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Figure 13. Sample 3, example of grain bruising.

200 mm

Figure 14. Sample 6 showing fractures, similar to those found in the non-consolidated samples. The mineral specifically referred to is
outlined in white.

observed that in the impacts created in non-consolidated stone the impact area was far more ‘jagged’, as
illustrated by figure 10a, in contrast with the consolidated stone where the impact created a shallower
and smooth curve (figure 10b).

3.5.2. Quartz fragmentation

Quartz in the direct impact zone showed noticeable fracturing along the impact area. Figure 11a
illustrates the fractures observed in the impact zone of sample 2 which was not treated with a consolidant.
The absence of this surface support has resulted in the separation of the quartz fragment along the
fracture line. Figure 11b shows a close-up of the area.
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Figure 15. Sample 4, with arrows indicating clay matrix movement. This sample was not treated with Wacker OH 100.

The bullet impacted in the area directly to the right of the fractured quartz, therefore, the conclusion
could be drawn that the fracture and subsequent separation of the crystal is the result of the shockwaves
generated at impact travelling sideways through the near-surface of the stone sample. The absence of
a consolidant, and therefore a higher relative elasticity of the surface, facilitates sideways movement
of the crystals. This type of separation was not observed in the samples treated with consolidant. This
observation supports the notion that the nature of a micro-fracture network created upon impact is as
dependent on the state of the material pre-impact as it is on the type of impact. As figure 12a illustrates,
sample 3 exhibits this type of fracture network in the area directly adjacent to the impact. Figure 12b,c
illustrates the geometric nature of the fracture network.

Figure 13 illustrates further the fracture networks which were observed in sample 3 around the zone
of impact. This sample also exhibits ‘bruising’ where part of the grain appears to have been reduced in
refractive index (also noted by Fratanduono et al. [35] in shocked quartz), resulting in partial extinction as
observed using cross-polarized light. This discoloration was not observed in grains outside of the direct
impact area, indicating that this ‘bruising’ is closely connected to the shock generated on impact.

The above examples are observed in non-consolidated material. In consolidated material (samples
5–8) similar fractures were observed, implying that even though impact area development may differ
the effects of the impact on mineral grains immediately surrounding the impact area are very similar.
Figure 14 shows fractures found on the edge of the direct impact area in a Wacker OH 100 treated block
(sample 6).

3.5.3. Realignment of the clay matrix

Deformation of the clay (muscovite/kaolinite) cementation indicates a realignment of the general matrix
in response to the shock generated on impact. Figure 15 illustrates this realignment in relation to the
centre of the bullet impact which is in the area between the two arrows. The arrows indicate the new
direction of the clay minerals, an alignment which is not visible in the non-impacted samples

3.5.4. Three-dimensional X-ray tomographic analysis of impact planes

As all previous tests indicated both deformation of minerals around the impact zone as well as
consolidation of the clay, a sample was scanned using X-ray tomography to map out compaction and
fracture zones. These results are shown in figure 16, where the impacts coincide with compacted areas,
whereas the fractured area extends onto the surface, radiating out from underneath the impact zones.
The damage appears to have been caused by stress travelling into the block as the bullet hit, towards the
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Figure 16. X-ray of impact areas, green demarcates areas of low density (fractured), whereas red indicates areas of higher density, likely
to be lead deposits from the bullet encasing. (a) Frontal view (line of sight parallel to travel of bullet) and (b) top-down view. This sample
was not treated with Wacker OH 100.

edges of the block while following a bedding plane within the stone sample. This exploitation of a pre-
existing weakness is a commonly observed mechanism in stone under environmental stress [36]. These
results also confirm the creation of compaction areas at the site of impact, which in turn affects impact
site response to environmental stress and potential for long-term deterioration.

4. Discussion
As shown in §3.2 the mass of material loss at the time of impact was nominal as would be expected from
a 0.22 calibre impact. However, surface hardness and ERT measurements indicate that the impact of a
small projectile, such as a 0.22 calibre bullet, can greatly alter the behaviour of a stone under changing
environmental circumstances. While the Wacker OH 100 was successful in raising the surface hardness,
simulating the surface cementation created by case hardening, the increase in strength was negated after
the projectile impact as surface strength was substantially lowered again. The non-treated samples did
not show such surface-wide deterioration but instead showed a noticeable lowering of surface hardness
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Figure 17. Fractures in a quartz-rich metasedimentary rock from the Ries Impact structure, Germany. Compare fractures with
figures 10–14. Crossed polars. Sample from Alte Bürg quarry, 12 km from impact centre.

at the bullet impact site. This resulted in very different moisture regimes as the treated sample appeared
to conduct capillary rise of moisture along the surface, whereas the non-treated sample showed further
ingress of moisture into the body of the stone. Considering the noticeable decrease in surface hardness
after the impact, it is likely that the fracture network at and near the surface facilitates this capillary
rise. While this is based on a simulation of case hardening, rather than naturally hardened surfaces,
there are nonetheless lessons that can be learnt. Wacker OH 100 can increase flexural strength within a
stone mass [37], which is useful when the stone is under physical pressure, but decreases its ability to
transmit shockwaves with minimal damage. Given this lack of plasticity near the surface, it is possible
that the area directly behind the impact can severely weaken. Assuming that moisture follows the
available pathways, i.e. the fracture networks, a continued deterioration of the surface over time owing
to increased evaporation and capillary rise of groundwater could potentially be a contributing factor to
future acceleration of surface deterioration.

There are potential similarities between shocked features from meteorite impacts and the impact of
bullets. Previous literature has investigated the phenomenon ‘shocked quartz’ which is commonly found
in sites that have been affected by meteorite strikes [38–40]. The heat and shockwaves generated by such
impacts create a tell-tale network of parallel and perpendicular microfractures, and deformation of the
mineral through (partial) melting. Even at this low calibre impact investigated here these changes were
observed within our samples.

Quartz grains that have been shocked in meteorite impacts exhibit a variety of characteristic
deformation features. Planar deformation features (PDFs) and planar fractures (PFs) are the most widely
recognized. The former are planes of amorphous SiO2 lamellae nanometres in width with spacings of
2–10 µm that occur in specific crystallographic orientations [41]; or Brazil twins [42], whereas PFs are
open or closed fractures with wider spacings than PDFs [43]. Less well characterized are a variety
of non-planar and unorientated fractures that are common in shocked minerals and ubiquitous in
shocked quartz [42]. Other shock effects in quartz include mosaicism, amorphization and polymorphic
transformations.

The fractures observed in quartz under the bullet impacts are too coarse to be classified as PDFs or
PFs, but they fit well with the description of fractures caused by rarefraction waves at pressures less than
the elastic limit of quartz, below 5 GPa [42,43]. Figure 17 shows an example of typical fractures found in
quartz metasedimentary rocks from the Ries Impact structure, Germany, which have similarities to the
fractures seen in figures 10–14. The extinction patterns observed under cross-polarized light in quartz
grains are potentially similar to mosaicism [44], although more detailed characterization is necessary
to establish this similarity. In any case, the extinction patterns can be clearly related to the shot by their
localization near the bullet impact site. These observations suggest that the deformation caused by bullets
has some similarities with meteorite shock damage, and could be considered to occur at the low-pressure
end of the spectrum of shock-induced microstructures. This comparison could have useful implications
for further studies of arms-induced damage.
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The microscopy presented here shows that even relatively small 0.22 calibre bullet impacts alter

the substrate significantly, both through removal of material and alteration of the grains within the
direct impact area. The deformation is noticeable and appears to lead to both crack formation and
compaction within the impact area. The presence of kaolinite facilitates the compaction of the impact
area, thereby potentially hampering internal moisture flows. The relatively high percentage of clay
minerals (muscovite 13% and kaolinite 6%) facilitates this compressive cementation, leading to reduced
movement of moisture through this section of the stone surface. The long-term effect could be the
development of weak areas around the impact zone where crack formation facilitates more rapid
through-flow of moisture while clay deformation further concentrates through-flow, thereby causing
larger areas of deterioration than previously estimated. However, the clean removal of surface material
in Wacker OH 100 treated samples, in contrast with the more ‘jagged’ and fragile removal of material
in non-consolidated samples implies that the consolidation provides some measure of protection for
the subsurface; the impact is intercepted by the consolidated surface, causing a fracture between
the consolidated area and the subsurface followed by a removal of any consolidated material. In
non-consolidated material, no such boundary exists and instead the fracture paths may depend on pre-
existing weaknesses in the material such as around grains in particularly porous areas. More research
will be needed in this area before firm conclusions can be drawn.

The above results have a number of potential implications for stone conservation. Somewhat
counterintuitively, any monuments which have been treated with consolidation substances or have
developed a surface hardened by natural cementation during years of exposure could be at greater risk of
deterioration after a projectile impact owing to fracturing of the surface as a result of decreased plasticity.
While the damage on the surface may only be visible at the direct impact point, the weakening of the
stone may be far more widespread through the material than previously realized. In addition, subsequent
alteration in internal moisture behaviour could result in significant problems for the conservation of
heritage as previously dominant weathering processes could be altered to suit the new moisture regime.
While formation of fracture networks owing to projectile impact is not a new concept, this research places
it in a new context by combining experimental weathering and impact studies that tend to be restricted
to engineering investigations, and setting it in the context of the complexity of heritage in conflict areas.
Armed warfare is becoming an increasing threat to heritage as the availability of weapons and their
impact potential increase. These tests are based on relatively small 0.22 calibre bullet impacts with
minimal surface material loss, yet the effects were far greater than appreciated from a visual inspection.
The results from this study, therefore, beg the question: if such small impacts can alter the stone to this
extent, what are the long-term consequences of larger impacts such as AK-47s?

5. Concluding remarks
While this report gives a preliminary indication of the influence of projectile impacts on the response of
stone to temperature and moisture ingress, further research is needed to comprehend this rather complex
issue. Additional factors, such as salt weathering, loss of tensile strength throughout the stone mass
and the effects of larger, higher-velocity impacts need to be investigated further before drawing firm
conclusions about the influence of projectile impacts on conservation strategies in armed warfare zones.
Further research into the response of other common building materials such as brick and concrete is
necessary to map damage in built heritage sites made of composite materials. The complexity of the
response of fracture networks to environmental strain, even at a small calibre scale, is evident from this
work. This study also illustrates the need for a multidisciplinary approach to the long-term impacts of
armed conflict.
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