Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Interactive design exploration for constrained meshes

Deng, Bailin, Bouaziz, Sofien, Deuss, Mario, Kaspar, Alexandre, Schwartzburg, Yuliy and Pauly, Mark 2015. Interactive design exploration for constrained meshes. Computer-Aided Design 61 , pp. 13-23.

[img]
Preview
PDF - Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (4MB) | Preview

Abstract

In architectural design, surface shapes are commonly subject to geometric con- straints imposed by material, fabrication or assembly. Rationalization algo- rithms can convert a freeform design into a form feasible for production, but often require design modi�cations that might not comply with the design intent. In addition, they only o�er limited support for exploring alternative feasible shapes, due to the high complexity of the optimization algorithm. We address these shortcomings and present a computational framework for interactive shape exploration of discrete geometric structures in the context of freeform architectural design. Our method is formulated as a mesh optimiza- tion subject to shape constraints. Our formulation can enforce soft constraints and hard constraints at the same time, and handles equality constraints and inequality constraints in a uni�ed way. We propose a novel numerical solver that splits the optimization into a sequence of simple subproblems that can be solved e�ciently and accurately. Based on this algorithm, we develop a system that allows the user to explore designs satisfying geometric constraints. Our system o�ers full control over the exploration process, by providing direct access to the speci�cation of the design space. At the same time, the complexity of the underlying optimization is hidden from the user, who communicates with the system through intuitive interfaces.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Computer Science & Informatics
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Uncontrolled Keywords: In architectural design, surface shapes are commonly subject to geometric con- straints imposed by material, fabrication or assembly. Rationalization algo- rithms can convert a freeform design into a form feasible for production, but often require design modi�cations that might not comply with the design intent. In addition, they only o�er limited support for exploring alternative feasible shapes, due to the high complexity of the optimization algorithm. We address these shortcomings and present a computational framework for interactive shape exploration of discrete geometric structures in the context of freeform architectural design. Our method is formulated as a mesh optimiza- tion subject to shape constraints. Our formulation can enforce soft constraints and hard constraints at the same time, and handles equality constraints and inequality constraints in a uni�ed way. We propose a novel numerical solver that splits the optimization into a sequence of simple subproblems that can be solved e�ciently and accurately. Based on this algorithm, we develop a system that allows the user to explore designs satisfying geometric constraints. Our system o�ers full control over the exploration process, by providing direct access to the speci�cation of the design space. At the same time, the complexity of the underlying optimization is hidden from the user, who communicates with the system through intuitive interfaces.
Publisher: Elsevier
ISSN: 0010-4485
Date of First Compliant Deposit: 26 April 2017
Last Modified: 19 Jun 2017 23:09
URI: http://orca.cf.ac.uk/id/eprint/98569

Citation Data

Cited 25 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics