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ABSTRACT 22 

Osmium stable isotopes provide a new, potentially powerful tool with which to investigate a diverse 23 

range of geological processes including planetary formation, ore-genesis and weathering. In this paper, 24 

we present a new technique for high precision measurement of osmium (Os) stable isotope ratios by 25 

both Multiple-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) and Negative ion 26 

Thermal Ionisation Mass Spectrometry (N-TIMS). We use a 188Os-190Os double spike, composed of 27 

61% 188Os and 39% 190Os, to correct for mass dependent fractionation resulting from sample 28 

preparation and isotope measurement, with the ideal spike to sample ratio being 55:45. Isotope ratios 29 

���Œ�������Æ�‰�Œ���•�•���������•���w�í�õ�ì�K�•���Á�Z�]���Z���]�•���š�Z�����‰���Œ���u�]�o�������À�]���š�]�}�v���]�v���š�Z�����u�����•�µ�Œ�������í�õ�ì�K�•�l�í�ô�ô�K�•���Œ���š�]�}���Œ���o���š�]�À�����š�}��30 

isotope reference material DROsS. Repeated analyses of double spiked DROsS for both MC-ICP-MS (n= 31 

80 cycles) and N-TIMS (n= 280 cycles) show that an internal precision of 0.01-�ì�X�ì�î���:���}�v���w�í�õ�ì�K�•���~�î���•���•��32 

can be attained, with a long-�š���Œ�u�� �Œ���‰�Œ�}���µ���]���]�o�]�š�Ç�� �}�(�� �ì�X�ì�í�ò�� �:�� ���v���� �ì�X�ì�î�õ�� �:�� �~�î�� �•���V�� �v�� �A�� �õ�í�� ���v���� �ô�ï�U��33 

respectively). The better reproducibility on MC-ICP-MS than on N-TIMS is, predominantly, due to 34 

measurement at higher beam intensities (11-18 V with consumption of ~200 ng natural Os vs. 2-18 V 35 

with consumption of 2.3 �t 45 ng natural Os, respectively).  In addition to stable isotope compositions, 36 

our method allows for simultaneous measurement of 187Os/188Os and 186Os/188Os ratios with a 37 

precision of <40 ppm (2 se; 80 cycles for MC-ICP-MS and 280 cycles for N-TIMS) and an external 38 

reproducibility of 123-268 ppm and 234-361 ppm (2 sd; n= 91 for MC-ICP-MS and n= 83 for N-TIMS), 39 

respectively. We demonstrate that a similar precision and reproducibility can be obtained for other 40 

pure Os solutions as well as for geological materials. In addition, a range of analytical tests evaluates 41 

and demonstrates the robustness of our method with regards to residual matrix effects and 42 

interference correction, signal intensity and on-peak zero on MC-ICP-MS, and the effect of oxygen 43 

corrections and isobaric interference on N-TIMS. Finally, we report the first Os stable isotope 44 

compositions for geological reference materials, including mantle peridotites and chromitites, and one 45 

ordinary chondrite. 46 

  47 



 

1. INTRODUCTION 48 

Osmium (Os) has two radiogenic isotopes (186Os and 187Os) and five naturally occurring stable isotopes: 49 
184Os, 188Os, 189Os, 190Os, and 192Os, with relative abundances of 0.02 %, 13.21 %, 16.11 %, 26.21 %, and 50 

40.74 %, respectively. Osmium is a refractory and highly siderophile (Fe-loving) element and is therefore 51 

of considerable interest in the study of planetary differentiation and formation o�(�������Œ�š�Z�[�•���u���š���o�o�]�������}�Œ���X��52 

It is also a chalcophile (S-loving) element, and strongly partitions into sulphides. Consequently, Os 53 

behaves compatibly during mantle melting, where sulphide remains as a residual phase in the source. 54 

Taking advantage of the chemical properties of Os and the differences in behaviour between Re, Pt and 55 

Os, the 187Re-187Os and 190Pt-186Os decay systems have become important chronometers and tracers in 56 

both high and low-temperature geochemistry e.g.1, 2. More specifically, these radiogenic isotope systems 57 

have been used to study early solar system dynamics e.g. 3, 4, planetary differentiation processes e.g. 5, 6, 58 

mantle heterogeneity e.g. 7, 8, crustal growth and recycling e.g. 9-11, economic mineralization in ore deposits 59 
e.g. 12, and the nature of weathering processes associated with brief climatic excursions e.g. 13-15. However, 60 

despite the potential to use stable Os isotopes to investigate these same processes, thus far this system 61 

remains unexplored. 62 

A potential limitation for the use of Os stable isotopes in geochemistry is the small range of 63 

natural variation expected for high-mass elements. This is compounded by the very low abundance of 64 

Os in most terrestrial samples. However, recent advances in mass spectrometry and development of 65 

new techniques for stable isotope measurement have led to the discovery of significant and systematic 66 

stable isotope fractionation for high-mass stable isotope systems in both high and low-temperature 67 

environments16-22. This suggests that Os stable isotope variations may be measurable if a suitable high 68 

precision analytical method can be developed.  69 

Additional complications that must be addressed in order to successfully measure Os stable 70 

isotopes include the non-quantitative recovery of Os during sample processing (typically on 60-80 %23, 71 
24) and instrumental mass bias (MC-ICP-MS) or mass fractionation (N-TIMS) during measurement. Such 72 

fractionation can be overcome by the use of a double spike (DS) 25. This approach has been shown to 73 

reliably account for mass-dependent stable isotope fractionation that can occur during all steps of 74 

sample processing (digestion, chemical separation and mass spectrometry) 18, 26, 27. 75 

In this paper, we present a new method for the measurement of high-precision stable Os 76 

isotope ratios using a 188Os-190Os double spike by both plasma source (MC-ICP-MS) and negative 77 

thermal ionisation mass spectrometry (N-TIMS). Method development on both machines allows for the 78 

analysis of sample materials over a broad range of Os concentrations (>1 ppb) at precisions of 0.01-0.02 79 

�:���}�v���w190Os (2 se; 80 cycles for MC-ICP-MS and 280 cycles for N-TIMS). In addition, we show that the 80 

method allows for simultaneous collection of stable isotopes and radiogenic isotope ratios, 187Os/188Os 81 

and 186Os/188Os, at a precision of <40 ppm (2 se; 80 cycles for MC-ICP-MS and 280 cycles for N-TIMS). 82 

We show the robustness, precision and accuracy of our method through a range of analytical tests and 83 



 

repeated measurements of pure Os solutions and geological materials. Finally, data is presented for a 84 

range of geological materials. 85 

 86 

2. OSMIUM DOUBLE SPIKE METHODOLOGY 87 

2.1 Osmium Double Spike Design 88 

The double spike (DS) approach requires four stable isotopes that are related to each other by mass-89 

dependent stable isotope fractionation. For Os we can use 188Os, 189Os, 190Os, and 192Os. Departures 90 

from mass-dependent fractionation, either due to cosmogenic effects or nucleosynthetic anomalies, 91 

have not been detected in terrestrial samples but have been reported for extra-terrestrial materials. 92 

Components of carbonaceous chondrites display mass independent Os isotopic anomalies although 93 

homogeneity is shown at the bulk meteoritic scale e.g. 28, 29,30. Mass independent anomalies at the bulk 94 

rock scale have been shown for iron meteorites e.g. 31 which should be considered when analysing such 95 

meteorites. 96 

The DS deconvolution used in this study is based on the geometric iterative resolution method 97 

of Siebert et al. (2001)32. Measurements were also double checked using an algebraic resolution 98 

method used by Millet and Dauphas (2014)33 and Millet et al. (2016)34 which yielded identical results. 99 

Regardless of the approach, the DS deconvolution consists of resolving the following non-linear 100 

equation: 101 
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where Rm, Rstandard and Rspike are the measured, standard and spike isotope ratios; in is the atomic weight 103 

of the normalising isotope (188Os); ix is the atomic weight of one of the three other isotopes used to 104 

resolve the equation which in our method are 189Os, 190Os and 192Os; f is the relative proportion of 188Os 105 

originating from the spike in the sample�tspike mixture; �r�� �]�•�� �š�Z���� �v���š�µ�Œ���o�� ���v���� �t�� �š�Z���� �‰�Œ�}�����•�•�]�v�P�� ���v����106 

instrumental exponential fractionation factors. In this study, reference material DROsS has been used 107 

as standard. All Os stable isotope compositions are thus reported relative to DROsS, as the per mil 108 

�����À�]���š�]�}�v���~�:�•���}�(���š�Z����190Os/188Os ratios, here after re�‰�}�Œ�š���������•���w190Os: 109 
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Radiogenic isotopes 186Os and 187Os are not used in the DS deconvolution. Consequently, the spike 111 

proportion, and the geological and analytical fractionation factors resolved within the DS deconvolution 112 

can be used to calculate the 186Os/188Os and 187Os/188Os ratios. Osmium concentrations were 113 

determined by performing isotope dilution calculations.  114 

 The analytical uncertainty on double spike measurements is highly dependent on spike 115 

composition and sample-spike mixing proportions. To establish the optimal composition and 116 



 

proportions for Os, we have modelled the internal precision of a typical MC-ICP-MS measurement 117 

following the model of Millet and Dauphas (2014)33 which takes into account the errors associated to 118 

Johnson noise and counting statistics (see ref. 33 for more details). This error model differs from that 119 

of Rudge et al. (2009)35 in that i) errors on the natural fractionation factor (alpha) are calculated on the 120 

basis of a constant intensity for the most abundant isotope in the natural Os-DS mixture, rather than 121 

calculated based on a constant total Os ion beam and; ii) determination of errors is done through Monte 122 

Carlo modelling. In our model, the maximum intensity for the most abundant isotope was set at 6 V. A 123 

measurement is assumed to comprise 80 cycles with an integration time of 8.3 seconds per cycle on 124 

1011 �:  collectors at T=290 K. The model shows that a minimum internal error, of ~0.010 �:  amu-1 (2 se), 125 

is acquired when using a 0.6:0.4 188Os �t 190Os mixed spike composition and a 0.55:0.45 spike-sample 126 

mixture (Fig. 1). This is close to the optimal double spike composition as calculated by Rudge et al. 127 

(2009)35 of 0.66:0.34 188Os -190Os for a 0.6:0.4 spike-sample mixture. It is important to note that the 2 128 

se error is <0.020 �:  amu-1 when the sample proportion ranges between 15 % and 81 %. That errors 129 

are minimal over a large range of spike-sample mixtures is of great utility when the Os concentration 130 

of samples is not well known. A triple spike composition was considered in our calculations but was not 131 

found to improve precision.  132 

 133 

2.2 Preparation and calibration of 188Os �t 190Os double spike 134 

Single 188Os and 190Os isotope spikes were purchased as fine-grained metallic powders from Trace 135 

Sciences International. In order to ensure purity of the double spike, the metal powders were 136 

individually digested using Carius tubes, followed by extraction and purification as described in section 137 

3.2. Individual spikes were subsequently mixed in calculated optimal proportions and the resulting 138 

double spike was diluted with 3 M HCl to desired concentrations. 139 

Calibration of the double spike isotope composition was achieved by measuring a pure 140 

standard and pure double spike solution as well as a range of Durham Romil Osmium Standard (DROsS36, 141 
37)-DS mixtures. Practically, this involves iterative correction for instrumental mass fractionation of the 142 

pure DS measurements to generate a putative true DS composition, with an initial estimate provided 143 

by the pure DROsS analysis. This putative true DS composition is then fed into the DS deconvolution 144 

and used on all DS-DROsS mixtures, ranging from 0.1:0:9 to 09:0.1 mixing proportions. Calibration is 145 

considered satisfactory once most mixtures, especially those around the optimum mixture proportions, 146 

���]�•�‰�o���Ç�������w190Os within analytical error of zero. For all these solutions, Carius tubes were used to ensure 147 

standard-sample equilibration. Measurements were carried out by MC-ICP-MS with each analysis 148 

comprising 220 cycles of 8.39 seconds and were all preceded by on-mass on-peak zero measurement 149 

(20 integrations of 8.39 seconds). The isotope composition of the DS and of reference standard DROsS, 150 

as used in the calibration and stable isotope calculations, can be found in Table 1. 151 

 152 



 

3. MATERIALS AND SAMPLE PROCESSING 153 

3.1 Materials and samples 154 

Digestion and processing of standards and samples were carried out at Durham University. During the 155 

course of this study, we used Romil acids of variable grades (Super Purity Acids and Ultra Purity Acids) 156 

with blank levels suitable for the analytical procedure. The nitric acid was purified by sparging with 157 

filtered air�X�������]�������]�o�µ�š�]�}�v�•���Á���Œ�����‰���Œ�(�}�Œ�u�������Á�]�š�Z���µ�o�š�Œ���‰�µ�Œ�����~�í�ô�X�î���D�O�|���u�•���Á���š���Œ�X�� 158 

We use the Durham Romil Osmium Standard (DROsS)36, 37 as a reference standard. This is an 159 

international Os isotope reference material supplied by IAGeo Limited that has been widely distributed 160 
e.g.38, 39 and for which Os isotope ratios have been determined to high precision and accuracy by both 161 

MC-ICP-MS36 and N-TIMS37. For method testing, we have also measured three in-house pure Os 162 

reference solutions, ROMIL, SpecPure, and OsCaR, which were purchased from Romil Ltd, Alfa Aesar, 163 

and provided by A. Poirier (OsCaR). As representative rock samples, we used well-characterized and 164 

commonly used reference materials: peridotites UB-N40 and GP-1341, and chromitites CHR-Bkg42, 43 and 165 

CHR-Pt+44. Reference material GP-13 is an in-house PGE standard prepared at Durham University which 166 

has been widely distributed. The other materials, UB-N, CHR-Bkg and CHR-Pt+, are distributed by CRPG-167 

CRNS, Nancy, France. Furthermore, we included an ordinary H-chondrite, ZAG. These samples were 168 

chosen to reflect the range of Os concentrations and sample matrices available for study. 169 

 170 

3.2 Sample digestion and chemical purification of Os 171 

Samples were digested either by Carius tube (CT)23, 45 or high-pressure asher (HPA, Anton Paar)44, with 172 

respective maximum of 2.5 g and 2 g powder material per tube. Digestions were performed using 173 

inverse aqua regia (1:2; 12 M HCl: 16 M HNO3�•���(�}�Œ���H�í�ò���Z�����š���š���u�‰���Œ���š�µ�Œ���•���}�(���î�ï�ì�£�����]�v��the case of CT and 174 

290-310°C for HPA digestions. The double spike was added to each tube prior to sample digestion. After 175 

digestion, the extraction and purification of Os closely followed techniques described by Cohen et al. 176 

(1996)21 and Birck et al. (1997)22. Separation of Os from the aqua regia digest solution was achieved by 177 

solvent extraction using CHCl3
46. Osmium was then back-extracted from the chloroform solution using 178 

concentrated HBr and subsequently purified using the micro-distillation procedure of Roy-Barman 179 

(1993)47 as described by Birck et al. (1997)24. In the case of measurements by MC-ICP-MS, samples were 180 

evaporated and chlorified three times using 300 µL of 8 M HCl before being taken up in 3 M HCl to a 181 

total Os concentration of ~0.5 µg mL-1. When performing Os analyses by N-TIMS, samples were dried 182 

down after microdistillation to approximately 1-2 �…�>�� �}�(�� �•���u�‰�o���� �•�}�o�µ�š�]�}�v and then loaded onto a Pt 183 

ribbon filament. Typical total procedural blanks range between 0.01 and 0.10 pg Os which is similar to 184 

previous Os studies carried out at Durham University e.g. 48.  185 

 186 

4. MASS SPECTROMETRY 187 



 

Osmium isotope ratios were measured at Durham University on a ThermoFisher Scientific Neptune MC-188 

ICP-MS36 and a Triton Plus N-TIMS37, 39, 49. The use of both MC-ICP-MS and N-TIMS allowed us to exploit 189 

the advantages of the different ionisation sources and provide a means to assess the relative accuracy 190 

of each measurement. The overall introduction and ionisation efficiency of MC-ICP-MS is relatively low 191 

(~0.08 %36) which makes it better suited for analysing large samples and calibrating standards. The 192 

advantage of the MC-ICP-MS is that Os is measured as Os+ which makes the mass spectrum relatively 193 

simple and corrections for isobaric interferences relatively straightforward. By contrast, N-TIMS has a 194 

much higher ionisation efficiency for Os (1-5 %37) which makes it ideal for samples with a low Os 195 

abundance or when sample material is limited. However, Os is measured as the tri-oxide ion OsO3
- 196 

which makes the mass spectrum complex and necessitates multiple oxide corrections that add to the 197 

�}�À���Œ���o�o���µ�v�����Œ�š���]�v�š�Ç�X���/�v�����}�š�Z�������•���•�U���]�v�š���Œ�v���o�����Œ�Œ�}�Œ�•�����Œ�����‰�Œ���•���v�š���������•���š�Z�����î���•�����}�v���w190Os of each integration, 198 

once passed through a 2 se filter to remove outliers. 199 

 200 

4.1 MC-ICP-MS 201 

4.1.1 Instrument set-up and parameters MC-ICP-MS 202 

The Neptune MC-ICP-MS was set-up for static simultaneous collection of all Os isotopes, apart from the 203 

least abundant 184Os. We also collected 183W, 185Re, and 194Pt in order to monitor and correct for isobaric 204 

interference (Table 2). In this study, interference beam intensities were <0.05 mV for 183W, <0.01 mV 205 

for 185Re, and <0.5 mV for 194Pt. Typical instrument operating conditions were similar to those outlined 206 

in Nowell et al. (2008)36. Sample material was introduced in 3 M HCl using an Elemental Scientific 207 

Incorporated (ESI) PFA-50 micro-flow nebuliser and Glass Expansion (GE) micro-���Ç���o�}�v�]���� �^Cinnabar�_ 208 

spray-chamber. During typical run conditions, the measured sample uptake rate was ca. 80 µL min-1 209 

with a sensitivity of ca. 30 V ppm-1. Measurements were carried out in static mode in 1 block of 80 210 

cycles of 8.389 seconds integration time each. Mass calibration was updated by peak-centering on the 211 

centre-cup mass 188Os at the start of each session and checked again at the end. Prior to every sample 212 

run, baselines were obtained by on-mass on-peak zero (OPZ) measurements for 20 x 8.389 seconds 213 

integrations in clean 3 M HCl. Washouts between sample runs used 3 M HCl acid for at least 5 minutes 214 

which resulted in the 188Os beam decreasing below 2 mV (~0.03 % of the typical sample signal). Total 215 

analysis time, including OPZ and wash-out, was approximately 15 minutes with consumption of 800 µL 216 

sample solution (equivalent to 400 ng total Os in the case of a 0.5 µg mL-1 solution).  217 

 218 

4.1.2 Data reduction MC-ICP-MS 219 

Following analysis, all raw intensity data were exported and re-processed offline on a cycle-by-cycle 220 

basis using an in-house Excel spreadsheet. For MC-ICP-MS analyses, corrections were applied in the 221 

following order; baseline subtraction using the OPZ measurements, abundance sensitivity (1 ppm36), 222 



 

isobaric interferences, and DS deconvolution. The abundance sensitivity is assumed to be similar to that 223 

determined by Nowell et al. (2008)36. 224 

 225 

4.1.2.1 Effect of beam intensity and on-peak zero  226 

To evaluate the effect of beam size on the accuracy, the main 500 ppb DROsS-DS solution was diluted 227 

to various lower concentrations (100 - 5 ppb total Os; Table 3). This resulted in total Os beam intensities 228 

varying between 18 V and 0.1 V, with the corresponding 188Os ranging between 6.7 V and 0.005 V. All 229 

analyses show Os stable isotope ratios as well as 187Os/188Os within analytical uncertainty of one 230 

another (Fig. 2; Table 3). The 186Os/188Os only shows a significant deviation from the reference value 231 

when the total Os beam intensity is 0.14 V, corresponding to solutions with concentrations of ~ 5 ppb 232 

total Os which equals the consumption of ~4 ng total Os (i.e. natural plus DS) under standard running 233 

conditions.  234 

Analyses by MC-ICP-MS at low beam intensities critically rely on the absence of memory 235 

effects. The on-peak zero (OPZ), used to account for baseline, can introduce an inaccuracy on the stable 236 

isotope composition especially when measuring samples with very distinct isotope composition. The 237 

importance of the wash-out and sample to sample memory has been discussed in detail by Nowell et 238 

al. (2008)36. They show that when certain precautions are taken (e.g., avoid drying out of the spray 239 

chamber between sessions, keep standards and samples in the same chemical form), the effect on the 240 

Os isotopic composition is negligible and should not prevent the acquisition of high precision data. 241 

Considering that the natural variation in stable isotope compositions is expected to be small and the 242 

proportion of sample to spike are well matched, the potential of memory effect on the stable isotope 243 

ratios can, therefore, assumed to be minimal. In this study, the OPZ of the diluted DROsS solutions 244 

display signal intensities between 0.04 % and 0.6 % relative to the peak Os signal (188Os) in the main 245 

run. The accuracy of the �w190Os values even at low beam intensities suggests that the OPZ has an 246 

insignificant effect on the accuracy at levels up to 0.6 %. For DROsS analyses run at total Os beam 247 

intensities of >10 V, OPZ analyses are in general <2 mV and <0.04 % of the peak Os signal. The potential 248 

of inaccurate �w190Os values as a result of OPZ analyses can, therefore, be neglected. The fact that OPZ 249 

correction is less accurate for 186Os/188Os is partly due to the lower intensities of 186Os relative to all 250 

other isotopes involved in the double-spike deconvolution (188Os, 189Os, 190Os and 192Os). The 186Os 251 

signal of the OPZ analyses at 0.14 V is 4 % of the main run beam. On-peak zero determination is, 252 

therefore, critical for obtaining reliable 186Os/188Os simultaneously with �w190Os by MC-ICP-MS. 253 

It should be noted that the higher ionisation efficiency of the N-TIMS allows for small quantities 254 

of Os to be measured at higher intensities. For example, while consumption of 4 ng total Os (5 ppb 255 

solution) provides a total Os beam intensities of 0.1 V by MC-ICP-MS, we typically obtain a total Os 256 

beam intensity of >1 V for a total Os load of �H5 ng by N-TIMS. Furthermore, Figure 7 shows that the 257 

error is significantly increased when the 188Os beam intensity drops below ~1 V (~2.7 V totalOs) which is 258 



 

an important consideration to make when small variations in stable isotope composition are expected. 259 

We, therefore, recommend that measurements on less than ~100 ng of total Os be performed by N-260 

TIMS. 261 

 262 

4.1.2.2 Matrix effects and interference corrections  263 

Potential atomic isobaric inferences on Os isotopes can arise from the incomplete separation of Os from 264 

W, Re and Pt. In addition, non-spectral matrix effects can create inaccurate results50. To assess if our 265 

method can accurately correct for these interferences, we doped double spiked DROsS with a range of 266 

elements that are (i) typically found in silicate rocks (Si, Al, Mg, Fe, Ca, Ti, Ni and Cr), (ii) dominant in 267 

iron meteorites (Fe, Ni), (iii) platinum group elements (Ru, Rh, Pd, Ir, and Pt), and (iv) trace elements 268 

that have direct isobaric interferences on Os (Pt, W and Re). Test solutions were doped at levels ranging 269 

from 0.01-10 % of the total Os concentration. Each element was present in x% of the Os abundance, 270 

e.g. Si was present at 5% of the Os abundance. All measurements display values that are within 271 

analytical uncertainty of undoped DROsS measurements (Fig. 3; Table 3). This illustrates that matrix 272 

effects as well as isobaric interferences, even at extreme levels of up to 10 %, can be accurately 273 

accounted for. The interference beam intensities monitored for standard solutions as well as geological 274 

sample material processed and analysed in this study are all <0.01 % of the total Os concentration and 275 

are, therefore, not expected to introduce data inaccuracies. 276 

 277 

4.2 N-TIMS 278 

4.2.1 Instrument set-up and parameters 279 

For N-TIMS analyses, sample material was loaded onto Pt single filaments in concentrated HBr or in 3 280 

M HCl when the sample solution was also measured by MC-ICP-MS. After the sample material was dried 281 

down on the filament, ~0.5 µL of NaOH-Ba(OH)2 activator was added to enhance ionisation. The amount 282 

of Os loaded for this study varied between 2.3 and 45 ng natural Os. Where MC-ICP-MS provides fairly 283 

consistent beam intensities for a certain set-up, the intensity that is obtained for a given amount of Os 284 

is not directly correlated on N-TIMS, but also depends on the activator and sample loading on the 285 

filament. A two-sequence static multi-collection routine was used in order to analyse masses 232 to 286 

242 (Table 2). Masses 241 and 242 are collected to calculate the oxygen isotope compositions (see 287 

section 4.2.2). A single analysis consists of 28 blocks, each comprising 10 cycles with 8.389 seconds 288 

integration per cycle followed by 3 seconds idle time. Amplifier gain calibrations were performed at the 289 

start of each day, although amplifiers were rotated throughout an analysis to cancel out amplifier gains. 290 

Baseline measurements and peak centering, using masses 236 and 240, were carried out prior to every 291 

run. The presence of interfering PtO2
-, ReO3

-, and WO3
- were quantified by measuring masses 228, 230-292 

233 by ion counter before and after each Faraday measurement for 4-6 cycles with a total analysis time 293 



 

of 110-160 seconds. During analysis, high purity oxygen (99.6 % purity, supplied by BOC) was bled into 294 

the source chamber with the pressure kept constant at ~2.5 x 10-7 mbar. 295 

 296 

4.2.2 Data reduction N-TIMS 297 

Osmium analyses by N-TIMS are performed using the tri-oxide ion (OsO3
-) and, therefore, corrections 298 

for the effects of variable isobaric oxygen isotope interferences of the heavier oxygen isotopes (17O and 299 
18O) are required. For example, correction for 188Os16O2

17O- on 189Os16O3
- at mass 239. In this study, we 300 

adopted the method of Luguet et al. (2008)37 where the O isotope composition is determined in-run for 301 

each integration so that any variation throughout an analysis can be accounted for. This is a more 302 

accurate approach than using a fixed O isotope composition because the composition has been shown 303 

to vary from sample to sample as well as throughout an individual run e.g. 37, 39, 51, 52. For comparison, we 304 

have also applied the method recommended by Chatterjee and Lassiter (2015)39 where the O isotopic 305 

composition was measured before and after the main run using a separate routine. This routine 306 

consisted of the second line as mentioned in Table 2 and data was collected for 10 cycles of 8.389 307 

seconds integrations each. From the 20 cycles, the mean 241/238 and 242/238 values (2 se outlier 308 

rejected) were taken as an approximation of the O isotopic composition of the specific run. The 309 

collection of masses 241 and 242, which are free from the most abundant Os tri-oxide species (16O3), 310 

allows the O isotope compositions to be determined by stripping masses 240, 241 and 242 of the minor 311 

tri-oxide interferences, such as 189Os16O18O2
- and 190Os17O3

- for mass 240. This will then provide the 312 

signal intensity of only 192Os16O3
-, 192Os16O2

17O-, and 192Os16O2
18O- on respective masses 240, 241, and 313 

242. For this first step of oxygen corrections we used the Ogas isotope composition as determined by 314 

Luguet et al. (2008)37. The 18O/16O was then calculated from the � ŝtripped�  ̂242/240 ratio and the 315 
17O/16O ratio could be determined from the � ŝtripped�  ̂241/240 ratio. However, as discussed in more 316 

detail in section 4.2.2.1, in this study 17O/16O ratios were inferred using 18O/16O ratios. The oxygen 317 

correction is described in detail in the Electronic Supplementary Information. 318 

Due to the presence of isobaric Os oxide complexes, additional steps in the data reduction 319 

compared to MC-ICP-MS were required. We adopted the following sequence of corrections; abundance 320 

sensitivity (0.3 ppm37), a preliminary oxide isotope composition correction, PtO2
- and ReO3- interference 321 

corrections, a second O isotope composition correction, and double spike deconvolution (see section 322 

4.1.2). The first O interference correction is solely used to correct for O isobaric interferences on PtO2-. 323 

Subsequently, the PtO2- interference corrected 184OsO3
- and 186OsO3

- values were used in the second O 324 

correction. For isobaric PtO2-, WO3
- and ReO3- interference corrections, the ion counter measurement 325 

routines (before and after) were utilized, assuming a linear behaviour throughout the main run. Using 326 

a linear extrapolation is a simplistic approach but can be justified by the minor variation in beam 327 

intensities between the two SEM runs in combination with the minor influence the interference 328 

corrections have on the Os isotopic ratios (see section 4.2.2.2). The abundance sensitivity was assumed 329 

to be similar to that determined by Luguet et al. (2008)37. 330 



 

 331 

4.2.2.1 Effect of the oxygen isotopic composition  332 

The accuracy of the deconvolved �w190Os value as well as of the radiogenic isotopic ratios is dependent 333 

on the accurate determination of the O isotopic compositions (i.e. 17O/16O and 18O/16O) that are used 334 

for O interference corrections. 335 

The average 18O/16O ratios of individual double spiked DROsS analyses range between 336 

0.002007 a�v�����ì�X�ì�ì�î�ì�ñ�ì�U�������À���Œ�]���š�]�}�v���}�(���î�í���:�U���(�}�Œ�����v���o�Ç�•���•���Á�]�š�Z�������š�}�š���o���K�•���������u��intensity of >1 V. This 337 

variation is comparable with that reported by previous Os studies by N-TIMS (e.g. Liu et al., 199853 �t 30 338 

�:�V���>�µ�P�µ���š�����š�����o�X, 200837 �t �í�ð���:�V�����Z���š�š���Œ�i���������v�����>���•�•�]�š���Œ, 201539 �t �ï�í���: ; Chu et al., 201554�t 22 �:  ). If 339 

the 18O/16O ratio varies by 21 �:�U�����v�����š�Z����17O/16O relationship is changed accordingly along a TFL, then 340 

the absolute �w190Os value will shift by ±0.11 �:�X���&�}�Œ���š�Z����187Os/188Os and 186Os/188Os ratios the resulting 341 

absolute shift is about ±20 ppm and ±25 ppm, respectively. It is, therefore, of high importance to 342 

determine the specific oxygen isotopic composition of an analysis. When totalOs beam intensities are on 343 

average >1 V (>1.3 mV on mass 242), the difference in 18O/16O ratios between the first and last 20 cycles 344 

of an individual run ranges, apart from two samples at -12 �: , between +5 �:�� �� nd -7 �:�U�� ���v���� �]�•�� �}�v��345 

average -1.1 �:�X This is similar to the variation observed by Chatterjee and Lassiter (2015)39. Larger 346 

variations are observed for measurements made at lower beam intensities and the variability appears 347 

to be more substantial when samples are run over a longer time period (Fig. 4). If the 18O/16O ratio is 348 

���Z���v�P������ ���Ç�� �F�ó�� �:�U�� �š�Z���� �����•�}�o�µ�š���� ��omposition of �w190�K�•�� �•�Z�]�(�š�•�� ���Ç�� �F�ì�X�ì�î�ñ�� �:�X�� �d�Z����187Os/188Os and 349 
186Os/188Os ratios are shifted by ±11 ppm and ±26 ppm, respectively. We, therefore, suggest 350 

determining the oxygen isotopic composition for each individual cycle, as this is the only way by which 351 

small time scale variations throughout the run can be monitored and controlled. 352 

Run-specific 17O/16O ratios for each individual cycle can either be measured directly, using 353 

mass 241, or can be calculated based on the 18O/16O ratios. We will first consider the measured 17O/16O 354 

ratios. For DROsS analyses, the average measured 17O/16O ratio was found to display a large variation, 355 

of 121 �:�U���Á�]�š�Z���À���o�µ���•���Œ���v�P�]�v�P���(�Œ�}�u���ì�X�ì�ì�ì�ï�ò�õ���š�}���ì�X�ì�ì�ì�ð�í�õ�X��When only considering analyses with total 356 

beam intensities of >1 V the 17O/16O ratios vary between 0.000369 and 0.000395, 66 �: . Analyses with 357 

an anomalously high or low 17O/16O ratio yield inaccurate �w190Os values as well as 187Os/188Os and 358 
186Os/188Os ratios, and show a positive correlation with 17O/16O (R2 of 0.78, 0.78 and 0.76 respectively; 359 

Fig. 5a-c). Anomalous values are only obtained for analyses performed at low beam intensities (Fig. 5d-360 

f). In contrast, the measured 18O/16O ratios do not show any co-variation with Os isotopic compositions 361 

(R2=0.28) suggesting that the inaccuracy on the Os isotopic compositions is dominantly introduced by 362 

the 17O/16O ratio. Mass 241 has been measured at very low beam intensities (<5 mV) that are, in general, 363 

5.2 times lower than for mass 242. The determination of 17O/16O is, therefore, more sensitive to 364 

inaccuracies introduced by small variations in the instrument baseline occurring during an analysis. 365 

Including more and longer baselines with longer integration times during an analysis would enhance 366 

the accuracy of the baseline and potentially improve the measurement of the 17O/16O ratio. 367 



 

Incorporation of 1012 �O or 1013 �O resistors to collect mass 241 and 242 would also be advantageous, 368 

although these were not explored in this study. 369 

The inaccuracy introduced by the measured 17O/16O ratio can be eliminated by calculating the 370 
17O/16O from the measured 18O/16�K�� �Œ���š�]�}�X�� �t���� �Á�]�o�o�� �Œ���(���Œ�� �š�}�� �š�Z�]�•�� ���•�� �š�Z���� �^�����o���µ�o���š�����_��17O/16O ratio. 371 

Recently, a similar approach has been used for N-TIMS isotope measurements of Mo52, Ru55, and W56. 372 

In this study, we assume that the oxygen isotopic compositions vary as a result of equilibrium mass-373 

�����‰���v�����v�š�� �]�•�}�š�}�‰�]���� �(�Œ�����š�]�}�v���š�]�}�v�� ���o�}�v�P�� ���� �^Terrestrial Fractionation L�]�v���_�� �~�d�&�>57). For natural samples 374 

the relationship between �w17O and �w18O, when considered in logarithmic space, typically varies between 375 

0.524-0.528 e.g.58-60. We have taken an average of the published values, 0.526, which translates to an 376 

approximately linear slope of 0.0994 x + 0.000183, where x is 18O/16O, over a 18O/16O interval of 377 

0.002007 to 0.002055, the range in 18O/16O as observed for analyses in this study. Figure 6 shows that 378 

the measured oxygen compositions of double spiked DROsS analyses with a total Os beam intensity of 379 

>2 V closely plot along this line. Details of calculation 17O/16O from the measured 18O/16O are provided 380 

in the supplementary information. 381 

The resulting calculated 17O/16O ratios display a much smaller variation of 2�ì���:���Á�]�š�Z���À���o�µ���•��382 

ranging between 0.000383 and 0.000390, and is 10 �:  when only considering analyses of >1 V. No 383 

residual correlation between calculated 17O/16O ratios and Os isotopic compositions is observed 384 

anymore (Fig. 5a-c). However, with decreasing beam intensities the �w190Os values display a preferential 385 

drift towards heavier values �~�µ�‰�� �š�}�� �ì�X�í�í�:�• instead of showing a normal distribution (Fig. 5d). The 386 
187Os/188Os and 186Os/188Os, on the other hand, drift preferentially towards lower values although higher 387 

values are observed as well (Fig. 5e,f). When the calculated instead of the measured 17O/16O 388 

composition is used, the long-term reproducibility of �w190Os is improved from 0.106 �:  to 0.046 �:���~�î��389 

sd; n = 94), and from 0.059 �:�� to 0.029 �:���(�}�Œ��analyses of >1 V (n = 83). For the remainder of this paper, 390 

we will only consider analyses with a totalOs beam intensity of >1 V, equivalent to, in general, >1.3 mV 391 

on mass 242 and >0.35 V on mass 236. The total Os signal intensity obtained for a certain quantity of 392 

Os loaded is highly variable, but �]�•���š�Ç�‰�]�����o�o�Ç���E�í���s���(�}�Œ���o�}�����•���}�(���H2.3 ng natural Os.  393 

 394 

4.2.2.2 Effect of polyatomic interferences  395 

The interference intensities monitored on masses 228, and 230-233 in this study are comparable to 396 

those reported by Luguet et al. (2008)37. Beam intensities on mass 228 (predominantly 196Pt16O2
-) 397 

ranged from 12,000 �t 1,400,000 cps (counts per second) which relates to a potential 196Pt18O2
- 398 

interference of 0.05-6 cps on mass 232 (predominantly 184Os16O3
-). For mass 230 (mainly 198Pt16O2

-) 399 

intensities ranged between 4,000-1,050,000 cps which results in respective interferences of 16-4,300 400 

cps and 0.02-4.4 cps on masses 232 (184Os16O3
-) and 234 (186Os16O3

-). The PtO2- interference on mass 234 401 

is negligible, whereas the combined PtO2
- interferences on mass 232 reached a maximum of 4,306 cps. 402 

This represents 2.5 % of the typical total signal at mass 232 which can lower the 184Os/188Os substantially 403 



 

(~30,000 ppm). In this study, mass 234 was only monitored to correct for polyatomic oxygen 404 

interferences on the other Os isotopic ratios. Lowering the 184Os/188Os by 30,000 ppm results in a minor 405 

shift of -2 ppm on the 186Os/188Os and has no noticeable effect on the other Os isotopic ratios. The 406 

average difference between the two SEM runs, before and after the main run, was 250,000 cps for mass 407 

228 and 135,000 cps for mass 230. Potential within-run variations of this magnitude have no 408 

measurable effect on the isotopic ratios. On mass 231, 183WO3
-, we obtained intensities of 6-1,000 cps, 409 

which produce insignificant interferences on 186Os16O3
- 37, 61. Mass 233, 185ReO3

-, displayed intensities 410 

between 3-460 cps but were generally below 300 cps and on average 73 cps. Translated to 187ReO3
- this 411 

means <502 cps or 8 µV that interfered on the 187OsO3
-. Typically, this quantity equates to a lowering of 412 

the 187Os/188Os by <100 ppm and on average 38 ppm, which is close to the 2 se of our measurements 413 

(40 ppm) but much smaller than the long-term reproducibility (268 ppm; 2 sd). Between the pre- and 414 

post SEM runs, the beam intensities on mass 233 generally varied by 33 cps which equates to a shift of 415 

~18 ppm on the 187Os/188Os. To summarize, polyatomic interferences from PtO2
-, WO3

-, and ReO3- 416 

monitored in this study had no noticeable effect on the stable Os and 186Os/188Os isotopic composition, 417 

and were minor for 187Os/188Os ratios. 418 

 419 

5. RESULTS AND DISCUSSION 420 

Results are presented in Tables 4 and 5, and shown in Figures 7-13. All internal errors are quoted as 2 421 

standard error (2 se), whereas short term (i.e. single session) and long-term (i.e. multiple sessions) 422 

reproducibilities are given as 2 standard deviations (2 sd).  423 

 424 

5.1 Internal precision, external reproducibility and accuracy 425 

5.1.1 Stable osmium isotope ratios by MC-ICP-MS  426 

The internal precision (2 se; n �G���ô�ì�����Ç���o���•�U�������‰���v���]�v�P���}�v���î���•�����}�µ�š�o�]���Œ���Œ���i�����š�]�}�v�•���}�v�������•�]�v�P�o�����w�÷�ÿ�ö�K�•���D��-427 

ICP-MS analysis is typically between 0.01-0.02 �:�� when 188Os beam intensities range between 7-4 V 428 

(~18-11 V totalOs; Fig. 7). The amount of natural Os consumed is ~200 ng. The observed precision is in 429 

good agreement with the theoretical error as calculated in section 2.1 (Fig. 7) suggesting that the model 430 

considers all the errors that should be accounted for. Small deviations from the calculated error could 431 

have arisen from, for example, variation in the spike �t sample proportions, or the number of cycles 432 

included. The model considers 80 cycles whereas this can be less for MC-ICP-MS if outliers are rejected. 433 

This also explains why the error model for N-TIMS displays lower errors for a given intensity, as 280 434 

cycles were considered for N-TIMS analyses.  435 

Repeated analyses of reference standard solution DROsS, obtained during multiple analytical 436 

sessions over a time period of ~22 months, �•�Z�}�Á�����v�����Æ�š���Œ�v���o���Œ���‰�Œ�}���µ���]���]�o�]�š�Ç���}�v���w�÷�ÿ�ö�K�•���}�(���ì�X�ì�í�ò �:�� (2 437 

sd; n = 91; Fig. 8; Table 4). The short-term reproducibility of a single analytical session when consuming 438 



 

~200 ng natural Os at total beam intensities of 11-18 V is 0.014-0.029 �:  (2 sd; n = 2-10). A similar 439 

precision and reproducibility is obtained for in-house Os reference solutions ROMIL, SpecPure and 440 

OsCaR (Fig. 7 and 9; Table 4). As this study is the first to present stable Os isotope compositions, the 441 

accuracy cannot be assessed by measurement of pre-calibrated reference materials. Instead we have 442 

performed standard-sample bracketing measurements by MC-ICP-MS using natural (i.e. non DS) 443 

reference solutions. Comparison of this technique with the DS method shows that a similar offset 444 

between DROsS and the other Os reference solutions is obtained (Fig. 9; Table 4) which is in support of 445 

the relative accuracy of our method.  446 

 447 

5.1.2 Stable osmium isotope ratios by N-TIMS 448 

�&�}�Œ�������•�]�v�P�o�����w�÷�ÿ�ö�K�•�����v���o�Ç�•�]�•�����Ç���E-TIMS the internal precision (2 se�V���v���G���î�ô�ì�����Ç���o���•�U�������‰���v���]�v�P���}�v���î���•����449 

outlier rejection) ranges between 0.010-0.040 �:�� when 188OsO3
- beam intensities vary from 6-0.43 V 450 

(~18 to 1 V totOs beam; Fig. 7). These intensities were obtained for load sizes between 45 and 2.3 ng 451 

natural Os. Repeated analyses of double spiked reference solution DROsS, over approximately 22 452 

months, yield ���v�����Æ�š���Œ�v���o���Œ���‰�Œ�}���µ���]���]�o�]�š�Ç���}�v���w�÷�ÿ�ö�K�•���}�(���ì�X�ì�î9 �:���~�î sd; n = 83; Fig. 8; Table 4). The majority 453 

of these analyses (n = 44) comprised a load of 10-20 ng natural Os, 20 analyses had a load of >20 ng, 454 

and 19 analyses were performed with less than 10 ng Os. That DROsS yields less precise and less 455 

reproducible results for N-TIMS than MC-ICP-MS is, predominantly, a consequence of the lower beam 456 

intensities at which the analyses were performed. Analyses of in-house pure Os solutions ROMIL, 457 

SpecPure and OsCaR show a similar precision and reproducibility (Fig. 7 and 9; Table 4). That ROMIL 458 

and SpecPure display a similar offset relative to DROsS for N-TIMS as for MC-ICP-MS analyses provides 459 

support to the accuracy of our method. 460 

 461 

5.1.3 Radiogenic isotope ratios by MC-ICP-MS 462 

The precision that can be obtained for 187Os/188Os and 186Os/188Os isotopic ratios is <100 ppm (2 se; �v���G��463 

280 cycles, depending on 2 se outlier rejection) when 187Os and 186Os average beam intensities are 464 

higher than ~0.06 V over the ~11 minutes of the analysis. When average beam intensities of >0.18 V 465 

are achieved this improves to ~40 ppm (Fig. 7). This is comparable with the precisions reported by 466 

Nowell et al. (2008; <40 ppm at high signal intensities)36 and corresponds with the errors predicted by 467 

the model described in section 2.1 (30-40 ppm at 0.22 V; Fig. 7). Repeated analyses of double spiked 468 

reference standard DROsS yields a reproducibility of 123 and 138 ppm for 187Os/188Os and 186Os/188Os, 469 

respectively (2 sd, n = 91). This is higher than that reported by Nowell et al. (2008)36 for DROsS (19 ppm) 470 

but is comparable with the long-term reproducibilities reported for reference materials UMd (220 ppm 471 

for 187Os/188Os and 108 ppm for 186Os/188Os) and DTM (149 ppm for 187Os/188Os and 67 ppm for 472 
186Os/188Os).  473 



 

For radiogenic isotopic ratios we can use previous studies to assess the accuracy of our 474 

method. In addition, we have compared double spiked data with that from unspiked runs, and used 475 

DROsS for un-spiked sample-standard bracketing measurements. We have applied these methods to 476 

DROsS as well as to pure Os solutions ROMIL, SpecPure, and OsCaR. Taken together, the various samples 477 

encompass a significant range in 187Os/188Os isotopic ratios over which to test our analytical methods. 478 

Table 4 shows that all values obtained in this study, using the various methods, are within analytical 479 

uncertainty with one another as well as with previously published values of un-spiked DROsS 480 

measurements.36, 37  481 

 482 

5.1.4 Radiogenic isotope ratios by N-TIMS 483 

For N-TIMS analyses the internal precision on both 187Os/188Os and 186Os/188Os is <100 ppm (2 se; �v���G��484 

280 cycles, depending on 2 se outlier rejection) for analyses with average 187OsO3
- and 186OsO3

- beam 485 

intensities >0.03 V over the 280 cycles of analysis, and improves to <40 ppm at high signal intensities 486 

(>0.18 V; Fig. 7). This is slightly greater than the precisions reported by Luguet et al. (200837; <30 ppm 487 

at >0.08 V). Repeated analyses of reference standard DROsS yield a reproducibility of 268 ppm and 361 488 

ppm for 187Os/188Os and 186Os/188Os ratios, respectively (2 sd, n = 83) for loads varying between 2.3 and 489 

45 ng natural Os. This is significantly higher than the values reported by Luguet et al. (200837; 26 and 48 490 

ppm, respectively). Where Luguet et al. (2008)37 have only included analyses with 187OsO3
- and 186OsO3

- 491 

beam intensities of 80 mV or above we have taken analyses with intensities down to 20 mV into 492 

account. When excluding the analyses with beam intensities <80 mV on 187OsO3- and 186OsO3- we obtain 493 

a long-term reproducibility of 90 and 89 ppm, respectively (2 sd; n = 22). These slightly higher analytical 494 

uncertainties are related to error propagation inherent in double-spike deconvolution. That errors are 495 

higher than predicted by the model is, predominantly, because the error on the oxygen composition 496 

was not incorporated in the model, whereas it has been propagated for the actual analyses. 497 

To assess the accuracy, we have compared the radiogenic values obtained by our DS method, 498 

with those determined for unspiked runs, and with previous studies (Table 4). All values are within 499 

analytical uncertainty of one another which demonstrates that our method is able to obtain accurate 500 
187Os/188Os and 186Os/188Os isotopic ratios by N-TIMS. This provides a valuable quality control on the DS 501 

calculations and allows the acquisition of both the stable and radiogenic isotope composition within a 502 

single analytical run. 503 

 504 

5.2. Geological materials 505 

During the course of this study, we have measured four international geological reference materials. 506 

The selected materials cover a range of matrices; (1) UB-N40, a serpentinised and fertile lherzolite from 507 

the Voges in France; (2) GP-1341, 62, a fertile lherzolite from the Beni Bousera massif in Morocco; (3) 508 

CHR-Bkg 42, 43 and (4) CHR-Pt+42, 63, which are both chromitites from the Shetland ophiolite in Scotland, 509 



 

UK. Furthermore, we have analysed the ordinary H-chondrite Zag. Although this is not an international 510 

reference material, sufficient sample material was available to perform several replicate analyses 511 

allowing the exploration of another type of sample matrix. Stable and radiogenic Os isotope 512 

compositions, together with Os abundances, are given in Table 5 and shown in Fig. 10-13. 513 

 514 

5.2.1 Radiogenic osmium isotope compositions for geological materials 515 

We have shown that double spiked DROsS analyses display 187Os/188Os and 186Os/188Os ratios consistent 516 

with previous published studies, and that ROMIL and SpecPure yield similar values for various methods 517 

(i.e. non-DS, DS, standard sample bracketing). This means that although the main aim of this method is 518 

to obtain high precision stable isotope data it also has the potential to provide radiogenic isotopic ratios 519 

within the same analyses. This is particularly beneficial when dealing with limited amounts of available 520 

sample material that only allows a single analysis. Furthermore, it significantly reduces processing and 521 

measurement time.  522 

Apart from three UB-N analyses, all data is obtained at average 187OsO3
- and 186OsO3

- beam 523 

intensities of �H0.01 V for N-TIMS (totalOs �H 1 V) analyses and 187Os and 186Os �H0.03 V for MC-ICP-MS 524 

(totalOs �H 1 V). The influence of the 17O/16O composition and OPZ on the accuracy of the isotopic 525 

compositions is shown to be negligible at these intensities. Geological materials analysed in this study 526 

display 187Os/188Os values that are consistent with the range of values obtained by previous studies (Fig. 527 

10 and 13). However, a significant degree of irreproducibility (up to 7,400 ppm) can be observed which 528 

will be discussed below. The variability observed for 186Os/188Os ratios is much smaller, 251-537 ppm, 529 

and comparable with the long-term reproducibility obtained for N-TIMS DROsS analyses (361 ppm). The 530 
186Os/188Os ratios of all samples range from 0.119746 ± 42 to 0.119856 ± 47, which is in close 531 

approximation of the upper mantle value (0.119837±5)64 but consistently lower (Fig. 11). Assessment of 532 

the accuracy of our 186Os/188Os values by direct comparison with previously published values for these 533 

samples is not possible as they have not been measured for 186Os/188Os before. At this point, the reason 534 

for the lower values is unclear and further investigation is required.  535 

 536 

5.2.2 Stable osmium isotope compositions for geological materials 537 

The internal precision and external reproducibility on �w�÷�ÿ�ö�K�•��are similar to that obtained for pure Os 538 

isotope solutions. One exception is the reproducibility reported by CHR-Pt+. This will be discussed in 539 

more detail in the next section. Similar to Os standard solutions, replicate analyses of chondrite ZAG 540 

show similar values for MC-ICP-MS and N-TIMS analyses, providing further support for the accuracy of 541 

our method on a real sample matrix. 542 

���o�o�� �Œ���(���Œ���v������ �u���š���Œ�]���o�•�� ���Œ���� �����Œ�]�À������ �(�Œ�}�u�� �����Œ�š�Z�[�•�� �u���v�š�o���X�� �d�Z���� �u���š���Œ�]���o�•�� �•�Z�}�Á�� �v�}�� �Œ���•�}�o�À�����o����543 

variation at the 95 % c.i. level and provide an average �w�÷�ÿ�ö�K�•��value of 0.130 ± 0.032 �:  (2 sd; n = 4). The 544 



 

geological reference material CHR-Bkg displays the lightest composition of �w�÷�ÿ�ö�K�•��= 0.124 ± 0.020 �:  (2 545 

sd; n = 7) and chromitite CHR-Pt+ the heaviest at 0.162 ± 0.051 (2 sd; n = 4). Ordinary chondrite Zag 546 

yields a �w�÷�ÿ�ö�K�•��value of +0.123 ± 0.018 �:  (2 sd; n = 9) which is indistinguishable, within uncertainty, 547 

from the mantle derived samples.  548 

Interestingly, DROsS is the only material that displays a different, isotopically lighter, 549 

composition relative to the other materials measured in this study. This offset could (a) be a product of 550 

the chemical extraction of Os from the source material, or (b) reflect the original composition of the 551 

material the Os was sourced from. 552 

 553 

5.2.3 Effect of sample digestion  554 

In mantle rocks, osmium is concentrated in refractory accessory phases that are heterogeneously 555 

���]�•�š�Œ�]���µ�š������ �š�Z�Œ�}�µ�P�Z�}�µ�š�� �š�Z���� �Œ�}���l�� �~�š�Z���� �^�v�µ�P�P���š�_�� ���(�(�����š�•�X�� �d�Z�]�•�� �Z���•�� �o������ �š�}�� ���]�(�(�]���µ�o�š�]���•�� �]�v�� �Œ���‰�����š�]�v�P�� �Œ���•�µ�o�š�•��556 

when considering Os abundances and 187Os/188Os ratios. Over the past two decades, various digestion 557 

methods have been assessed in order to resolve this problem e.g. 40, 44, 65, 66. Acid attack digestions using 558 

sealed glass Carius tubes (CT23, 45) and the high-pressure asher system (HPA44) are most frequently used. 559 

This is because they are considered to be most efficient in attacking the highly resistant phases that are 560 

likely to contain appreciable Os (such as Cr-spinel and platinum-group minerals). In this study, we have 561 

applied both techniques to various geological materials. A limitation of both techniques is the maximum 562 

amount of sample material that can be digested effectively (�G2 g). In the case of geological samples 563 

with low Os abundances (e.g. most mantle material like UB-N, and nearly all crustal material) more than 564 

2 g of material is needed to obtain high precision data. To circumvent this problem, we have digested 565 

several sample aliquots of UB-N and GP-13, and combined them prior to solvent extraction. As for the 566 

individual processed samples, each aliquot was spiked before digestion. As the proportion of spike is 567 

one of the unknowns calculated during the resolution of the DS equation system, it should be noted 568 

that reaching a 100 % yield across all aliquots during sample processing is not required to generate 569 

accurate isotope ratios and concentration determinations, providing that spike-sample equilibration 570 

occurs before loss of any Os during sample processing. 571 

Apart from CHR-Pt+, replicate digestion of individual samples shows no detectable stable 572 

isotope variation and no systematic difference between CT or HPA digestions. For the combined 573 

aliquots of UB-N, relative to the single digestions, we do not observe any variation for stable Os isotopes 574 

either (Fig. 12; Table 5). The two analyses of combined GP-13 aliquots show consistent stable isotope 575 

compositions. By contrast, statistically resolvable variations in 187Os/188Os ratio and Os abundance were 576 

observed in all the samples tested. In the case of UB-N and CHR-Bkg, 187Os/188Os is positively correlated 577 

with 1/[Os] (Fig. 13). This co-variation was observed previously, in a more extensive study of UB-N, by 578 

Meisel et al. (2003)40. The CHR-Bkg analyses reported within that study display a more limited variation 579 

and no significant co-variation between Os abundance and radiogenic isotopic composition was 580 



 

discussed. If we incorporate the CHR-Bkg data of Meisel et al. (2003)40 they fall within the trend 581 

obtained in this study. The observed variation in radiogenic isotopes can be explained by incomplete 582 

digestion and/or sample heterogeneity. In both cases this indicates that within the digested material 583 

different phases, or phases of different generations, possess distinct radiogenic isotopic composition. 584 

The absence of stable Os isotope variation, for these particular aliquots, implies that there is no 585 

significant difference in stable isotope composition of the phases in these samples. As such, the type of 586 

digestion technique, or the combination of individual digestions, appears to have no influence on the 587 

stable isotope composition for these particular samples. 588 

For CHR-Pt+ we observe a larger range in stable Os isotope compositions (�w190Os = +0.129 �t 589 

0.198 �:�•�U�� �Á�Z�]���Z���]�•���Œ���(�o�����š������ �]�v���š�Z�����Œ���o���š�]�À���o�Ç���‰�}�}�Œ���Œ���‰�Œ�}���µ���]���]�o�]�š�Ç �~�ì�X�ì�ñ�í�:�•. The stable isotope data 590 

appear to co-vary with Os abundance, with the heavier values corresponding to higher Os abundance 591 

of 17.5 % (Fig. 12). As discussed before, variance in isotopic composition correlating with Os abundance 592 

may indicate that phases within the whole rock contain different stable isotopic signatures. Our 593 

preliminary data suggests that phases within chromitite CHR-Pt+ possess different stable Os isotopic 594 

compositions. Previous studies that focused on the origin of chromitites derived from the Cliff deposit 595 

in the Shetland Ophiolite concluded that initial PGE concentrations were caused by magmatic processes 596 

followed by a hydrothermal overprint which locally remobilized and re-concentrated the PGE.67 This 597 

secondary process might be the source of Os stable isotope fractionation, but further investigation is 598 

required. 599 

 600 

6. CONCLUSIONS 601 

We have developed a method for high-precision measurement of stable Os isotope compositions by 602 

both plasma source (MC-ICP-MS) and thermal ionisation mass spectrometry (N-TIMS). The method 603 

utilizes a 188Os-190Os double spike that is added to the sample prior to digestion with a spike-sample 604 

proportion of 0.55:0.45. We show that the technique is robust when dealing with matrix effects and 605 

interference corrections on MC-ICP-MS, even for levels up to 10 % of the total Os concentration, and 606 

that the memory effect for MC-ICP-MS analyses is negligible. Analyses performed by N-TIMS show that 607 

the oxygen isotopic composition exerts a major control on the accuracy of the isotopic ratios. It is 608 

suggested that the oxygen isotopic composition is obtained for every specific run, by measuring the 609 
18O/16O for each individual cycle, and calculating the 17O/16O ratio from the 18O/16O ratio, especially 610 

when the total Os signal intensity drops below 2 V. 611 

The internal precision (2 se) on the �w190Os measurement (permil difference of the 190Os/188Os 612 

ratio relative to reference standard DROsS) of a single analysis is 0.010-0.025 �:���(�}�Œ���D��-ICP-MS (~200 613 

ng natural Os; n = 80 cycles) and 0.010-0.030 �:���(�}�Œ��N-TIMS (2.3-45 ng natural Os; n = 280 cycles). The 614 

long-term reproducibility of reference material DROsS is 0.016 �:���~2 sd; n = 91) and 0.029 �:���~2 sd; n = 615 

83) for MC-ICP-MS and N-TIMS, respectively.  616 



 

The method is shown to be capable of obtaining Os stable isotope compositions of terrestrial 617 

and extra-terrestrial materials with a high precision and reproducibility. The first data obtained for 618 

geological materials are all within analytical uncertainty of one another, despite the measurement of 619 

samples reflecting a range of source regions, chemical compositions, geological history, and radiogenic 620 

isotope ratios. Minor variations between different digestions of chromitite CHR-Pt+ hints at Os stable 621 

isotope fractionation as a result of Os remobilization due to hydrothermal alteration. Overall, our 622 

preliminary �w190Os �À���o�µ���� �(�}�Œ�� �š�Z���� �����Œ�š�Z�[�•�� �µ�‰�‰���Œ�� �u���v�š�o����is +0.130 ± 0.032 �:  (2 sd; n = 4), which is 623 

indistinguishable from a value of +0.123 ± 0.018 �:  (2 sd; n = 9) obtained for the ordinary H-chondrite 624 

Zag. 625 
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FIGURE CAPTIONS 636 

Figure 1 Results for an error (2 se) simulation on the stable isotope composition in �:�����u�µ-1 in case of a 188Os-190Os 637 
double spike. The red dot indicates that minimal error propagation of ~0.010 �:  amu-1 (2 se) is obtained when 638 
using a 60 % 188Os �t 40 % 190Os spike that is mixed with a sample in relative proportions of 55 % and 45 %. Note 639 
that errors are minimal (<0.020 �:  amu-1) over a large range of sample-spike mixtures (15 �t 81 % sample fraction). 640 
The error model is based on the method of Millet and Dauphas (2014)33 using the following parameters: 6 V; 80 x 641 
8.3 sec integrations; 1011 �O collectors; T= 290 K.  642 

Figure 2 Results of double spiked DROsS analyses measured using MC-ICP-MS (closed symbols) at variable beam 643 
intensities to assess the effect of beam intensity and the on-�‰�����l���Ì���Œ�}���}�v���š�Z�����������µ�Œ�����Ç���}�(���š�Z�����w190Os and 187Os/188Os 644 
���}�u�‰�}�•�]�š�]�}�v�X�������š�����•�Z�}�Á���š�Z���š�����o�o���u�����•�µ�Œ���u���v�š�•�����]�•�‰�o���Ç���w190/188Os and 187Os/188Os compositions within analytical 645 
uncertainty of the long-term reproducibility as determined for >10 V analyses. The black dotted line indicates the 646 
average DROsS value, as obtained from the >10 V analyses, with the ±2 sd represented by the grey band. 647 

Figure 3 Results of doping tests to assess the robustness of the method against residual matrix effects on the MC-648 
ICP-�D�^�X�������š�����•�Z�}�Á���š�Z���š�����o�o���u�����•�µ�Œ���u���v�š�•�����]�•�‰�o���Ç���w190/188Os compositions within analytical uncertainty of undoped 649 
DROsS analyses for residual element abundances up to 10 % of the total Os concentration. The percentages indicate 650 
the presence of each named element at x% of the Os abundance, e.g. Si was present at 5% of the Os abundance. 651 
The black dotted line indicates the average DROsS value with the ±2 sd represented by the grey shaded band as 652 
obtained in this study. Lith = lithophile elements (Si, Al, Mg, Fe, Ca, Ti, Ni, and Cr); PGE = Platinum Group Elements 653 
(Ru, Rh, Pd, Ir, and Pt). 654 

Figure 4 The difference in measured 18O/16O ratios between the first and the last 20 cycles of double spiked DROsS 655 
analyses (green circles) show an average variability of -1.1 �:�� �~�P�Œ�����v dotted line). For clarity, two values with a 656 
deviation of -�í�î���:�U�����š���í�X�ð���s�����v�����í�X�ó���s�U�����Œ�������Æ���o�µ�������X���d�Z�����À���Œ�]�����]�o�]�š�Ç���]�•���•�Z�}�Á�v���š�}���]�v���Œ�����•�����Á�]�š�Z��decreasing beam 657 
intensity and seems to be larger when samples are run twice for 280 cycles. Open symbols represent analyses 658 
where the oxygen composition has been measured before and after the main run.  659 

Figure 5 Residual correlation for double spiked DROsS analyses by N-TIMS between the measured 17O/16O (grey 660 
���]�Œ���o���•�•�����v�����K�•���]�•�}�š�}�‰�]�������}�u�‰�}�•�]�š�]�}�v�•�V���~���•���w190/188Os, (b) 187Os/188Os, and (c) 186Os/188Os. No residual correlation is 661 
observed when the 17O/16O is calculated from the measured 18O/16O ratio (green circles). The offset from the 662 
expected DROsS value is seen to increase with decreasing beam intensities (d-f), with a reduced offset when using 663 
calculated 17O/16O ratios. With decreasing signal intensity, (d) �w190/188Os values seem to slightly drift towards 664 
heavier values, and (e) 187Os/188Os and (f) 186Os/188Os towards lower values. The black dashed line represents the 665 
expected DROsS value. 666 

Figure 6 Measured 18O/16O vs. 17O/16O ratios for DROsS analyses run at a total Os beam intensity of >2 V closely 667 
follow the Terrestrial Fractionation Line (TFL). Analyses are divided based on the beam intensity on mass 242 (<5 668 
mV; 5-10 mV; >10 mV). The TFL was calculated using a slope of 0.526 which translates to an roughly linear slope of 669 
0.0994 x + 0.000183, where x is 18O/16O, over a 18O/16O interval of 0.002007 to 0.002055, the range in 18O/16O 670 
obtained in this study. Also shown are oxygen isotope ratios from N-TIMS measurements in previous studies: Nagai 671 
and Yokoyama (2016)51; Worsham et al. (2016) 52; Luguet et al. (2008)37; Griselin et al. (2001)68; Chavagnac (1998)69; 672 
Thirlwall (1991)70; Reisberg and Zindler (1986)71; Nyquist in Wasserburg et al. (1981); Wasserburg et al. (1981)72; 673 
Nier (1950)73.  674 

Figure 7 The analytical precision (2 se) on (a) �w190/188Os and (b) 187Os/188Os plotted against the average (a) 188OsO3
- 675 

and (b) 187OsO3
- beam intensity (V) for analyses of reference material DROsS, and other pure Os solutions by MC-676 

ICP-MS or N-TIMS. The dashed (MC-ICP-MS) and dotted (N-TIMS) lines in (a) indicate the modelled error calculated 677 
using the method of Millet and Dauphas (2014)33 using the following parameters: 80 x 8.3 seconds integrations for 678 
MC-ICP-MS and 280 x 8.3 seconds for N-TIMS; 1011 �O��collectors; T= 290 K. Note that the lower theoretical error for 679 
N-TIMS results from the larger amount of cycles incorporated. 680 

Figure 8 Repeated analyses of reference material DROsS on both MC-ICP-MS (squares) and N-TIMS (circles) 681 
obtained during multiple analytical sessions over a time period of 22 months. Analyses have been organized on 682 
beam intensity, note that N-TIMS analyses are obtained at lower beam intensities. Sample size is approximately 683 



 

200 ng natural Os for MC-ICP-MS and ranges between 2.3 and 45 ng natural Os for N-TIMS measurements, with 684 
totalOs beam intensities of >4 V for MC-ICP-MS analyses and >1 V for analyses by N-TIMS. Error bars quote the 2 se 685 
error on the individual analysis, the grey band represents the ±2 sd of all analyses. Symbols in yellow correspond 686 
to the annotated beam intensity. 687 

Figure 9 �d�Z�����w190/188Os value obtained for repeat analyses of pure Os solutions ROMIL (triangle), SpecPure (circle) 688 
and OsCaR (diamond) by both MC-ICP-MS (closed symbols) and N-TIMS (open symbols) obtained during the course 689 
of this study. The striped, filled symbols indicate sample-standard bracketing data. All Os solutions show a similar 690 
reproducibility as obtained for reference standard DROsS. Values obtained for ROMIL and SpecPure on MC-ICP-MS 691 
and N-TIMS show values within analytical uncertainty supporting the accuracy of our method. The grey bands 692 
indicate the reproducibility (±2 sd) obtained by MC-ICP-MS and N-TIMS. Error bars represent the 2 se error of an 693 
individual analysis. 694 

Figure 10 The 187Os/188Os isotope ratios of geological materials UB-N, GP-13, CHR-Bkg, CHR-Pt+ and Zag analysed 695 
by MC-ICP-MS (closed symbols) or N-TIMS (open symbols) display values consistent with previous studies (grey 696 
bars). Literature data for maximum and minimum values: UB-N �t ref. 40, 74; GP-13 �t ref. 75, 76; CHR-Bkg �t ref 40; 697 
CHR-Pt+ - no previous published data; Zag �t ref 3, 4. 698 

Figure 11 The 186Os/188Os ratios of geological materials UB-N, GP-13, CHR-Bkg, CHR-Pt+ and Zag analysed by MC-699 
ICP-MS (closed symbols) or N-TIMS (open symbols). Most samples plot below the upper mantle value of 700 
0.119837±5 (2 sd; Ireland et al., 201164). CT = Carius tube digestions, all other sample aliquots are processed using 701 
the high-pressure asher system. * = an analysis for which digestions were combined prior to chemical Os extraction. 702 
Error bars indicate the 2 se on the individual analysis. 703 

Figure 12 �K�•�u�]�µ�u���•�š�����o�����]�•�}�š�}�‰�������}�u�‰�}�•�]�š�]�}�v�•���~�w190/188Os) of geological materials UB-N, GP-13, CHR-Bkg, CHR-Pt+ 704 
and Zag analysed by MC-ICP-MS (closed symbols) or N-TIMS (open symbols). Symbols are ordered from high to low 705 
Os concentration. Apart from Zag, which is an ordinary chondrite, all samples are reference materials sourced by 706 
�š�Z���������Œ�š�Z�[�•���u���v�š�o���X��Symbols as in Fig. 11. 707 

Figure 13 Correlation between 187Os/188Os ratio and 1/[Os] for reference materials UB-N (circles) and CHR-Bkg 708 
(triangles), as obtained for independently processed sample aliquots in this study (open symbols). Included are 709 
data as obtained by Meisel et al. (200340; filled symbols). 710 

  711 



 

TABLE CAPTIONS 712 

Table 1 Osmium isotopic ratios of reference standard DROsS, as determined by Nowell et al. (2008)36 normalized 713 
to 189Os/188Os to correct for mass bias, and of the 188Os-190Os double spike (DS) as used in this study. The quoted 714 
error on DROsS represents the 2 sd on 21 analyses, and the error on the DS is the relative 2 se on the analysis used 715 
to obtain the DS composition. 716 
 717 
Table 2 Faraday cup configuration used for osmium isotope measurements by static multi-collection on a Thermo 718 
Neptune MC-ICP-MS and Thermo Triton Plus N-TIMS at Durham University. Only principal ions measured are listed, 719 
see ref. 37 (Luguet et al., 2008) for a full list of known polyatomic interferences. 720 
 721 
Table 3 �K�•�u�]�µ�u�� �•�š�����o���� �]�•�}�š�}�‰���� ���}�u�‰�}�•�]�š�]�}�v�•�� �~�w190/188Os) of analytical tests on the MC-ICP-MS showing the 722 
robustness of our methodology with regards to (i) signal intensity and (ii) matrix effects and interference 723 
corrections. The percentages indicate the presence of each named element at x% of the Os abundance, e.g. Si was 724 
present at 5 % of the Os abundance. *Lith = Lithophile elements (Si, Al, Mg, Fe, Ca, Ti, Ni, and Cr); ** PGE = Platinum 725 
Group Elements (Ru, Rh, Pd, Ir, and Pt).  726 

Table 4 Average osmium stable and radiogenic isotope ratios of DROsS, SpecPure, ROMIL and OsCaR obtained in 727 
this study using: the double spike (DS) method; sample-standard bracketing by MC-ICP-MS, using non DS solutions 728 
and DROsS as the reference bracketing standard; and un-spiked runs by N-TIMS. For comparison the radiogenic 729 
isotope composition of DROsS as obtained by previous studies is included (Nowell et al., 200836; Luguet et al., 730 
200837). Note that the better reproducibility (2 sd) for MC-ICP-MS relative to N-TIMS is, predominantly, related to 731 
difference in beam intensities at which analyses have been made (11-18 V vs. 1-18 V total Os beam, respectively). 732 
* - Four individual sample-standard bracketing sessions were run, on different days, and include 16 analyses all 733 
together. Presented are the average and 2 sd on the averages of the four analytical sessions. 734 

Table 5 �K�•�u�]�µ�u�� �•�š�����o���� �~�w190/188Os) and radiogenic (187Os/188Os and 186Os/188Os) isotope compositions, and Os 735 
abundances of geological materials obtained by either MC-ICP-MS or N-TIMS. Samples are digested using carius 736 
tubes (CT) or the high-pressure asher (HPA) system. W. mean = weighted mean; * = aliquots of sample material 737 
that are combined after digestion and prior to chemical separation of Os.  738 
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TABLES 768 

Table 1 769 

  186Os188Os 187Os/ 188Os 189Os/ 188Os 190Os/ 188Os 192Os/ 188Os 

Reference std DROsS (±2 sd) 0.119909 ± 04 0.160916 ± 04 1.219780 1.983979 ± 30 3.083580 ± 14 
188Os - 190Os spike (±2 se) 0.001372 ± 54 0.001239 ± 58 0.020944 ± 11 0.684512 ± 06 0.036517 ± 14 

 770 



 

Table 2 771 

Cup L4 L3 L2 L1 Ax H1 H2 H3 H4 

MC-ICP-MS                   

Analyte isotopes 183W 185Re 186Os 187Os 188Os 189Os 190Os 192Os 194Pt  
                    
N-TIMS                   

Mass  232 234 235 236 237 238 240  

Seq1   184Os16O3
- 186Os16O3

- 187Os16O3
- 188Os16O3

- 189Os16O3
- 190Os16O3

- 192Os16O3
-   

Mass  236 238 239 240 241 242   

Seq2   188Os16O3
- 190Os16O3

-  192Os16O3
- 192Os16O2

17O - 192Os16O2
18O -     
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Table 3 773 

(i) Signal intensity 

Concentration �w190Os 2 se   TotalOs (V) 

0.10 ppm 0.007 0.012  2.71 

0.08 ppm -0.007 0.014  2.08 

0.05 ppm -0.004 0.021  1.31 

0.04ppm -0.014 0.026  1.02 

0.03 ppm 0.017 0.033  0.66 

0.02 ppm -0.009 0.045  0.47 

0.01 ppm -0.018 0.055  0.26 

0.005 ppm 0.014 0.102   0.14 

(ii) Matrix effects and interference corrections 

Doping element �w190Os 2 se     

Lith* 5%  -0.009 0.018   

PGE** 5%  -0.008 0.014   

Fe, Ni 5%  -0.001 0.017   

Pt 0.01%  0.005 0.017   
Pt 0.1%  0.012 0.018   
Pt 1%  0.011 0.016   
Pt 10%  -0.001 0.017   
W 0.01%  0.016 0.017   

W 0.1%  0.003 0.015   

W 1%  0.005 0.017   

W 10%  0.020 0.016   

Re 0.01%  0.006 0.012   

Re 0.1%  0.001 0.013   

Re 1%  0.025 0.014   

Re 10%  0.003 0.017     
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Table 4 775 

  n �w190Os 2 sd   187Os/188Os 2 sd   186Os/188Os 2 sd 

DROsS                   

DS MC-ICP-MS 91 0.000 0.016  0.160916 0.000020  0.119909 0.000017 

DS N-TIMS 83 0.001 0.029  0.160916 0.000043  0.119909 0.000043 

un-spiked 14  -  -  0.160919 0.000031   -  - 

previous study (MC-ICP-MS; Nowell et al., 200835) 21  -  -  0.160924 0.000003  0.119920 0.000002 

previous study (N-TIMS; Luguet et al. ,200836) 8  -  -   0.160924 0.000004   0.119932 0.000006 

ROMIL                   

DS MC-ICP-MS 18 0.144 0.023  0.106827 0.000047  0.119806 0.000017 

DS N-TIMS 7 0.133 0.009  0.106857 0.000042  0.119803 0.000023 

sample-std bracketing MC-ICP-MS 4* 0.137 0.010  0.106861 0.000024  0.119806 0.000007 

un-spiked 3  -  -   0.106878 0.000032    -  - 

SpecPure                   

DS MC-ICP-MS 18 0.147 0.022  0.149162 0.000026  0.119890 0.000019 

DS N-TIMS 6 0.140 0.025  0.149161 0.000053  0.119889 0.000031 

sample-std bracketing MC-ICP-MS 4* 0.132 0.009  0.149163 0.000012  0.119885 0.000016 

un-spiked 3  -  -   0.149180 0.000088    -  - 

OsCaR                   

DS MC-ICP-MS 11 0.126 0.015   0.128298 0.000022   0.119816 0.000014 
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Table 5 777 

        

smp 
weight 

(g)   

totalOs 
(V) 188Os(O3

-) 

187Os 
(O3

-)   �w190Os 2 se   187Os/188Os 2 se   186Os/188Os 2 se   
[Os] ng 

g-1 2 se 
UB-N 1 HPA N-TIMS 2.51  0.98 0.37 0.008  0.145 0.039  0.126555 0.000040  0.119746 0.000042  4.13 0.002 

 2 HPA N-TIMS 2.51  1.16 0.43 0.009  0.131 0.039  0.126983 0.000039  0.119804 0.000037  4.02 0.002 

 3 HPA N-TIMS 2.49  0.92 0.35 0.007  0.131 0.056  0.127061 0.000047  0.119784 0.000047  3.89 0.003 

 4 CT N-TIMS 2.49  0.82 0.33 0.006  0.114 0.073  0.127073 0.000057  0.119806 0.000061  3.72 0.002 

 5* HPA N-TIMS 6.03  3.99 1.53 0.030  0.128 0.017  0.127128 0.000011  0.119813 0.000012  3.62 0.001 

 6* HPA N-TIMS 5.99  3.09 1.19 0.023  0.143 0.015  0.127181 0.000011  0.119815 0.000010  3.55 0.001 

w. mean                   0.136     0.127126     0.119813     3.64   

2 sd                   0.022     0.000453     0.000053     0.46   

GP-13 1* HPA N-TIMS 4.02  4.95 1.87 0.039  0.142 0.015  0.126372 0.000010  0.119825 0.000010  3.87 0.002 

 2* HPA N-TIMS 4.05  4.67 1.76 0.036  0.150 0.016  0.126426 0.000009  0.119804 0.000009  3.82 0.002 

w. mean                   0.146     0.126401     0.119813     3.84   

2 sd                   0.012     0.000077     0.000030     0.07   

CHR-Bkg 1 HPA N-TIMS 0.93  4.68 1.75 0.037  0.136 0.016  0.126667 0.000010  0.119813 0.000010  27.96 0.01 

 2 HPA N-TIMS 0.92  2.74 1.03 0.022  0.144 0.021  0.127671 0.000016  0.119819 0.000016  27.48 0.01 

 3 CT N-TIMS 0.55  1.21 0.46 0.009  0.123 0.033  0.127340 0.000034  0.119827 0.000035  26.32 0.01 

 4a HPA MC-ICP-MS 2.06  3.42 1.29 0.026  0.134 0.034  0.127210 0.000040  0.119856 0.000047  24.72 0.001 

 4b HPA N-TIMS ""  6.02 2.30 0.046  0.124 0.014  0.127503 0.000008  0.119798 0.000009  24.72 0.001 

 5 HPA N-TIMS 0.92  9.64 3.80 0.070  0.123 0.011  0.128170 0.000006  0.119822 0.000006  23.11 0.01 

 6 CT N-TIMS 0.58  1.81 0.71 0.013  0.134 0.027  0.127929 0.000025  0.119809 0.000025  22.97 0.01 

 7 HPA N-TIMS 0.92  9.50 3.79 0.067  0.113 0.011  0.127830 0.000006  0.119815 0.000007  21.95 0.01 

w. mean                   0.124     0.127803     0.119818     24.73   

2 sd                   0.020     0.000945     0.000034     4.39   

CHR-Pt+ 1a HPA MC-ICP-MS 0.23  15.54 5.62 0.129  0.179 0.022  0.128992 0.000011  0.119819 0.000009  2121 6 

 1b HPA N-TIMS ""  15.35 5.59 0.129  0.198 0.008  0.129278 0.000004  0.119823 0.000005  2121 4 

 2a HPA MC-ICP-MS 0.25  25.05 9.41 0.195  0.151 0.009  0.129012 0.000006  0.119794 0.000004  1805 6 

 2b HPA N-TIMS ""  6.60 2.49 0.052  0.181 0.012  0.129260 0.000008  0.119833 0.000008  1805 6 



 

 3 CT MC-ICP-MS 0.25  23.15 8.76 0.178  0.150 0.005  0.129029 0.000004  0.119796 0.000003  1785 4 

 4 CT MC-ICP-MS 0.25  12.02 4.54 0.092  0.129 0.011  0.128993 0.000012  0.119744 0.000009  1747 6 

w. mean                   0.162     0.129033     0.119804     1879   

2 sd                   0.051     0.000273     0.000064     349   

ZAG 1a HPA MC-ICP-MS 0.24  6.73 2.51 0.049  0.129 0.025  0.129518 0.000018  0.119780 0.000025  929 6 

 1b HPA N-TIMS ""  3.28 1.26 0.025  0.114 0.011  0.129759 0.000007  0.119815 0.000007  929 4 

 2 HPA MC-ICP-MS 0.25  8.94 3.28 0.067  0.133 0.014  0.126549 0.000011  0.119818 0.000012  926 6 

 3 HPA MC-ICP-MS 0.25  9.16 3.38 0.068  0.125 0.017  0.128046 0.000014  0.119779 0.000013  905 6 

 4 HPA MC-ICP-MS 0.25  8.63 3.18 0.064  0.126 0.014  0.128557 0.000012  0.119801 0.000014  904 6 

 5 HPA MC-ICP-MS 0.50  5.78 2.15 0.042  0.127 0.016  0.129214 0.000028  0.119789 0.000021  892 3 

 6 HPA MC-ICP-MS 0.50  12.05 4.47 0.088  0.113 0.009  0.128650 0.000011  0.119790 0.000010  887 3 

 7 HPA MC-ICP-MS 0.25  8.73 3.24 0.064  0.126 0.015  0.128382 0.000013  0.119819 0.000013  884 6 

 8 HPA MC-ICP-MS 0.25  9.03 3.40 0.065  0.143 0.015  0.128303 0.000014  0.119787 0.000013  861 6 

 9 CT N-TIMS 0.08  5.05 1.90 0.040  0.120 0.019  0.128699 0.000015  0.119830 0.000015  839 17 

w. mean                   0.123     0.128407     0.119804     896   

2 sd                   0.018     0.001791     0.000036     59   
  778 
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Electronic Supplementary Information  897 

S.1. Oxygen corrections for N-TIMS analyses 898 

An important step in the N-TIMS data reduction, is the correction for oxygen interferences. In this study, 899 

we have applied a two-step correction, where in step one a starting oxygen composition is used in order 900 

�š�}�������š���Œ�u�]�v�����š�Z�����^�š�Œ�µ���_���}�Æ�Ç�P���v���]�•�}�š�}�‰�������}�u�‰�}�•ition of the particular measurement. For the first step 901 

we have used the compositions as determined by Luguet et al. (2008): 902 

 17O/16OLuguet = R1 = 0.00038582 (1) 903 
 18O/16OLuguet = R2 = 0.00203486 (2) 904 

The intensities obtained on a certain mass (Ix in V) were corrected for the effects of variable isobaric 905 

oxygen isotope interferences of the heavier oxygen isotopes (17O and 18O) following: 906 

 O1 = 3*R1 (3) 907 

 O2 = 3*R1
2 + 3*R2 (4) 908 

 O3 = R1
3 + 6*R1*R2 (5) 909 

 O4 = 3*R1
2*R2 + 3*R2

2 (6) 910 

 O5 = 3*R1*R2
2 (7) 911 

 O6 = R2
3 (8) 912 

 Where Oi represent the difference in mass (i in amu) between the analyte mass of interest and 913 

the lightest mass that could generate a potential oxide interference. For example, the ions collected on 914 

mass 234 (I234) are predominantly representing 186Os16O3
- (I186) ions but also reflect oxygen complexes 915 

originating from 184Os (184Os16O17O2
- and 184Os16O2

18O-). In this case, the mass difference is 2 amu and 916 

thus Oi = O2. Using equations 3-8, the intensities of jOs16O3
- ions (Ij) can be determined as follows: 917 

 I184
 = I232 (9) 918 

 I186
 = I234 �t (I232*O2) (10) 919 

 I187
 = I235 �t (I232*O3) �t (I234*O1) (11) 920 

 I188
 = I236 �t (I232*O4) �t (I234*O2) �t (I235*O1) (12) 921 

 I189
 = I237 �t (I232*O5) �t (I234*O3) �t (I235*O2) �t (I236*O1) (13) 922 

 I190
 = I238 �t (I232*O6) �t (I234*O4) �t (I235*O3) �t (I236*O2) �t (I237*O1) (14) 923 

 I192
 = I240 �t (I234*O6) �t (I235*O5) �t (I236*O4) �t (I237*O3) �t (I238*O2) (15) 924 

By obtaining the intensities on the various jOs16O3
- ions, masses 241 (192Os16O2

17O- = I19217) and 242 925 

(192Os16O2
18O- = I19218) can be stripped from minor tri-oxide interferences as well, following: 926 

 I19217 = I241 �t (I235*O6) �t (I236*O5) �t (I237*O4) �t (I238*O3) (16) 927 

 I19218 = I242 �t (I236*O6) �t (I237*O5) �t (I238*O4) (17) 928 

�^�µ���•���‹�µ���v�š�o�Ç�U�� �š�Z���•���� �]�v�š���v�•�]�š�]���•�� �Á���Œ���� �µ�•������ �š�}�� �����š���Œ�u�]�v���� �š�Z�����^�š�Œ�µ���_�� �}�Æ�Ç�P���v�� �]�•�}�š�}�‰����compositions 929 

(17O/16O and 18O/16O) of the individual cycle: 930 



 

 17O/16Otrue = �Z�[1 = (I19217 / I192) / 3 (18) 931 
 18O/16Otrue = �Z�[2 = (I19218 / I192) / 3 (19) 932 

�d�Z���•�����}�Æ�Ç�P���v�����}�u�‰�}�•�]�š�]�}�v�•���Á���Œ�����š�Z���v���µ�•�������š�}���‰���Œ�(�}�Œ�u���š�Z�����^�•�š�Œ�]�‰�‰�]�v�P�_�����P���]�v���~���‹�µ���š�]�}�v�•���ï-15), now with 933 

the �^�š�Œ�µ���_���}�Æ�Ç�P���v�����}�u�‰�}�•�]�š�]�}�v�X���d�Z�]�•���u�����v�•���š�Z���š��R1 and R2 in equations 3-8 are replaced by R�[1 and R�[2. 934 

 In this study, we observed that the 17O/16O composition imposes a significant inaccuracy on the 935 

stable Os isotope composition when total Os signal intensities dropped below 1 V. Therefore, instead 936 

of accomplishing equations (16) and (18), the 17O/16�K�����}�u�‰�}�•�]�š�]�}�v���Á���•�������•�������}�v���š�Z�����^�š�Œ�µ�����}�Œ���u�����•�µ�Œ�����_ 937 
18O/16O composition as determined in equation (19). In order to calculate the 17O/16O from the 938 

measured 18O/16O the relationship between the stable oxygen isotopes needs to be considered. In this 939 

study, we assume that the oxygen isotopic compositions vary as a result of equilibrium mass-dependent 940 

isotopic fractionation. The relationship among the three stable oxygen isotopes is exponential and can 941 

be written as:  942 

 �Ü �1 
E �s 
L�5�; 
k�Ü �1 
E �s�5�< 
o
��
 (20)  943 

�U���Á�Z���Œ�����„�������(�]�v���•���š�Z�����•�o�}�‰�����}�(���š�Z�����o�]�v���X By taking a logarithm, equation (20) can be linearized (Miller, 944 

20021): 945 

 �s�r�7 �Û�H�J
k�Ü �1���s�r�7 
E �s�5�; 
o 
L �ã �Û �@�s�r�7 �Û�H�J
k�Ü �1���s�r�7 
E �s�5�< 
o�A (21) 946 

To calculate the 17O/16O composition, equation (21) can be re-written:  947 

 �A ���5�; 
L �A
���Û
l�ß�á�@
k�� �È���5�4�/�-�4 
o�>�5�A
p

�Û�s�r�7 (22) 948 

with,   949 

 17O/16Otrue = 
k�A ���5�; ���s�r�7�� 
E �s��
o �Û ���5�; �� ���5�:
�Ï�Ì�Æ�È�Ð

 (23) 950 

�U���Á�Z���Œ�����„���]�•���ì�X�ñ�î�ò�U�����•���Á�������•�•�µ�u�����š�Z���š���š�Z�����(�Œ�����š�]�}�v���š�]�}�v���}�����µ�Œ�•�����o�}�v�P���š�Z�����^�d���Œ�Œ���•�š�Œ�]���o���&�Œ�����š�]�}�v���š�]�}�v���>�]�v���_��951 

(TFL2) for which the average literature values is 0.526 e.g. 3-5. The �w17O and �w18O use the VSMOW (Vienna 952 

Standard Mean Ocean Water) as reference values. Generally, the 18O/16O ratio of VSMOW is accepted 953 

to be 0.00200526 whereas there is more debate about the 17O/16O ratio, with values ranging between 954 

0.0003807 and 0.0003848. Using data of this study we obtain an intercept with zero at a value of 955 

0.000382 which is within the range previously observed and, therefore, used in this study (Fig. S.1). To 956 

determine this intercept we used analyses that were obtained at a beam intensity of >2 mV on mass 957 

241. If these analyses are plotted in 103 ln(1+�w17O/103) vs. 103 ln(1+ �w 18O/103) space, following the 958 

approach of Miller (2002)1�U�� ���� �Œ���P�Œ���•�•�]�}�v�� ���}���(�(�]���]���v�š�� �~�„�•�� �}�(�� �ì�X�ð�ô�ô�F�ì�X�ì�ó�î�� �~�õ�ñ�� ���X�]�X�•�� �]�•�� �}���š���]�v������ �~�&�]�P�X�� �^�X�í�•�X��959 

Isoplot 4 was used to calculate the slope as well as the error on the slope. When the selected analyses 960 

are considered in 17O/16O vs. 18O/16O space an approximate linear relationship with a slope of 0.092 ± 961 

0.014 (95 c.i.) and an intercept of 0.000197 ± 0.000027 (95 c.i.) is obtained. This is within error of the 962 

values obtained when assuming a slope of 0.526 over the 18O/16O interval of 0.002007 to 0.002055 (the 963 

range in 18O/16O observed in this study); 0.0994 x + 0.000183, where x is 18O/16O. 964 

  965 



 

Figure S.1 Measured 17O/16O and 18O/16O 966 

compositions of analyses with a beam 967 

intensity of >2 mV on mass 241 plotted 968 

as delta values in logarithmic form. The 969 

regression line (dashed line) is within 970 

error (dotted lines) of the terrestrial 971 

fractionation line with a slope of 0.526 972 

(solid line). 973 

 974 
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