uniform patterns. The use of uniform patterns helps
to decrease the size of feature vector. Since we are calculating the local
binary patterns of a huge dataset, the use of uniform patterns helps to lower
the computation cost. Uniform patterns work on the phenomenon that some
of the patterns occur more frequently than other patterns. Apattern is said
to be uniform if there are a maximum of two bit-wise transitions from 1 to 0
or vice versa. The patterns 01110000 and 11001111 have two transitions and
are thus uniform. These uniform patterns are used during thecomputation
of LBP labels with a separate label for each uniform pattern.The rest of the
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non-uniform patterns are labeled with a single label.
The computation of the local pattern features is a compute intensive pro-

cedure as it involves the manipulation of every pixel in the video frame. The
porting of this compute intensive procedure to GPUs is performed to reduce
the computation demands. A GPU kernel is developed for this purpose. It
performs the procedure of local pattern feature generationin parallel instead
of sequential processing as in a CPU. Figure 2 shows the relation between
Haar Cascade Classi�er and the LBPH algorithm.

The extracted human faces from the video streams are represented in the
form of histograms by their binary pattern representation.The comparison
of the marked face has then been made with the faces extractedfrom the
video streams by simply computing the similarity measure between them.
The proposed system does not require learning a data speci�cmetric in
order to compare faces. The representation of the faces is capable enough
to distinguish the underlying irregularities of the dataset. The proposed
face matching algorithm (algorithm 2) has proved to be generic and is not
adapted to any dataset. It is capable of identifying faces from the video
streams without requiring any complex similarity metric-learning algorithm,
pre-labeled dataset, any other supervised learning model or any outside data
from other sources.

An object matching algorithm is applied on the local patternsof detected
objects for recognition. The recognition process is performed by comparing
the detected object features with the stored object information. The com-
parison is made on the basis of histogram intersection whichis used as a
distance measure. The histogram intersection can be calculated as [21]:

D(S; M ) =
BX

b� 1

min (Sb; Mb) (1)

where 'S' and 'M' are a pair of histograms of two video frames containing 'B'
bins.

Each comparison generates a score of each individual registered in a
database. These scores obtained after performing the histogram intersec-
tion determine the recognition of a marked person which was being searched
in the video streams. We have used a threshold of 90 percent match in our
experiments. We obtained over 90 percent accuracy rate in case of match-
ing individual objects. The matching scores for unmatched individuals is
70 percent or below. The matching scores along with locations and time of
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presence are stored in the database. This module is totally unsupervised and
is independent of any metric learning stage. The recognition is performed
only on the basis of similarity measure between the featuresof two objects.

The performance of any object classi�cation system can be a�ected by the
facial structure constraints (gender, ethnicity) and the viewing parameters
such as illumination and viewpoint. In addition, a number ofperceptual
complications can occur due to the movement of objects in video streams.
The facial movements of a person can be classi�ed as rigid or non-rigid. The
rigid movements include tilting, nodding or shaking aroundthe vertical axis.
These movements can change the angle of a face from a static point. On
the other hand, non-rigid movements take place due to facialexpressions
and eye-gaze during speech. These movements can distort theidentifying
features of the face. A smiling facial expression can strongly di�er from a
surprised facial expression. This di�erence occurs due to the relative change
in position of the eyebrows with respect to nose, mouth or other features.

It was observed during the experiments that because of the discriminative
power of the LBPH operator, it is capable to perform well at low level of
perceptual complications. The LBPH operator has shown its performance
for various rigid and non-rigid movements by providing highaccuracy rates.
Also, since the dataset is generated under controlled conditions, it does not
pose signi�cant changes to illumination or viewpoint.

Algorithm 2 Object Matching

1: procedure ObjectMatching
2: Compute LBP Histogram of Marked Object
3: Compute LBP Histograms of Objects in Video Streams
4: for all Objects in Video Streams do
5: Compute HistogramIntersection of MarkedObject with Objects in

Streams
6: if IntersectionResult> 0.9 then
7: ObjectFound
8: else
9: ObjectNotFound

10: end for
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Figure 2: System Architecture

4. System Architecture

The overall architecture of the system is illustrated in Figure 2. The
proposed system provides scalable and automated classi�cation of objects in
a large number of video streams in an unsupervised way. It is independent
of the need of labelled training data and metric learning stage. The use
of GPU-enabled cloud nodes enables the system to achieve highthrough-
put. Scalability challenge is also addressed by leveragingthe bene�ts of
GPU mounted servers in the cloud. The transfer time overheadof moving
the video data from the camera to cloud storage is not considered in this
work. This overhead is dependent on the speed of the network connecting
the camera/data capture source to the cloud system.

The video streams are �rst fetched from cloud storage and aredecoded
to extract individual video frames. The decoded individualvideo frames are
stored in the input frame bu�er. This bu�er is a temporary storage in main
memory for decoded video frames. The recorded video streamsare encoded
with the H.264 encoder to save storage space. Each video stream is recorded
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at 25 frames per second, with 3000 (120*25) video frames for avideo stream
of 120 seconds length. The number of decoded video frames is dependent
upon the length of video stream being analyzed.

Each frame is then processed individually for object detection and recog-
nition. The objects of interest are �rst detected using the Haar Cascade
Classi�er algorithm. This detection helps to extract only the desired objects
from the overall frame. The extracted objects are stored in amemory bu�er
for further processing.

We have used the already trained frontal face classi�er for detection of
human faces from video streams. Training is not performed separately and
saves the computation cost of training. The computation cost of the detector
is highly dependent on the number of features being evaluated. The small
number of features means low computational cost but the classi�er will also
be less accurate. A classi�er with more features results in higher classi�er ac-
curacy. It was noted during the experiments that a frontal face classi�er built
on 25 feature stages provides a detection rate of 95 percent.The computa-
tion time depends on the resolution of the video frame. So there is a trade-o�
between the computation cost and accuracy of the classi�er.Figure 3 shows
the elapsed time for various stages of the object detector within a CPU node.
We have also analysed the execution time of a video stream within a CPU
node for various processing stages including local binary pattern histogram.
Figure 3 also depicts the execution time of these stages.

The next module after the extraction of desired objects is a feature gener-
ation module. This module generates the local patterns against each detected
object. These local patterns serve as features which are further used to rec-
ognize the marked object. This module mainly consists of theexecution of
local binary pattern histogram. A histogram of each of the detected objects
is created and stored in the bu�er as an output of this module.We have
used a pro�ling mechanism to identify the compute intensivesteps of our
system. The generation of local pattern features is a compute intensive pro-
cess. This compute intensive feature generation process has been ported to
GPUs, through the design/ implementation of a kernel which performs gen-
eration of local patterns on GPUs. Each pixel of the video frame is mapped
to a thread. This thread is then responsible for launching kernel for each
pixel and processing it in parallel. The size of the thread block is depen-
dent on the size of the frame. These threads work in a synchronous way to
process frame data in parallel. A high level of parallelism is achieved since
each pixel in the video frame is processed in parallel. Once the processing
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Figure 3: Execution Time of Various Modules

of frame bu�er is completed, the resulting processed frame is stored in an
output bu�er.

5. System Implementation

This section provides a description of the system components, their func-
tionality and implementation. The operations employed to process video
streams to support object detection and recognition are also described.

5.1. Video Decoding
The video streams are decoded to extract individual video frames. These

frames are then transferred to the processing module to enable the detec-
tion and recognition process to be carried out. Hence, each frame can be
processed independently of each other. This approach enables the process-
ing of individual frames on cloud resources, leading to highthroughput and
scalability.

5.2. Object Extraction
After the frame is decoded from the video stream, the next stepis to

extract faces from frames using an object detection algorithm. We have
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Figure 4: Extracted faces from
video streams

Figure 5: Original and Integral Im-
age

used Haar Cascade Classi�er for this purpose. The input imageis cropped
automatically around the output of Haar Cascade algorithm for the next step
i.e. face recognition. This helps to narrow down the area of image to a small
rectangle containing the desired face. Figure 4 shows some ofthe extracted
faces from the video streams. We also monitor the persistence of an object
across multiple frames of a video stream. In this way, although each frame
is individiually processed, tracking an object across multiple frames enables
us to monitor its presence over a particular time period.

The Haar Cascade Classi�er is constructed on top of Haar features which
are extracted from objects present in video frames. In orderto make the
classi�er scale-invariant, a frame pyramid approach [22] has been used. The
pyramid represents the same frame in multiple scales and enables the detector
to be scale invariant. Objects with varying image sizes can easily be detected
through the pyramid approach. An object pyramid can be constructed by
using a down-sampling approach which samples the frame by one scale in each
iteration. An integral image for each scale in the pyramid is then calculated to
speed up the process of generating a pixels sum. Integral image [19] helps to
compute the summation of pixels present in a rectangular region by utilizing
only four pixel corners. This approach of using integral images is highly
e�cient, especially for the cases in which the pixel sum of many rectangular
regions of the same image need to be computed. Since the detector uses the
sliding window approach and a pixel sum for each shifted window is required,
this approach reduces the complexity of the overall process. Figure 5 shows
a representation of the integral image.

The sliding window is used, pixel by pixel, on the whole framein search
of an object (e.g. a face). The area under the sliding window is passed to the
cascaded classi�er. As most of the image area is a non-face region it groups
the features into di�erent stages based on the classi�ers used. The region
that passes all stages of the cascaded classi�er is a face. The area under
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the sliding window is required to be passed through all stages of the cascade
classi�er. If at any stage, the input region is unable to passthe stage by
not meeting the required threshold, it is immediately rejected. If the region
passes all the stages successfully, then it is considered tobe the face. On
detection, an object recognition algorithm is invoked.

5.3. Local Feature Generation

Each detected object of interest is then analysed, by using LBPH. The
algorithm computes local binary patterns in order to generate feature vectors.
In order to compute LBP features, the examined window is divided into
multiple cells. Each cell contains a sub-block of 3� 3 pixels. Then each pixel
in the sub-block is compared to its neighboring pixels. If the value of centre
pixel is greater than its neighbor pixel, 1 is stored at the location of that
pixel. If the values of centre pixel is less than the neighboring pixel, the gray
value of that pixel is replaced with 0. This makes the sub-block a binary
block containing 0 and 1 depending upon its pixel values. This is known as
the labeling of pixels. These labelled pixels generate a binary pattern which
is then converted into one decimal value. The gray value of centre pixel is
then replaced with the decimal value. This procedure is repeated on the
whole image and an LBP image is obtained. A histogram is then calculated
over the frequency of each number occurrence. This histogram gives a feature
vector of the window.

In order to perform face recognition, the face image is divided into mul-
tiple blocks or regions. Then for each block or region, an LBPhistogram is
computed as explained above. The feature vector of the wholeimage is a
combination of all LBP histograms of all regions in an image.Figure 6 shows
the original faces and the LBP computed faces from video streams.

5.4. Similarity Measure

This procedure of LBP histogram generation is performed forall the
video frames and the image which is to be matched. Matching isperformed
by comparing the LBP histogram of the marked object frame with all the
frames of a video stream. The histogram intersection is usedas a distance
measure to calculate the similarity between two frames. After a person's face
is authenticated correctly, the matching score associatedto it is stored in a
database. This phenomenon can be visualized in �gure 7.
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Figure 6: Original and LBP Faces
Figure 7: Visualization of matching
process

5.5. Local Pattern Feature Generation on GPUs

Generation of local patterns from a video frame is a compute intensive
procedure. It is therefore ported to GPUs to reduce the computation de-
mands. A GPU kernel is designed and implemented to perform this proce-
dure. The processing of pixels is sequential in CPU based implementation.
The processing time even increases exponentially as the number of video
frames increases.

Conversely, the GPU implementation works in a parallel fashion. GPU
implementation is known as GPU kernel and is executed by a number of
threads generated by a GPU. The number of threads that a GPU cangenerate
depends upon the processing cores of a GPU, memory and registers. It is
also dependent upon the size of thread block and grid. Since each pixel is
mapped to an individual thread, the number of generated threads should be
equal to the number of pixels in a video frame. The availability of frame
data in GPU memory enables the parallel processing of each pixel. Upon
completion of the frame data processing, the processed frame data is copied
back to a CPU memory bu�er (host) from GPU memory bu�er (host).

We have used Compute Uni�ed Device Architecture(CUDA) to imple-
ment and generate local pattern features on GPUs. It uses SIMD(Single
Instruction Multiple Data) parallel programming model andprovides a col-
lection of APIs to execute instructions on a GPU. A CUDA program initiates
on a CPU and processes data on a GPU through CUDA kernels. The GPU
memory is �rst allocated, so that frame data can be transferred from CPU
to GPU. The size of the GPU memory is allocated according to thesize of
video frame. Three di�erent data transfer mechanisms including page-able
memory, pinned memory and zero copy have been implemented and tested
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in this work. Upon successful completion of frame processing, the results are
transferred back to the CPU memory.

The GPU kernel is executed by a number of threads. There can be
a maximum of 32 threads in a warp and each thread block has numerous
warps. Thread blocks are further grouped into grid. It is theresponsibility
of the CUDA Work Distributor (CWD) to allocate thread blocks on a GPU.
At the �rst step of kernel execution, these thread blocks areallocated. Kernel
execution is performed in parallel with the help of CUDA streams.

The proposed system works partially on CPUs and partially on GPUs.
The decoding of frames from video streams and extraction of faces is per-
formed on a CPU. The compute intensive process of generation of local fea-
tures is performed on a GPU using the CUDA kernel. The processed results
are then transferred back to CPU. The results section provides a more de-
tailed analysis of the accuracy of recognised objects and the processing time
of the system.

6. Experimental Setup

This section provides the details of our experimental setupused to eval-
uate the proposed system. The parameters used to evaluate the perfor-
mance of the system are the accuracy of the algorithms, processing speed-up
achieved, resource consumption, scalability, and processing time of each video
frame. The purpose of cloud based deployment is to evaluate the scalability
of the system. The cloud deployment with GPUs evaluates the performance,
throughput, resource consumption and processing time of video streams.

The con�guration of the cloud resources is as follows: the cloud instance
has Ubuntu LTS 14.04.1 and is running OpenStack Icehouse. There are six
server machines and each server machine is equipped with 12 cores. Each
server is running with 6-core Intel Xeon Processors at 2.4 Ghz. It has a
storage capacity of 2 Terabyte with 32GB RAM. The cloud instance is con-
�gured with 192GB RAM, storage capacity of 12TB and 72 processing cores.
OpenStack provides a dashboard to manage and control the resources such
as storage, network and pool of computers.

A cluster consisting of 15 nodes is con�gured to evaluate theproposed
system. The con�guration of each node is as follows: 4 VCPU running at
2.4GHz with 8GB RAM. Each node is con�gured with a storage capacity of
100GB. The evaluation parameters to measure the performance of the system
include total analysis time of the system, impact of task parallelism on each
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node and the variations of compute nodes in the cloud. This experimental
setup helps to measure the performance of the system for scalability and
robustness with varying cloud con�gurations.

The Hadoop MapReduce framework is utilised to evaluate the system
in cloud resources. Hadoop comes with Yarn which is responsible for man-
aging resources and scheduling jobs for the running processes. It further
facilitates with a NameNode in charge for the management of nodes, a
Data/ComputeNode to process and store the data, and a JobTracker for the
tracking of running jobs. These components of Hadoop MapReduce frame-
work help to schedule and analyze tasks on the available nodes in parallel.

The accuracy and performance of the proposed system is evaluated on
cloud nodes with 2 GPUs. The nodes are equipped with Intel Corei7 3.60
GHz processors with 16 GB RAM. Each node is supported with an ASUS
GeForce GTX 780 GPU. This Kepler architecture based GPU is enriched
with 12 Streaming Microprocessors (SM). It has 2304 CUDA cores and a
memory of 3 GB. A total of 2048 threads can be generated in parallel by
each streaming processor. These threads are executed in 64 warps and each
warp has the capability to execute 32 threads in parallel. A local memory of
512 KB is possessed by each thread and there are 255 registersper thread.
Each streaming microprocessor (SM) uses 16 thread blocks with 2048 bytes
of shared memory per block.

The GT610 GPU has 48 CUDA cores with a memory of 1GB. The archi-
tecture of this GPU is Fermi-based and has one streaming microprocessor.
The streaming microprocessor can support a total of 8 threadblocks. It can
support 48 warps per SM and each warp contains 32 threads. Each thread
has a total of 63 registers and a local memory of 512kb.

The dataset is self-generated consisting of videos of humanfaces of various
individuals. The video streams recorded for the experiments are relatively
simple (captured under controlled environmental conditions with faces posing
towards a camera) and does not pose challenges such as illumination or head
pose. The total video data used for the experimentation consists of one
month of video streams. Each video stream has a duration of 120 seconds.
The video streams are encoded with H.264 format. The frame rate for each
video stream is 25fps. The data rate and bitrate for each video stream
are 421kbps and 461kbps respectively. The decoding of each video stream
generates a frame set of 3000 video frames. Each video frame holds a data
size of 371kb.
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7. Experimental Results

This section explains the results obtained by executing theexperiments
with the dataset and the experimental setup with two di�erent con�gurations
described in Section 6. This section is further divided intothree subsections.
The �rst subsection explains the accuracy of the object classi�cation system
and the speedup achieved by the cropping process. The second subsection
explains the throughput and performance of the system for video stream
decoding, transfer of data between CPU to GPU and vice versa and perfor-
mance gains achieved by utilising the GPUs for compute intensive parts of
the algorithm. The third subsection explains the scalability and robustness
of the whole system by analysing decoded video streams and transferring
the video data from local storage to cloud nodes. It also measures the time
required to analyse video data on the cloud nodes and gathering the results
after the completion of analysis. A discussion of the observations from these
results is also provided in this section.

7.1. Performance of the unsupervised object classi�cation

The performance of the unsupervised object classi�cation system is evalu-
ated by measuring the accuracy to classify objects and the speedup achieved
by the cropping process.

7.1.1. Object Classi�cation Accuracy
The marked object which is to be identi�ed in the video streamis matched

with all the frames of a video stream. Each video stream (among three
testing video streams) contains video frames of a single individual. The
target face is present in the �rst testing video stream, the other two testing
video streams have di�erent individuals. The video streamsrecorded for the
experiments are relatively simple (captured under controlled environmental
conditions with faces posing towards camera) and do not posechallenges
such as illumination or head pose. All the three testing videostreams have
di�erent individuals in each video stream. It is to be noted that for a video
stream with a frame per second rate of 25, we decoded only 5 frames per
second. It is obvious that no change can occur in such a short interval of
time, so processing all the frames would only increase the processing time.
Table 1 shows the matching results of a marked object with multiple frames
of multiple video streams.
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Frames VideoStream1 VideoStream2 VideoStream3
1 1 0.7437 0.7624
2 0.9613 0.7424 0.7594
3 0.9629 0.7434 0.758
4 0.963 0.7351 0.7546
5 0.9646 0.7339 0.7552
6 0.9665 0.7271 0.7573
7 0.9573 0.7266 0.7575
8 0.9525 0.7308 0.7512
9 0.9619 0.7285 0.7512
10 0.9453 0.7272 0.7626

AVG (120seconds) 0.943 0.745 0.756
STD (120seconds) 0.0256 0.0127 0.0128

Table 1: Matching results of a person in multiple video streams

The values in the columns represent the distance measure of marked ob-
ject against di�erent objects of multiple video streams using the LBPH algo-
rithm. The values near to 1 depict a closer match of marked object. It can be
seen from the table that all values in the column of video stream 1 are above
90 percent. This shows that the marked object is present in the video stream
1. On the other hand, all values in the second and third video streams are
below 90 percent and depict that the marked object is not present in these
video streams. We have used a threshold of 90 percent to distinguish between
the matched and unmatched objects. Figure 8 shows the video streams in
which the marked object is most likely to reside.

It can be seen from the �gure that video stream 1 has the highest proba-
bility of having the marked object. The other two streams arenot probable
to contain the marked object. Local binary pattern histogram hence provides
a good measure for the presence of marked objects in video streams.

7.1.2. Cropped Frame Processing Time
A signi�cant amount of speedup is achieved in the processingtime of

each frame due to the object detection approach. Cropping of avideo frame
around the detected object helped to reduce the processing area for the LBPH
algorithm. The resolution of overall video frame is decreased which in turn
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Figure 8: Presence of marked object
in multiple streams

Figure 9: Frame processing time of
individual frames

reduced the overall processing time of each frame. The processing time of
each individual frame before cropping and after cropping iscalculated and is
shown in Figure 9.

The decrease in processing time is because of the fact that the resolution is
reduced signi�cantly because of cropping. The video used inthis experiment
had a frame resolution of 640� 480. However, the detected object which
was extracted from the whole frame and later used by LBPH for comparison
had a resolution of around 160� 160 in most of the cases. This decrease in
resolution improved the total frame processing time by almost 90%.

7.2. Object Classi�cation on GPUs
This section describes the throughput and performance of the object clas-

si�cation system. The analysis of object classi�cation system on GPU can
be divided into two major steps i) time required for decodinga video stream
and transferring it from CPU to GPU memory, ii) time required to process
the video frame data for object classi�cation. The performance measures of
these two major steps are explained in the rest of this subsection.

7.2.1. Data Transfer Time
We have tested three di�erent memory allocation techniquesto transfer

data from CPU to GPU and then back from GPU to CPU. The three tech-
niques are page-able memory, pinned memory and zero copy. The e�ect of
these three techniques has been demonstrated by varying thenumber of video
streams from 1 to 10. A total memory allocation of 371.712 KBsis required
by each video frame with a resolution of 704� 528. A video stream recorded
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at 25 frames per second has a data transfer rate of 10.89 MB persecond.
For a varying number of video streams from 1 to 10, the data transfer per
second varied from 10.89 MB to 108.9 MB. It has been observed that zero
copy memory allocation technique remained fastest among the three tech-
niques for transferring video frame data from CPU to GPU and vice versa.
The time taken by each technique is summarised in Table 2.

CUDA

Streams

Data Transfer Time (in Milliseconds)

CPU to GPU GPU to CPU

Pageable Pinned Zero Copy Pageable Pinned Zero Copy

1 0.113 0.104 0.001 0.123 0.1 0.001

2 0.212 0.117 0.025 0.16 0.151 0.011

3 0.321 0.208 0.12 0.311 0.233 0.0869

4 0.36 0.215 0.126 0.374 0.293 0.126

5 0.42 0.286 0.197 0.438 0.415 0.196

6 0.471 0.313 0.216 0.489 0.502 0.275

7 0.56 0.373 0.267 0.597 0.686 0.328

8 0.612 0.431 0.316 0.65 0.83 0.38

9 0.643 0.499 0.322 0.795 0.878 0.485

10 0.733 0.517 0.397 0.872 0.982 0.509

Table 2: Data Transfer Time from CPU to GPU and GPU to CPU

7.2.2. Frame Processing Time
The total time taken to process an individual frame of a videostream

is calculated by using the three memory allocation techniques discussed in
the previous section. The total time required to process an individual video
frame is the sum of time required to read and decode a frame, transfer time
from CPU to GPU and GPU to CPU and the time required to compute
local binary pattern of frame. Figure 10 depicts the elapsed time of di�erent
frame processing operations by each memory allocation technique. It has
been observed that zero copy remained the most e�cient mechanism because
of direct video frame data access from GPU to CPU. GPU memory address
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Figure 10: Comparison across di�erent memory allocation techniques

space is mapped to CPU memory address space in the zero copy mechanism,
so a GPU can access CPU memory as its own address space. This mapping
also enables the GPU to access a particular memory location in host memory
whenever data is copied from host to device. The same procedure is followed
to copy data back to the host from GPU memory.

Another way to quantify the performance of the system is to measure the
number of frames processed per second. The number of frames processed per
second using the three memory allocation mechanisms is calculated and de-
picted in �gure 11. As it was predicted, the highest throughput is achieved
by the zero copy mechanism with varying number of video streams. It is
observed that two video streams per GPU provided the most optimum per-
formance by processing almost 100 frames per second. The data transfer
time from CPU to GPU and GPU to CPU remained optimized with two
CUDA streams as described in Table 2.

7.2.3. Computation Time with Varying Video Resolutions
The processing time of a video frame is highly dependent on the resolution

of a video frame. For a high resolution video frame, more computation time
is required as more data is needed to be processed. We have tested di�erent
video streams with varying resolutions on the system and computed the total
processing time. This time includes the time required to process the frame
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Figure 11: Frame processing time
and number of video streams
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Figure 12: Video Processing com-
parison on di�erent platforms

as well as the video decoding time. The generated results arealso compared
with the results produced by stand-alone CPU node as depicted in Figure
12.

It has been observed that optimum utilization of GPUs can be achieved
by having the videos with high resolution. The processing oflow resolution
videos on GPUs will not generate much speedup as compared to CPUs. This
is because of the fact that a CPU processes each pixel sequentially. On the
other hand a GPU performs the processing of pixels in parallel by mapping
each pixel to individual thread. This elevates the processing speed of indi-
vidual frames. However, if the video frame is of low resolution, no signi�cant
speedup in the processing time of video frame is observed as compared to
CPU due to data transfer overheads.

7.3. Object Classi�cation on the Cloud
In order to evaluate the scalability of our approach, we haveexecuted it

on the cloud infrastructure described in the experimental setup section. The
evaluation is performed on the following three parameters.i) Time taken to
transfer video stream data from storage server to the cloud nodes, ii) Analysis
time of video streams on cloud nodes, iii) Time required to collect results
from cloud nodes. Hadoop File System (HDFS) is used for storing �les.
The MapReduce framework is used to analyse video streams by executing
unsupervised object classi�cation algorithm explained inSection 3. The
analysis results are then stored in the database.

7.3.1. Hadoop Sequence File Creation
The video streams are �rst decoded to extract individual video frames

from the input video. The total size of one month of recorded video streams
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is 175GB. Each video stream is recorded at 25 frames per second. The number
of decoded video frames is dependent upon the length of videostream being
analysed. These individual frames are not suitable for directly processing
on the compute nodes with the MapReduce framework. This is because of
the fact that MapReduce is designed to process large �les. Processing small
�les will only result in the decrease of overall performance. These small
�les are bundled into a large �le referred to as Hadoop sequence �le and
then transferred to the cloud nodes for processing. The sequence �le is then
moved to cloud storage for unsupervised object classi�cation.

7.3.2. Hadoop Sequence File Creation Time
The time required to generate a sequence �le is directly proportional to

the size of dataset. Multiple datasets of varying sizes from5GB to 175GB
have been used in this paper to generate results. The datasetof varying
sizes helped to evaluate numerous aspects of our system. Thetime taken to
create a sequence �le for sizes ranging from 5GB to 175GB varied from 6.15
minutes to 10.73 hours respectively. The larger the dataset, more time it will
require to generate the sequence �le. However, it is a one-time process and
once the sequence �le has been generated, it can be stored in the cloud data
storage for future analysis tasks.

7.3.3. Sequence File Transfer Time
The generated sequence �le is moved to cloud data storage as object

classi�cation will be performed on cloud nodes. The transfer time required
to transfer the �le to cloud data storage depends on various parameters.
These parameters include network bandwidth, data replication factor and
cloud data storage block size. The data transfer time varieswith the size of
the dataset. For the dataset sizes reported in this paper (5GB to 175GB), the
data transfer time varied from 2 minutes to 3.17 hours. Figure13 depicts the
data transfer time of various dataset sizes with varying cloud storage block
size.

7.3.4. Object Classi�cation on Cloud Nodes
We have evaluated the scalability and robustness of the system by exe-

cuting object classi�cation on large numbers of video streams. The datasets
have also been varied from 5GB to 175GB to observe the e�ects on the cloud
nodes. The HDFS block sizes have also been varied to measure theexecution
time and resources consumed during the analysis tasks on cloud nodes. The

26



Figure 13: Data Transfer Time to Cloud Storage

Figure 14: Video Stream Analysis Time on Cloud Nodes

performance of the system is measured by monitoring the timerequired to
analyse the dataset of various sizes and the resources consumed during the
analysis task.

We have varied the block size from 64MB to 256MB, in order to observe
the e�ect of varying block size on Map task execution. It has been observed
that the execution time of Map task increases by increasing the size of dataset
as depicted in Figure 14. But the variation in block sizes has no major
impact on the execution time of Map/Reduce tasks. For the dataset size
varying between 5GB and 175GB, the total execution time varied between
6.38 minutes and 5.83 hours.

The memory consumption of all the block sizes remained the same except
for the 64MB block. The requirement of physical memory for the 64MB
block size is higher than other block sizes as depicted in Figure 14. The
default block size of cloud storage is 128MB. A 64MB block size thus produces
more data blocks which are needed to be processed by cloud nodes causing
memory overhead. More memory is required to process small block sizes as
the number of map tasks turn out to be de�cient with the smaller block sizes.
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Figure 15: Memory Consumed for Analysis in the Cloud

Nodes Tasks per Node
Tasks Execution
Time (Hours)

15 94 5.83
12 117 7.10
9 156 7.95
6 234 14.01
3 467 27.80

Table 3: Analysis Task Execution Time with Varying Cloud Nodes

Figure 15 shows the memory required with varying datasets foranalysis on
the cloud.

7.3.5. Robustness with changing cluster size
The robustness of the system is evaluated by measuring the total analysis

time and the speed-up achieved by increasing the number of cloud nodes. We
have measured the total time required for the analysis of dataset with varying
number of nodes. The total analysis time of whole dataset decreases as the
number of nodes increases in the cloud. Table 3 shows the execution time
required to analyse the dataset with varying nodes.

We have also measured the total time required for analysis ofwhole
dataset with varying number of nodes and block sizes. Figure 16 depicts that
the execution time decreases as the number of nodes in the cloud increases.
A decreasing trend has been observed in the analysis of wholedataset. A
total execution time of 27.80 hours was required for the processing of 175 GB
dataset with 3 nodes, whereas, it took only 5.83 hours to process the same
amount of data with a 15 node cloud.
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Figure 16: Analysis Time with Varying Number of Cloud Nodes

7.3.6. Task parallelism on Compute Nodes
The total number of analysis tasks executing on a compute node is directly

proportional to the number of input splits. The number of input splits are
further dependent on the dataset size, cloud data storage block size and
available physical resources. The dataset size of 175GB gives rise to 1400
map/reduce tasks with a default cloud storage block size of 128MB. It has
been observed during the experiments that the number of analysis tasks on
each node increases as the number of nodes decreases. We varied the number
of nodes between 3 and 15 in these experiments. As the number oftasks
per node increases, the performance of the overall system degrades. This is
because of the fact that the increase in number of tasks per node saturates
resources and each subsequent task has to wait longer for scheduling and
execution. A summary of task execution time corresponding to a varying
number of nodes is shown in table 3.

We have also calculated the analysis time of varying datasets with varying
block sizes. It is observed that if the block size is large, less computation
time will be required to analyse the data as compared to smaller block size.
The large block size will have less number of map tasks, reduced memory
requirement and management overhead as compared to small block size. This
will result in the faster processing of dataset. However, it is to be noted that
varying block sizes does not a�ect the execution time of Map task. The block
size of 512MB required the same processing time as 256MB block size for the
175GB dataset. The same phenomenon is observed with other block sizes as
well. However, the time required to transfer the data with larger block sizes
is greater and required larger compute nodes to process the data.
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8. Conclusion & Future Work

A cloud based video analysis system based on Haar Cascade Classi�er
and the Local Binary Pattern Histogram is presented in this paper. The
proposed system requires minimum human interaction and provides auto-
mated object classi�cation from large number of video streams. The system
performs classi�cation under unsupervised learning domain and without re-
quiring any metric learning stage or labelled training dataset. An accuracy of
more than 95 percent is achieved when the application is tested on multiple
video streams.

The proposed system is capable of coping with the challengesof increased
volume of data. The objects are detected and classi�ed from one month of
video data comprising a size of 175 GB. It took 6.52 hours to analyse this
data on a 15 node cloud. By increasing the number of nodes in the cloud, a
decreasing trend in processing time is observed in analysing the video data.
A reduction from 27.80 hours to 5.83 hours is observed, when the number
of cloud nodes increased from 3 to 15. However, the analysis time is also
dependent on the amount of data being analysed. The analysis time varied
from 6.38 minutes to 5.83 hours for the dataset sizes rangingfrom 5GB to
175GB in the cloud.

The processing time further reduced to 3 hours for 175GB datawhen the
video stream analysis is performed on GPU mounted cloud nodes. Several
factors contributed to achieving high throughput such as optimized resource
utilization of GPUs, e�cient and optimal data transfer techniques, improved
occupancy and e�cient memory allocation. The mapping of each pixel of a
video frame to individual light-weight GPU threads played amajor role in
achieving high performance in the system.

In future, we would like to make the system more generic by detecting and
recognizing other objects from di�erent object classes such as cars, bicycles
and pedestrians. The optimization of detection and recognition algorithms
by analysing them in the frequency domain will also be the focus of our
future work. We would also like to achieve more speed-up and scalability by
using in-memory processing cluster coupled with the computation power of
GPUs. This will help to overcome the delays which occur due to various I/O
operations.
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