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Can we predict a riot? Disruptive Event Detection using
Twitter

NASSER ALSAEDI, PETE BURNAP, and OMER RANA, Cardiff University

In recent years, there has been increased interest in real-world event detection using publicly accessible data made available

through Internet technology such as Twitter, Facebook and YouTube. In these highly interactive systems the general public are

able to post real-time reactions to “real world” events - thereby acting as social sensors of terrestrial activity. Automatically

detecting and categorizing events, particularly small-scale incidents, using streamed data is a non-trivial task, but would be

of high value to public safety organisations such as local Police, who need to respond accordingly. To address this challenge

we present an end-to-end integrated event detection framework which comprises five main components: data collection, pre-

processing, classification, online clustering and summarization. The integration between classification and clustering enables

events to be detected, as well as related smaller scale “disruptive events” - smaller incidents that threaten social safety and

security, or could disrupt social order. We present an evaluation of the effectiveness of detecting events using a variety of

features derived from Twitter posts, namely: temporal, spatial and textual content. We evaluate our framework on a large-scale,

real-world dataset from Twitter. Furthermore, we apply our event detection system to a large corpus of tweets posted during

the August 2011 riots in England. We use ground truth data based on intelligence gathered by the London Metropolitan Police

Service, which provides a record of actual terrestrial events and incidents during the riots, and show that our system can perform

as well as terrestrial sources, even better in some cases.

CCS Concepts: •H.3.3 [Information Storage and Retrieval] → Clustering; •H.2.8 [Database Applications] → Data min-

ing; •I.5.2 [Design Methodology] → Feature evaluation and selection;

Additional Key Words and Phrases: Social media, Event Detection, Classification, Clustering, Feature selection, Evaluation.

1. INTRODUCTION

The rapid growth of Internet-enabled communication technology in the form of social networking ser-

vices (often collectively referred to as social media) and associated smartphone apps has enabled bil-

lions of global citizens to broadcast news and ‘on the ground’ information during ‘real world’ events as

they unfold. Twitter, for example, has been studied as an emerging news reporting platform [Osborne

et al. 2013; Phuvipadawat and Murata 2010; Weng and Lee 2011] and has been widely used to dis-

seminate information about the Arab Spring [Alsaedi and Burnap 2015; Starbird and Palen 2012] and

other disaster-related incidents [Burnap et al. 2014; Imran et al. 2015; Shamma. et al. 2010; Thelwall

et al. 2011; Williams and Burnap 2015]. The interaction between people, events, and Internet-enabled

technology, presents both an opportunity and a challenge to Social Computing scholars, public sector

organisations (e.g. governments and policing agencies), and private sector, all of whom aim to under-

stand how events are reported using social media and how millions of online posts can be reduced to

accurate but meaningful information that can support decision making and lead to productive action.

Research in recent years has uncovered the increasingly important role of utilising data from social

networking sites in disaster situations, and shown that information broadcast via social media can

enhance situational awareness during a crisis situation [Alsaedi et al. 2015; Vieweg et al. 2010, 2014].

In particular, members of the public, formal response agencies and local, national and international aid

organizations are all aware of the ability to use social media to gather and disperse timely information

in the aftermath of disaster [Chowdhury et al. 2013; Imran et al. 2014; Iyengar et al. 2011]. However,

many existing approaches to event detection are limited to global or large-scale event detection (e.g.
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natural disasters and terror attacks), while detecting small-scale incidents such as fires, car accidents,

and public order events remains an ongoing research topic due to several key challenges.

One challenge is that online posts are often constrained in length (referred to as microblogs), which

means that only a small amount of text is available to be analysed to gain insights. Within the text

there are other challenges, such as frequent use of informal, irregular, and abbreviated words; a large

number of spelling and grammatical errors; and the use of improper sentence structure and mixed lan-

guages [Becker et al. 2011a; Farzindar and Wael 2015; Imran et al. 2015]. Some languages are more

challenging than others, for example Arabic users use dialects heavily as well as a mixture of Latin

and Arabic characters (Arabizi) [Alsaedi and Burnap 2015]. These dialects may differ in vocabulary,

morphology, and spelling from the standard Arabic and most do not have standard spellings. Addi-

tionally, social networking services’ popularity have attracted spammers and other content polluters

to spread advertisements, pornography, viruses, phishing and other malicious material that cloud the

information analysis [Burnap et al. 2015; Farzindar and Wael 2015].

Despite these challenges, it has been noted that detecting small-scale events is essential to improv-

ing situational awareness of both citizens and decision makers [Li et al. 2012; Schulz et al. 2015;

Walther and Kaisser 2013] and thus remains a well motivated research topic for the Social Computing

community. In this article, we propose a novel approach to event detection that aims to overcome many

of the challenges to provide a system to detect large-scale events and related small-scale events. The

approach is based on the integration of supervised machine learning algorithms to detect larger scale

events, and unsupervised approaches to cluster, disambiguate and summarize smaller sub-events, with

a goal of improving situational awareness in emergency situations through automatic methods. Our

contributions can be summarized as follows:

—Using temporal, spatial and textual features, our approach is able to detect small-scale events in a

given place and time better than existing algorithms, to which we compare our performance results;

—While other related work focuses on large or small scale events, our approach can identify large and

related small scale events. Thus, our approach retains the context of smaller events (e.g. distinguish-

ing between public disorder related to an event, and general disorder);

—of the related event detection work is dependent on utilising event-specific terms and phrases but we

propose a novel approach to summarizing microblog posts corresponding to events without the need

for prior knowledge of the entire data set. That is, in real-time and not post-event. Our approach is

based on modifying a term frequency algorithm to include a dynamic temporal aspect;

—We demonstrate that our proposed approach can identify the relationship between content posted

via social media, and ’real world’ events by using time-stamped social media data and actual crime

reports to accurately flag events prior to their known reporting time throughout a study period,

using human annotated Twitter data as an example data source;

—We present a case study of our approach by evaluating it against other leading approaches using

Twitter posts from the UK riots in 2011, and a publicly accessible account of actual reported intel-

ligence obtained and reports received by the Metropolitan Police Service during this event. Smaller

scale events include localized looting, violence and criminal damage. Results show that our system

can perform as well as terrestrial sources at detecting events related to the riots - in some cases we

detect the event before intelligence reports were recorded.

The rest of this article is organized as follows: Section 2 reviews related work. Sections 3 and 4

define the problem of event detection using data from social networking services, and discuss the

technical architecture and algorithms developed as part of our proposed system. In section 5 we present

and analyze several features, namely temporal, spatial and textual features. Section 6 presents our
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experiments and discusses the results. In section 7 we conclude and highlight some directions for

future research.

2. RELATED WORK

The general topic of detecting real-world events from social media has received considerable research

interest. Research efforts have focused on real-time event detection and tracking, social media analysis,

micro-blog summarization and information visualisation. We describe relevant related work in three

areas: large-scale (global) event detection, small-scale (local) event detection, and systems used to

extract crisis relevant information from social media.

For large-scale events [Petrović et al. 2010] presented an approach to detect breaking stories from

a stream of tweets using locality-sensitive hashing (LSH). [Becker et al. 2011a] proposed an online

clustering framework to identify different types of real-world events. Then, they use different machine

learning models to predict whether a pair of documents belong to real-world events or not. These

approaches are limited to widely discussed events and fail to report rare and potentially disruptive

small-scale incidents.

Large-scale event detection has also been explored through clustering of discrete wavelet signals

built from individual words generated by Twitter [Weng and Lee 2011]. Auto-correlation then filters

away the trivial words (noise) and cross correlation groups together words that relate to an event by

modularity-based graph partitioning. Similarly, [Cordeiro 2012] proposed a continuous wavelet trans-

formation based on hashtag occurrences combined with a topic model inference using Latent Dirichlet

Allocation (LDA) [Blei et al. 2003]. In fact, LDA and its variants are widely used statistical modelling

approach implemented in event detection tasks [Cordeiro 2012; Pan and Mitra 2011; Vavliakis et al.

2013; Vieweg et al. 2014]. However, these methods have the main drawback of requiring a priori speci-

fication of the number of total topics, which leads to problems when the total number of events exceeds

this number.

Other approaches have focused on structural networks and graph models to discover events in social

media feeds. [Benson et al. 2011] presented a structured graphical model which simultaneously an-

alyzes individual messages, clusters them according to event, and induces a canonical value for each

event property. Using a different graph analytical approach, [Sayyadi and Raschid 2013] used a Key-

Graph algorithm [Ohsawa et al. 1998] to convert text data into a term graph based on co-occurrence

relations between terms. Then they employed a community detection approach to partition the graph.

Eventually, each community is regarded as a topic and terms within the community are considered as

the topic’s features. Moreover, [Schinas et al. 2012] used the Structural Clustering Algorithm for Net-

works (SCAN) for detecting “communities” of documents. These candidate social events were further

processed by splitting the events that exceeded a predefined time range into shorter events. Then they

used a classification approach based on median geolocations and accumulated TF-IDF vectors for each

cluster to separate relevant and irrelevant candidate events. Nevertheless, these graph partitioning

algorithms are not ideal for social media event detection problems because of their complexity [Agar-

wal et al. 2012] and limitation that they do not capture the highly skewed event distribution of social

media event data due to their bias towards balanced partitioning [Karypis et al. 1997]. In addition, the

multiple events and sub-events discovery becomes computationally expensive using graph partitioning

algorithms due to velocity and scale of updates in a highly dynamic real-time situation [Agarwal et al.

2012].

Various methods have been proposed to identify small-scale events from social media streams such

as fire incidents, traffic jams, etc. [Walther and Kaisser 2013] developed spatiotemporal clustering

methods where they monitor specific locations of high tweeting activity and cluster tweets that are

geographically and temporally close to each other. A machine-learning module is then used to evaluate
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whether a cluster of tweets refer to an event based on 41 features including the tweet content. Another

clustering approach is presented in [Schulz et al. 2015], with a small-scale incident detection pipeline

based on the clustering of incident-related micro-posts using three properties that define an incident:

(1) incident type, (2) location and (3) time period. Various techniques are adopted to increase the qual-

ity of their clustering approach: (A) the incident type determination using supervised machine learning

(Semantic Abstraction), (B) geotagging of tweets based on tweets geolocalization and (C) the extrac-

tion of time period of the incident. Yet, both methods are very specific without giving aspects of the

general context, it is critical that the system can provide insight into ongoing sub-events arising amid

the protest to better inform how to react accordingly, to improve both event reasoning and system per-

formance. That could explain the low recall/precision of [Schulz et al. 2015] and [Walther and Kaisser

2013] approaches when validated using real-world official reports, 32.14% and 4.75%, respectively.

Another event detection system, Twitcident [Abel et al. 2012], presents a Web-based application for

searching, filtering and aggregating information about known events reported by emergency broad-

casting services in the Netherlands. In addition, [Watanabe et al. 2011] proposed a system called

Jasmine, for detecting local events in the real-world using geolocation information from microblog doc-

uments. They obtain the name list of locations from geotagged tweets and add positional information

to tweets by matching the location name. A similar work is [Boettcher and Lee 2012] that introduces

a statistical method for detecting local events using a temporal and spatial analysis by considering

seven day historic data. The main contribution of EventRadar is that it detects local events without

keeping a list of locations by finding clusters of Tweets that contain the same subset of words. Another

related system is proposed by [Li et al. 2012] to detect crime and disaster related Events (CDE) from

tweets. They use spatial and temporal information of tweets to detect new events with a number of

text mining techniques to extract the meta information (e.g., geo-location names, temporal phrase, and

keywords) for event interpretation. Most of these small-scale event detection approaches are novel and

automatic, however, the performance and detection reliability of these systems are highly dependent

on the incident type so they are limited to certain specific types of event content that they can handle.

Regarding the use of social media data during disasters, researchers have proposed several visual

analytics approaches aiming at real-time microblog analysis that often facilitate interactive means for

exploration and anomaly indication. TwitterMonitor [Mathioudakis and Koudas 2010] performs trend

detection in two steps and analyzes trends in a third step. During the first phase, it identifies bursty

keywords which are then grouped based on their co-occurrences. Once a trend is identified, additional

information from the tweets is extracted to analyze and describe the trend. AIDR (Artificial Intelli-

gence for Disaster Response) [Imran et al. 2014] is a platform for filtering and classifying messages

posted to social media during humanitarian crises in real time. AIDR uses human-assigned labels

(crowdsourcing messages), and pre-existing classification techniques to classify Twitter messages into

a set of user-defined situational awareness categories in real-time. [Vieweg et al. 2010] analyze the

Twitter logs for a pair of concurrent emergency events; the Oklahoma Grassfires (April 2009) and

the Red River Floods (March and April 2009). Their automated framework is based on the relative

frequency of geo-location and location-referencing information from users’ posts.

In a related work, [Olteanu et al. 2014] created a lexicon of crisis-related terms (380 single-word

terms) that frequently appear in relevant messages posted during six crisis events. Then, they demon-

strated how we use the lexicon to automatically identify new terms by employing pseudo-relevance

feedback mechanisms to extract crisis-related messages during emergency events. [Vieweg et al. 2014]

enable filtering, searching, and analyzing of Twitter during another natural disaster (the 2013 Ty-

phoon Yolanda). They used supervised classification algorithm to automatically classify tweets into

three categories: Informative; Not informative and Not related to this crisis. Then they employed topic

modelling using LDA [Blei et al. 2003] model to further classify the informative tweets into 10 clusters
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according to the Humanitarian Clusters Framework. Similarly, Twitinfo [Marcus et al. 2011] auto-

matically detects and labels unusual bursts in real-time Twitter streams. However, they used different

approach as TwitInfo adapts signal processing and streaming techniques to extract peaks and label

them meaningfully using text from the tweets.

In research that is mostly analytical, [Shamma. et al. 2010] presented Tweetgeist for identifying

structure and semantics in Twitter about media events and providing that information back to the mi-

crobloggers to enhance their experience. Most recently, [Thapen et al. 2015] built a situational aware-

ness system that uses frequency statistics and cosine similarity based measures to produce terms

characterising localized events (the detection of illness outbreak) and then retrieve relevant news and

representative tweets. However, most of the current disaster identification approaches are limited

to detect certain events such as earthquake, tornado, etc and can not be generalized to detect other

disaster-related events. Another presumption of these approaches is that users have to know the event

in advance to represent keyword queries to be detected.

It is worth reporting some studies that have been proposed to identify event phases and the tempo-

ral boundaries of mass disruption events. For instance, [Chowdhury et al. 2013] introduced a system

called Tweet4act to automatically determine different phases of an event by extracting content fea-

tures from each message. They applied the popular k-mean clustering algorithm to classify messages

for three crisis events (the Joplin Tornado in USA, the Nesat Typhoon in Phillipines and the Haiti

Earthquake in Haiti). Similarly but with broader perspective of events, [Iyengar et al. 2011] described

an approach to automatically determine when an anticipated event started and ended by analyzing

the content of tweets using an SVM classifier and hidden Markov model with various textual features

such as bag of words, POS (part-of-speech) tags, etc. Both studies aim to automatically classify tweets

into three phases of an event: before, during, and after. Additionally, [Yin et al. 2015] investigated

several approaches that have been shown useful when analyzing Twitter messages generated during

humanitarian crises even to local levels. They evaluate these key relevant methods for burst detection,

tweet filtering and classification, online clustering, and geotagging.

Several recent efforts proposed techniques for automatic microblog event summarization from social

media. The centroid-based method is one of the most popular extractive summarization methods such

as MEAD [Radev et al. 2001] and [Becker et al. 2011b] who presented and evaluated three centrality-

based approaches to select the high quality messages from clusters. Another approach is the graph-

based LexRank which was introduced by [Erkan and Radev 2004]. The TextRank algorithm [Mihalcea

and Tarau 2004] is another graph-based approach that implements two unsupervised approaches for

keyword and sentence extraction in order to find the most highly ranked sentences in a document

using the PageRank algorithm [Brin and Page 1998]. Recently, [Xu et al. 2013] extended the Pagerank

ranking algorithm and investigate a graph-based approach which leverages named entities, event

phrases and their connections across tweets to create summaries of variable length for different topics.

Moreover, [Olariu 2014] proposed a graph-based abstractive summarization scheme where bigrams

extracted from the tweets are considered as the graph-nodes.

Feature-based approaches are statistical and linguistic features which have been extensively investi-

gated, for example, [Sharifi et al. 2010] proposed a phrase reinforcement (PR) algorithm to summarize

the Twitter topic in one sentence. [Nichols et al. 2012] extended this idea and generated journalistic

summary for events in world cup games. More fine-grained summarization was proposed by consider-

ing sub-events detection and combining the summaries extracted from each sub-topic (tweet selection,

tweet ranking) [Shen et al. 2013; Yajuan et al. 2012; Zubiaga et al. 2012]. Other researchers have pro-

posed variuos models including the use of Non-negative Matrix Factorization (NMF) [Yang et al. 2012],

a structured retrieval approach [Metzler et al. 2012], Structured Probabilistic Latent Semantic Analy-

sis (PLSA) [Lu et al. 2009], and many more [Chua and Asur 2013]. However, some of these algorithms

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 0000.



0:6 • N. Alsaedi, P. Burnap, O. Rana

can only be applied to periodic events such as sports events and not on longer term events or aperiodic

events and others do not perform particularly well on large real-world multilingual corpora.

Previously, we have focused on online real-world events identification for large scale events such

as sport events [Alsaedi et al. 2014]. In [Alsaedi and Burnap 2015], we presented an approach to

detect stories from a stream of Arabic tweets with the main focus on motivation and challenges of

identifying events in Arabic language. In [Alsaedi et al. 2015], we described an improved model for

feature selection based on the popular [Mitra et al. 2002] algorithm and made is suitable for microblog

data such as Twitter. In this article we further explored features that could be useful to enhance

situational awareness. We validate the effectiveness of our framework using a large noisy dataset of

over 40 million Twitter messages. We also show that our framework yields better performance than

many leading approaches in the real-time event detection.

In summary, although many approaches exist for the event detection task, they are generally either

used for large scale events and can not capture important small-scale events, or are very specific and

are limited to detect certain events only - thus missing the context of larger events. In contrast to the

above approaches, our system automatically identifies as many real-world events in a given region

as possible. Then, using an online clustering algorithm with a sliding window timeframe, it can be

utilised to detect large and small-scale events from social media streams - with particular attention

to filtering from large to small-scale events. Employing supervised classification of each tweet before

clustering (large scale event detection) reduces the computational overhead at the clustering stage as

the number of tweets is significantly reduced (containing only event-related tweets). Thus clustering

(small-scale event detection), feature selection and summarization are much faster and suitable for

real-time analysis. The presented case study of our approach by evaluating it against other leading

approaches using Twitter posts from the UK riots in 2011, itself can be considered a contribution.

3. PROBLEM DEFINITION

“Events”, as captured via social media, are real world happenings that are reflected by change in the

volume of text data that discusses the associated topic at a specific time [Dong et al. 2015]. Hence, an

event can be characterized by one or more of the following attributes: Topic, Time, People and Location

[Imran et al. 2015]. A “disruptive event” in the context of social media can be defined as:

Definition Disruptive event is an event that interferes with (disrupts) the achieving of the objective

of an event or interrupts ordinary event routine. It may occur over the course of one or several days,

causing disorder, destabilizing security and may results in a displacement or discontinuity.

Different events have different context-specific features but are generally conveyed on social me-

dia using verbs (actions), nouns (names, places, topics ...), adjectives (descriptive) and prepositional

phrases (proximity and location descriptive). Our aim is to represent the data extracted from social

media as a time-line of events (clusters), where each cluster contains sufficient data to discriminate

between events and summarize them as actionable information for use by public safety officials and

policy makers.

We assume the task of event detection includes summarizing one or more of the following scenarios:

(a) different events occurring in the same location for a time period, where we assume each event

can be characterized using different textual features. (b) similar multiple events in different locations,

where we assume the most appropriate features will be temporal and the spatial features. (c) similar

events in the same location at almost the same time, in this case we assume they are the same event

and will group them together, where new documents are updates of earlier ones.

One of the main empirical foci of this work is an exploration of the most effective features within

social media data for event detection. Consider a text stream D = (D1, D2, ..., Dn) where Di is a doc-

ument, and the length of D is |D|. A document di consists of a set of features,(F1, F2, ..., Fk), and is
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Fig. 1. Document clustering using different sets of features

reported at time ti. In the text stream D, ti ≤ tj if i < j. Dividing the text stream, D, into time

windows, Wi of the same length e.g. per day, per 12 hours, per minute. The problem of real-time event

detection is to find an optimal set of features to detect events in each unit time, where all known events

are identified and correctly summarised. Figure 1 illustrates the relationship between events and the

different sets of features.

4. METHODS AND SYSTEM DESIGN

Social media generally produces a large number of posts per hour with wide variety of topics, rendering

human monitoring impractical. Our proposed framework is based on collecting data over time windows

for a given location which supports the automatic detection and summarization of events from social

media. In this section we describe each step in more detail.

4.1 Data Collection

We collect user-generated updates directly from social media using streaming API (Application Pro-

gramming Interface) as it allows subscription to a continuous live stream of data. Our goal is to detect

events in a given location without prior knowledge of these events. The most open and widely used

social media is Twitter. Facebook and Google+ are much more closed by design to their users. Terres-

trial events always occur in space and thus we collect tweets based on a set of keywords that describe

a region (e.g., Iraq, Syria, Egypt, ...) using different languages. We also collect tweets from users who

selectively add the required region as their location in their profile metadata or turn on GPS on the

smartphones. Finally, we make use of geographic Hashtags (e.g., #Ramadi, #Aleppo, #Cairo, #Dubai

...). Data are stored using a MongoDB database which is suitable for storing short texts and supports

different indices with a standardised querying interface [Alsaedi et al. 2014].

4.2 Pre-Processing

We perform basic text processing techniques to optimise the text for use as features. This included

stop-word elimination and stemming (Khoja stemmer [Diab et al. 2004]) for Arabic text and (Porter

stemmer [Porter 1997]) for English and other Latin documents. Also, posts that were less than 3 words

long were removed, as were messages where over half the total words were the same word, since these

posts were less likely to have useful information.

4.3 Classification

This step aims to distinguish events from noise or irrelevant posts. The classification step identi-

fies large-scale events and subsequently reduces the number of posts to be processed in the following

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 0000.



0:8 • N. Alsaedi, P. Burnap, O. Rana

steps (small-scale event identification and summarization) because these steps will process only event-

related tweets. Words from each status are considered as features and a Naive Bayes classifier [Lewis

1998] was chosen for the classification task over a number of leading methods, such as support vector

machines (SVMs) [Joachims 1998] and Logistic Regression [Friedman et al. 1998] following empirical

baseline testing where Naive Bayes outperformed other algorithms when detecting large scale events

(see Section 6.2.1). Naive Bayes is relatively fast to compute and easy to construct, with no need for

any complex iterative parameter estimation schemes. Unlike SVMs or Logistic Regression, the Naive

Bayes classifier treats each feature independently. Naive Bayes also tends to overfit less than Logistic

Regression [Petrović et al. 2010].

To train and test the classifier we use human annotators to manually label 5000 randomly selected

tweets in to two classes “Event” and “Non-Event”, which were collected at five different hours of the

first and second weeks of October 2015 (first dataset, Section 6.1.1). These five hours were sampled

uniformly at random from five bins partitioned according to the volume of messages per hour over these

two weeks. To ease the annotation process, examples were shown to the annotators along with their

respective classes. The details of the collection and annotation process are expanded in Section 6.2.

Training data (tweets) where transformed into feature vectors (see Section 5) and their corresponding

category (event or non-event) were provided to the classifier, constituting the training set. From the

training data the likelihood of each post belonging to either class was derived on the basis of feature

occurrence in the training data. When a new example is presented, the class likelihood for the unseen

data is predicted on the basis of the training instances.

4.4 Online-Clustering

The classification step separates event-related documents from non-event posts (such as chats, per-

sonal updates, spam, incomprehensible messages). Consequently, non-event posts are filtered. To iden-

tify the topic of an event, including determining potentially disruptive events, we define a temporal,

spatial and textual set of features, which are detailed in the next section. We then apply an online

clustering algorithm, which is outlined in Algorithm 1.

Using a set of features (F1, ..., Fk) for each document (D1, ..., Dn) we compute the cosine similarity

measure between the document and each cluster (C1, ..., Ck) where the similarity function is computed

against each cluster cj in turn for j = 1, . . . , m and m is the number of clusters (initially m = 0). We

use the average weight of each term across all documents in the cluster to calculate the centroid

similarity function E(Di, cj) of a cluster. The threshold parameters are determined empirically in the

training phase (as was shown in Section 6.2.2).

The decision to use an online clustering algorithm was taken for three main reasons: (i) it supports

high dimensional data as it effectively handles the large volume of social media data produced around

events; (ii) many clustering algorithms such as K-means require previous knowledge of the number of

clusters. Because we do not know the number of events a priori, online clustering is suitable in that

it does not require such input; (iii) partitioning algorithms are ineffective in this case because of the

high and constant sheer scale of the user contributed messages (as discussed in Section 2).

4.5 Summarization

After clustering the documents the next natural step is to automatically summarize and represent

the topics being discussed within the clusters. Each cluster may contain hundreds of posts, images or

videos, and the task of finding the most representative update or extracting top terms (topics) is crucial

to making the output useful and interpretable for policy and decision makers.

Our approach is inspired by the fact that users tend to use similar words when describing a partic-

ular event, as well as observations obtained from [Reed et al. 2006]:
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ALGORITHM 1: Online Clustering Algorithm

Input : n set of documents (D1, ..., Dn)
Threshold τ

Output: k clusters (C1, ..., Ck)
while τ ;
is ;
given do

compute the centroid similarity function E (Di, cj) of each cluster cj ;
if centroid similarity E(Di, cj) ≥ τ then

1) A new cluster is formed containing Di ;
2) The new centroid value = Di.

else
1) Assign it to the cluster which gives the maximum value of E(Di, cj) ;
2) Add Di to cluster j and recalculate the new centroid value cj .

end

end

(1) High frequency words like stop-words occur in approximately the same percentage of documents no

matter whether the document set is small or large and similarly, low frequency words like “murder”

occur very rarely across small and large datasets.

(2) The document frequency distribution of one corpus can be used to approximate another.

We propose a novel temporal Term Frequency - Inverse Document Frequency (TF-IDF) that gen-

erates a summary of top terms without the need of prior knowledge of the entire dataset, unlike the

existing TF-IDF approach [Salton and Buckley 1988] and its variants. Temporal TF-IDF is based on

the assumption that words which occur more frequently across documents over a particular interval

(timeframe) have a higher probability of being selected for human created multi-document summaries

than words that occur less frequently [Vanderwende et al. 2007].

Typically, the TF-IDF approach requires knowing the frequency of a term in a document (TF) as

well as the number of documents in which a term occurred at least once (DF). The need for a priori

knowledge of the entire data set introduces significant challenge of using this approach where con-

tinuous data streams must be summarized in real-time as an event unfolds. In addition, the adopted

scheme must be flexible to update frequently (every minute, 10 mins, hourly, 3 hours - depending on the

time-frame size). Hence, the iterative calculation of term weights should be taken into consideration.

To overcome these limitations we introduce the temporal TF-IDF where we consider a set of posts

in a cluster to be represented as a document. The total number of clusters equals the total number of

documents which is a subset of the entire dataset or corpus. This reduces the overall computational

complexity and overcomes the limitations of the TF-IDF based approaches in which the document set

to be clustered must be known in advance. After the first cluster timeframe, we use clusters from the

previous timeframe with the documents in the recent one to add more relevance and usefulness to our

results such as emerging keyword. Consequently, we use the document frequency distribution of two

timeframes instead of one, taking into account the changing event dynamic and narrative. We define

the TF-IDF weighting scheme of a new document d for a collection C (from two clusters) as:

wji =
1

norm(di)
fji × log(1 +

N

Nj

)

where fji is the term frequency of word in document di and Nj is document frequency of word in a

collection and N is the total number of documents in the collection. In order to avoid the bias caused
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Table I. Overview of features used by our framework

Description

Temporal features

We retain the most frequently occurring terms in a cluster in hourly time frames and compare

the number of posts published during an hour that contain term t to the total number of posts

during that hour. The 1-hour time window leads to the best performance as it requires much

less computational time producing the second best accuracy compared to the other settings as

shown in [Alsaedi et al. 2015].

Spatial features

We use three statistical location approaches to extract geographic content from clusters:

(1) The source latitude and longitude coordinates are extracted (if provided by the user).

(2) The use of shared media (photos and videos) GPS coordination of the capture device.

(3) OpenNLP (http://opennlp.sourceforge.net) and Named-Entity Recognition (NER) are used

for geotagging the tweet content to identify places, street names, landmarks etc.

Textual features

Near-Duplicate measure: The average content similarity over all pairs of messages posted

in a (1-hour time slot) cluster. If the two posts have a very high similarity (the cosine simil-

arity is above 0.9), we assume that one of them is a near-duplicate of the other.

Share ratio: We calculate this attribute by normalizing the number of times a post (photo

or video) appears in a timeframe to the total number of messages in that timeframe.

Mention ratio: Number of mentions (@) relative to the number of posts in the cluster.

Hashtag ratio: Number of hashtags (#) relative to the number of posts in the cluster.

Url ratio: Number of posts that contain links relative to the number of posts in the cluster.

Text sentiment: For each post, we use the SentiStrength [Thelwall et al. 2011] algorithm to

compute a positive, neutral or negative sentiment score. Then we compute the average

cluster-level sentiment in order to study the effect of average positive or negative sentiment

with respect to events.

Dictionary-based feature: This bag of words model uses a dictionary of trigger words to detect

and characterize events; these are manually labelled by experts and decision makers. We use

a subset of verbs, nouns and adjectives from (events and actions) category from WordNet

(http://globalwordnet.org) to create a dictionary model. We have created 9 lexicons regarding

events from the clustering scheme, one for each popular topic including weather, communic-

ation, energy, transportation, health, crime, terrorism, politics and others. The total number

of terms is 1538. Table II shows our lexicons with topics and examples in each category.

by different document lengths, the length of each document vector is normalized so that it is of unit

length norm(di). This summarizer selects the most weighted post as summary as determined by the

Temporal TF-IDF weighting.

5. FEATURE SELECTION

Feature selection is a fundamental problem in mining large data sets. The problem is not limited to

the total processing time but involves dimensionality reduction to achieve better generalization. In [Al-

saedi et al. 2015], we analysed in-depth three types of features, namely, temporal, spatial and textual

features. We used an improved version of the unsupervised feature selection proposed by [Mitra et al.

2002] to optimize the textual features. In this paper, we use the standard metric of NDCG (Normalized

Discounted Cumulative Gain) [Croft et al. 2009] for the feature selection task. Table 5 gives a brief

description of these features.
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Table II. Topics and sub-topics with examples taken from the corresponding lexicons

Topics Sub-Topics Examples Total

Weather Heavy rain, Wind, Fog, Storm, High

waves, Flooding, Heat waves, Cold.

Verb: rain, suffer,

Noun: fog, visibility,

Adjective: heavy, cold, hot,

155

Energy Blackout, Power lost, Fire, Electricity

cut, Water supply, Gas leak.

Verb: lose, leak, continue,

Noun: power, signal, authority,

Adjective: long, delay,

82

Communication Signal, Communication lost, Break-

down.

Verb: communicate, restore,

Noun: signal, company,

Adjective: Technical, temporary,

33

Transportation Public transport, Traffic jam, Acci-

dents, Crashes, Long delay, Services,

Hazardous, Roads, Cancellation.

Verb: see, take,

Noun: car, crash, plane, train,

Adjective: fast, dangerous,

258

Health Flu, Fever, Virus, Disease, Illness. Verb: spread, circulate,

Noun: influenza, rate, season,

Adjective: medical, serious,

45

Crime Shooting, Theft, Damage, Kidnapping,

Homicide, Murder, Manslaughter,

Drugs, Threat, Fight, Money laun-

dering, Sexual assault, Illegal, Fraud,

Alcohol, Corruption, Internet Crimes.

Verb: witness, report, arrest,

Noun: victim, blood, abuse,

Adjective: vulnerable, brutal,

341

Terrorism Terrorist Activities, Explosion, Explo-

sives, Weapons, Hostage, Armed rob-

bery, Bomb, Attacks, Violence, Stab-

bing, Suicide, Hacking.

Verb: release, support,

Noun: email, Syria, knife,

Adjective: suspicious, explosive,

230

Politics Riots, Protests, Political insults,

Celebrities, Occasions, News.

Verb: organise, group,

Noun: chaos, looting, arson,

Adjective: corrupt, violent,

256

Others Religious, Financial, Social incidents,

Death, Rumour.

Verb: spread, die, claim, confirm

Noun: truth, correction, rumour,

Adjective: false, incorrect,

129

6. EVALUATION

We evaluate our identification framework using two real-world datasets through a set of carefully

designed experiments. This section details the datasets used and our approach to evaluating the pro-

posed system. We analyse three sets of features associated with tweets that define an event (temporal,

spatial and textual features) to determine the best feature combinations.

6.1 Experimental Settings

6.1.1 Datasets. We use two real-world datasets:

Middle East 2015 Our first dataset consists of 40 million tweets and was collected from 1 October

2015 until 30 November 2015 using Twitter’s Streaming API. This is a general collection of tweets used

to show that our event detection system is useful for extracting information from socially-generated

content on a broad range of topics. Our aim is to monitor and analyze events and disruptive events in

a particular region and we used the middle east as our location, collecting tweets from users who chose

one of the middle east countries as their location. Nearly 425,000 unique hashtags appear in the 40

million tweet corpus and roughly 18,000,000 distinct user accounts.

England Riots 2011 Our second dataset consists of 1.6 million tweets and was generated during

the 2011 riots in England, which began as an isolated incident in Tottenham on 6th August but quickly

spread across London and to other cities in England and gave rise to levels of looting, destruction of
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Table III. F-measure for different classification algorithms

Naive Bayes Support Vector Machines Logistic Regression

Accuracy 86.13 83.93 80.13

Precision 83.64 80.84 78.91

Recall 87.95 86.54 82.90

F-measure 85.43 83.86 80.22

property and violence not seen in England for more than 30 years [MPS 2012]. This event was selected

because of a publicly available record of intelligence and incidents reported during this period that

provides us with a gold standard evaluation dataset. Data were purchased from Twitter reseller Gnip

from 6 August until 12 August 2011 using the following query #londonriots OR #tottenham OR #en-

field OR #birminghamriots OR #UKRiots OR #Croydon OR #hackney OR #tottenhamriots OR #totten-

hamshooting OR #Londonriots OR #riotcleanup OR #rioting OR #manchesterriots OR #liverpoolriots

OR #bullring OR #enfieldriots OR #croydonriots OR #Londonsburning OR #prayforlondon. We usually

select the most popular hashtags that attract the users’ attention. This is reflected as peaks in the

use of these hashtags of tweeting rates. In the process of selecting these hashtags, the system only

considers sudden increase with respect to the recent tweeting activity using these hashtags.

6.1.2 Evaluation Matrix. we used standard classification metrics; precision, recall and F-measure

to measure the effectiveness of our framework. we have also implemented two well-known information

retrieval metrics, namely, Precision@K and NDCG [Croft et al. 2009] to evaluate the overall perfor-

mance of the event detection task. Precision@K reports the fraction of correctly identified events out

of the top-K selected clusters, averaged over all hours. Where as the NDCG (Normalized Discounted

Cumulative Gain) metric ranks the top events relative to their ideal ranking as well as NDCG supports

graded judgments and rewards relevant documents in the top ranked list.

6.2 Framework Evaluation

6.2.1 Classification. The aim of the first experiment is to elect the best classifier from leading ma-

chine learning algorithms for the purpose of identifying event and non-event tweets. The classification

algorithms used in the experiment were: Naive Bayes [Lewis 1998] a statistical classifier based on the

Bayes’ theorem; Logistic Regression [Friedman et al. 1998], a generalized linear model to apply re-

gression to categorical variables; and support vector machines (SVMs) [Joachims 1998] which aims at

maximizing (maximum margin) the minimum distance between two classes of data using a hyperplane

that separates them.

Using a systematic sample extracted from the Middle East dataset, three annotators manually la-

belled 5000 tweets in to two classes “Event” and “Non-Event” to create a training dataset. Event in-

stances outnumber the non-event ones as the training set consisted of 1900 Non-Event tweets and

3100 event-related tweets. Agreement between our three annotators, measured using Cohen’s kappa

coefficient, was substantial (kappa = 0.807). A ten-fold cross validation was used to train and test the

classifiers. Table III shows a comparison of classifiers with unigram presence which indicates that

Naive Bayes classifier produces the best results.

6.2.2 Online clustering. Following the classification output we employed three more human an-

notators to manually label 1600 clusters, randomly selected from the top-20 fastest-growing clusters

according to hourly message volume at the end of each hour in October (800 clusters) and Novem-

ber (800 clusters) 2015. October data was used for training and refining the clustering algorithm and

November was used to test and evaluate the clustering output. The agreement between annotators

was calculated using Cohen’s kappa (kappa = 0.782), which indicates an acceptable level of agreement.

For testing we only used the clusters on which all annotators agreed (602).
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Fig. 2. F-measure of the online clustering algorithm over Different thresholds

Fig. 3. Precision@K of our classification-clustering

framework

Fig. 4. NDCG at K of our classification-clustering frame-

work

Recall that our clustering algorithm presented in Section 4.4 relies on the Threshold τ . To tune the

clustering threshold τ for a specific dataset, we run the clustering algorithm on a subset of labelled

training data. We evaluate the algorithm’s performance on the training data using a range of thresh-

olds, and identify the threshold setting that yields the highest-quality solution according to a given

clustering quality metric (here we implement the f-measure). Threshold values for the online cluster-

ing algorithm were varied from 0.10 to 0.90 at graded increments of 0.05% with a total of 17 tests in

order to find the best cut-off of τ =0.45 (63 character difference). Figure 2 illustrates the F-measure

scores for different thresholds where the best performing threshold τ =0.45 seems to be reasonable

because it allows some similarity between posts but does not allow them to be nearly identical.

As shown in Figures 3 and 4, our proposed framework is effective and performs well both in the

NDCG and Precision@K evaluation measures. In fact our framework discovers many real-world events

such as the refugee crisis and its implications, disasters and terrorist attacks (e.g. Paris attacks, Beirut

bombings, etc.), war against ISIS as well as many other events and stories. Some large events identified

by our system are shown in Table IV.

6.3 Feature Selection

To enhance the event detection system, we used feature selection to refine our model - focussing now

on ‘disruptive events’, which were selected from the human annotated clusters. We hypothesized that
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Table IV. Examples of automatically detected global events by our framework in November 2015

Date Event Event Keywords

12 Nov 2015 • Beirut bombings

• refugee crisis

• Beirut, bombings, two, twin blasts, Suicide, explosives, 43 dead, ISIS,

239 injured, attacks, Syria, suspects, Hezbollah, #BeirutBombings

• refugees, migrants, Europe, asylum, Germany, Syria, Afghan, Iraq,

Greece, Macedonia, fence, police, Border, #migrants, #MigrantCrisis,

#refugees

13 Nov 2015 • Shooting in Mount

Hebron, West Bank

• Attacks in Baghdad

• Paris attacks

• Shooting, gunman, shot, car, family, 2 killed, 2 injured, teen, uniden-

tified, run

• Terrorist, attacks, Baghdad, suicide, bombing, 19 killed, 33 wounded,

ISIS, #Baghdad, #Iraq

• Shooting, restaurant, bar, explosions, gunshots, Bataclan theatre,

hostages, Stade de France, 130 killed, more 200 injured, #ParisAttacks,

#prayforparis, #notafraid, #porteouverte

Fig. 5. Performance of various proposed features

not all features are expected to lead to better system performance or contribute equally to improved

machine classification and/or clustering accuracy.

For the clustering evaluation process, one of the annotators’ tasks was to label or categorize the

cluster based on the topic of the cluster as: politics, finance, sport, entertainment, technology, culture,

disruptive event and other-event. The other-event category represents all other events which are not

related to the above categories. Then we run one-vs-all strategy using Nave Bayes classifier where the

disruptive event class is fitted against all the other classes in order to identify the performance of the

disruptive event features.

We investigate the discriminative power of the textual features, allowing us to remove the least

discriminative features to reduce the computational workload required to compute the results. The

results are shown in Figure 5 which illustrates the NDCG scores for each feature.

The near-duplicate measure, the favourite ratio and the positive sentiment ratio are the least dis-

criminative features, which suggest that they appear in all different types of posts, not only in dis-

ruptive events. The dictionary-based model, the retweet ratio and Hashtag ratio are the most dis-

criminative, suggesting that references to present time and references to descriptive terms (e.g. live,

breaking etc.) are good discriminators. The retweet ratio suggests that other users pick up on event

commentaries and propagate them further through the network. Linking content features such as

Hashtags and URLs are also very predictive of events, suggesting that tweets reporting events provide

evidence or further information (via URL), or are bound to an event and made more discoverable via a

self-defined topic discriminator in form of a Hashtag.
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Fig. 6. Comparison of different models for the event identification task according to NDCG scores

Table V. Number of small-scale Real-world events

Incident Type Number of Real-world events

Car accident 6248

Fire Incident 3907

Shooting 143

Stabbing 77

Protest 109

Another important observation in Figure 5 is that the negative sentiment model outperforms the

positive sentiment model in NDCG scores. Hence, negative sentiment posts have high adoption rate

regarding reporting disruptive events. Due to the fact that reporting disruptive events usually involves

negative terms and sentiment. Another possible reason is that posts with negative sentiment are more

likely to be retweeted, as shown in [Hecht et al. 2011; Ma et al. 2013; Thelwall et al. 2011].

Figure 6 compares the performance of various models: First, we use individual feature models: tem-

poral, spatial and textual (The textual model uses all the features from Figure 5). For the next model,

we use a combination of all features. Finally, we use the temporal feature, the spatial feature and only

the most effective textual features from Figure 5 (above 0.25 in NDCG evaluation measure) to build

our optimized model.

The temporal feature model substantially outperforms spatial and textual models, obtaining a per-

formance score of about 13.2% over textual features and about 38.7% on average compared with spatial

features. Hence, the temporal feature is the most effective in detecting events. Using the textual fea-

ture model, we are still able to obtain a reasonable performance of on average, 40% content about an

event, provides situational awareness information about that event. However, it is emphatically not

the case when using the spatial feature in isolation thus lead to the conclusion that spatial features

are weak indicators to be implement on their own.

A combination of all three features results in the best performance, because it gives the best of all

three set of features with a much better performance, but further investigation by removing unneces-

sary textual features (such as near-duplicate measure, favourite ratio, mention ratio and the positive

sentiment ratio) yields the best model performance (average 0.802 NDCG score). Number of small-

scale events identified by our system differentiated by incident type is shown in TableV.

6.4 Case Study: Reading the Riots

In order to further validate our approach, we evaluated it against other leading approaches using the

2011 riots dataset. We used the model produced using the training set, and which was evaluated in
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Section 6. We do not train specifically on the riots data - thus we are testing the generality of our

model for a real-world example. Our evaluation is based on high quality ground truth data from public

Metropolitan Police Service (MPS) reports. On August 4 Mark Duggan was shot in Tottenham, by police

officers. On the evening of 6th August, following a peaceful protest march to a Tottenham police station,

organised by the victim’s friends and family, the first outbreaks of public disorder occurred. Then they

quickly spread across London and to other cities in England and the levels of crimes and offences have

increased dramatically including looting, violence, burglary, arson and other disorder-related offences,

which make this case study and our collected dataset ideal for large scale event detection (riot), and

smaller disruptive event detection - from small-scale looting incidents of local shops to one of the

largest arsons in Europe [MPS 2012]. In terms of social media the MPS is clear that its capability for

using social media networks as engagement was in its infancy at that time [MPS 2012].

We compare the output of our framework with similar existing methods namely, Spatial LDA [Pan

and Mitra 2011], unsupervised [Becker et al. 2011a] and [Zubiaga et al. 2012] methods. Spatial LDA

[Pan and Mitra 2011] combines an LDA model [Blei et al. 2003] with temporal segmentation and

spatial clustering. [Becker et al. 2011a] use an unsupervised clustering technique to group topically

similar tweets together, and computed features (temporal, social, topical, and Twitter-specific) that

can be used to train a classifier to distinguish between event and non-event clusters. [Zubiaga et al.

2012] explores the real-time summarization of scheduled events using a two-step system: (i) sub-event

detection and (ii) tweet selection. The first step is based on peaks detection (reflected as peaks in the

histogram of tweeting rates) with an enhancement of two ideas; the sudden increase in the tweeting

rate and the outlier detection. The tweet selection step selects a representative tweet after ranking all

tweets that were sent during the sub-event. They use the Kullback-Leibler divergence (KLD) weighting

scheme for the tweet ranking.

All three methods have successfully been applied to event detection and thus we aim to outperform

these using our proposed temporal TF.IDF and online clustering algorithms. Table 6.4 presents the

performance of the comparative experiments in terms of Number of real-world events (as reported to

MPS) detected, system Precision, system Recall and the F-measure. Precision is defined as the fraction

of the retrieved documents that are relevant. Recall is defined as the fraction of the relevant documents

retrieved to the total number of relevant documents should have been returned and the F-measure is

defined as a harmonized mean of precision and recall [Becker et al. 2011a; Pan and Mitra 2011; Schulz

et al. 2015; Weng and Lee 2011].

Table VI. Comparison of approaches for disruptive event detection.

Numberof Real-world events identified

Incident Type Police Intelligence Ours Becker et al. Spatial LDA Zubiaga et al.

Car Accident - 285 108 74 92

Fire Incident 311 214 121 186 127

Shooting 4 3 1 3 0

Stabbing 5 4 0 3 1

Protest 187 143 106 163 32

Ours Becker et al. Spatial LDA Zubiaga et al.

Incident Type P R F P R F P R F P R F

Fire Incident 74.64% 68.81% 71.61% 39.77% 38.91% 39.34% 60.09% 59.81% 59.95% 42.26% 40.84% 41.54%

Shooting 57.41% 75.00% 65.04% 30.22% 25.00% 27.36% 52.75% 75.00% 61.94% 8.43% 0 0

Stabbing 63.64% 80.00% 70.89% 3.55% 0 0 45.18% 60.00% 51.55% 18.29% 20% 19.07%

Protest 77.82% 76.47% 77.14% 53.85% 56.69% 55.23% 38.78% 33.67% 36.04% 32.67% 17.11% 22.46%
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According to Table 6.4, our proposed methodology is effective and outperforms other approaches.

This is the case even though the topics in the Riots 2011 dataset are about disruptive events described

by a diverse vocabulary and often comprising relatively few posts per incident. The MPS did not include

car accidents and vehicle damages related to the riots, hence we could not compute the recall measure.

However, the number of events detected indicate that our framework is able to detect four times more

real-world incidents compared to Spatial LDA and at least twice as good as Becker et al.

We offer the following explanation as to how the systems we tested could be impaired; firstly, not

all events reported in the MPS report using traditional intelligence are reported in social media and

vice versa. Secondly, Twitter API only allows 1% of the total number of tweets for researchers which

mean that we fail to report the 99% of online conversations. Conversely, 1% is in fact a huge corpus of

tweets per day for sampling and researching purposes. However, not yet enough to cover all disruptive

events reported. The presence of rumours and false information during the 2011 England riots and

generally during emergencies and disasters is another issue and effect the reported results negatively.

The detection of rumours in social media is beyond the scope of this paper and is reserved for future

work. By studying the life cycle of several rumours as well as by investigating the propagation, we may

be able to effectively identify social media rumours.

In addition, classification after clustering has a crucial impact on performance in terms of quality

- especially with moving time windows. Many of the small clusters are filtered out since they do not

exceed the predefined thresholds and are considered non-relevant events (noise). This eliminates many

of them together with noise, which confuses the scoring and ranking of event detection. This explains

why the Becker et al. approach performance is less than ours. The results in Table 6.4 also show

that the Spatial LDA approach outperforms Becker et al. system only in larger events such as fire

incidents. However, it fails to achieve such results in other cases due to the fact that tweets are short

and a collection of tweets per hour may contain many more topics in multiple small-scale cases such

as car accidents or small group protests. [Zubiaga et al. 2012] approach and similar systems like [Shen

et al. 2013; Yajuan et al. 2012] are limited to scheduled events such as soccer games as well as they

require the starting time in order for the system to start looking for new sub-events. This explains why

the Zubiaga et al. approach performance is worse than the results reported in this paper.

Visualisations are arguably well suited to displaying real-time disruptive events sensed from social

streams. We visualize the real-time output from our system alongside the post-event visualisation

provided by MPS in their public report [MPS 2012] in Figure 7. For space limitation, we only present

results of the Enfield borough, although the MPS report [MPS 2012] presents the results for three case

studies (Enfield, Croydon and Wandsworth). As can be seen from Figure 7 most of the disruptive events

including looting, arson, violence, etc. have been successfully identified and monitored in real-time and

in some cases our system provides information ahead of traditional intelligence. Furthermore, Table

VII present the time difference between the disruptive incidents being identified by our framework

and the corresponding police information. The columns show the time of the events being discovered

by the summarization of our system, the time of the intelligence that was reported by officials and how

much Twitter leads police intelligence. Entries marked in bold occur first.

From Table VII, we observe that Twitter information extracted by our system leads police sources

most of the times, police sources leads only twice and by 10 minutes in both cases. The delay can result

from the time for posting a tweet by a user, the time to index the post in Twitter servers, and the

time to make queries by our system. In fact, our system detected all of the disruptive events which

were reported by officials far faster than them, on average of 23 mins. The task of identifying accurate

intelligence during the disorder is much more valuable if it is received in real time to enable decision

makers to move ahead of such events. These results support the hypothesis that information extracted

from social media can be used effectively as valuable additional source of intelligence as well as bridge
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that gap between the use of “big data” and modern policing in order to maintain situational awareness

and enhance public safety and decision making.
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Fig. 7. Comparison of disruptive events obtained by our framework (top) and MPS (bottom) for Enfield borough.
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Table VII. Disruptive event exploration using police intelligence and summarization by our system for

Enfield borough on August 7th 2011 (+ when Twitter leads)

Police Intelligence Summarization by our system
Time/

Police

Time/ Our

system
Lead

Information that several messages

are being broadcast to meet in

Enfield Town Centre at 4pm for a

repeat of what happened last night.

Rumours circulating Enfield is

TONIGHT. #Tottenham #Riots
13:06 13:02 +0:04

Information that groups from

Tottenham Green and,Edmonton

would be meeting in Enfield at 4pm.

#rumour has it #enfield riot k.o’s at 4! 14:15 13:19 +1:04

Group of youths seen arriving at

Enfield train station.

The rioters are now in Enfield

and Edmonton. #londonriots
15:30 15:07 +0:23

First reports of disorder via a caller

stating she had been sent photos on

her mobile phone of people

breaking into shops.

Ok its officially kicking off in

#Enfield Town, one fire and hmv

has been smashed in, people coming

from all over london to #loot.

16:49 15:37 +1:12

Information that known gang

members were discussing moving

onto Edmonton to cause disorder.

not feeling the rumors that the rioters

are looking to move to edmonton and

#enfield town. DON’T YOU PEOPLE

THINK YOU’VE DONE ENOUGH!!!!

17:45 17:17 +0:28

The first PSU of level one public

order officers arrives and is deployed.

They come under attack.

ok so 9 police vans just drove past my

house! ok make that 10! #enfield
17:45 17:39 +0:06

Approximately 30 youths damaging

shops in Enfield and obstructing

the road with barriers.

RT Police car wrecked in Enfield -

most rioters looked under 16, lots of

young girls throwing concrete slabs

through shop windows. #enfield

18:26 17:50 +0:36

Police vehicles continue to be attacked.

police car trashed RT @XXXXX:

BREAKING: This just happened

at #EnfieldTown; Police outnumbered

once again; http://yfrog.com/kf4rlauj

18:34 18:17 +0:17

Groups of youths wearing masks

attempting to break,into Tesco store.

Police horse vans in #enfield tesco

car park http://yfrog.com/h7eyhirj
18:58 19:08 -0:10

CCTV monitoring reports the growth

in numbers of a,crowd congregating

near Enfield Town station.

#Enfield Police attacking riotmob with

batons and,dogs in the town. Over

230+ riot mobs in #Enfield town

19:58 19:49 +0:09

Car set alight and petrol bombs

are thrown. It is deemed unsafe

for the fire brigade,to approach

due to the scale of violence.

*ALERT* Protestors are throwing

petrol bombs on passing cars on

the A10 from #Tottenham

to #Enfield. Avoid the road.

21:15 21:25 -0:10

Not reported in the official report as

it might not be relevant to the Riots

Teenager stabbed outside #Edmonton

WorkingMen’s Conservative Club.

Medics on scene. #Enfield

21:58

Disorder moves towards Edmonton. I hear edmonton is next #enfield 22:00 21:46 +0:14

CCTV catches youths in Ponders End

with goods believed to have been

taken from the local Tesco store.

#Enfield disturbances now spreading

to Ponders End #PondersEnd
22:10 21:36 +0:34

Group of youths attacking shops

in Fore Street.

Carphone warehouse getting smashed

up in #edmonton, ridiculous!!
22:40 21:54 +0:46

Youths seen setting a red post van

alight and,pushing it into Fore Street

into incoming traffic from Leeds Street.

Car near fore street about to explode,

about 50 man standing off with police.

#Edmonton

23:40 23:12 +0:28

Sony Distribution Centre in Solar Way

set on fire.

40 firefighters at a fire in a warehouse

on Solar Way in Enfield.

#LondonRiots #Enfield

23:50 23:19 +0:31
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7. CONCLUSION

In this paper we have presented an integrated framework for detecting real-world events, both large

and small, using Internet-enabled social networking site Twitter. Event detection was performed in

several stages: data collection, preprocessing, classification, clustering and summarization. We have

also presented several experiments on various features and show how they can be implemented to

discriminatively distinguish between events, particularly disruptive events. The results indicate that

it is not adequate to consider temporal, spatial, or content-based aspects in isolation. Rather, a combi-

nation of features covering all these aspects leads to a robust system that encourages the best event

detection results. Extensive experiments were conducted to evaluate the effectiveness of the proposed

framework using large real-world datasets. Our experiments suggest that our framework yields bet-

ter performance than many leading approaches in real-time event detection, and using a real-world

ground truth published by the Metropolitan Police Services (MPS) after the 2011 riots in England,

we showed our system to detect events far quicker than they were reported to MPS. These promising

results do not necessarily enable us to ‘predict a riot’, but can provide actionable insights before they

were received during the events.

There are many directions for future work. One of the main directions is to improve the location

detection and disambiguation process for small-scale events. Another direction is to consider more fea-

tures in the context of event discovery such as social network features (community influence detection),

visual features (images and video) and semantic features. We intend to further evaluate the summa-

rization output to not only map onto real events, but to provide qualitatively useful output for decision

making. Finally, the detection of rumors in the social media, the analysis of the distinctive charac-

teristics of rumors and the way in which they propagate in the microblogging communities will be

addressed in the future. Spammer detection in various online social networking platforms is another

interesting task that is reserved for future work.
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Saša Petrović, Miles Osborne, and Victor Lavrenko. Streaming first story detection with application

to twitter. In The 2010 Annual Conference of the North American Chapter of the Association for

Computational Linguistics, HLT ’10, pages 181–189, Stroudsburg, PA, USA, 2010. Association for

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 0000.



Can we predict a riot? Disruptive Event Detection using Twitter • 0:25

Computational Linguistics. ISBN 1-932432-65-5. URL http://dl.acm.org/citation.cfm?id=1857999.

1858020.

Swit Phuvipadawat and Tsuyoshi Murata. Breaking news detection and tracking in twitter. In Pro-

ceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent

Agent Technology (WI-IAT), pages 120–123, 2010.

M. F. Porter. Readings in information retrieval. chapter An Algorithm for Suffix Stripping, pages 313–

316. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997. ISBN 1-55860-454-5. URL

http://dl.acm.org/citation.cfm?id=275537.275705.

Dragomir R. Radev, Sasha Blair-Goldensohn, and Zhu Zhang. Experiments in single and multidocu-

ment summarization using mead. First Document Understanding Conference, 2001.

Joel W. Reed, Yu Jiao, Thomas E. Potok, Brian A. Klump, Mark T. Elmore, and Ali R. Hurson.

Tf-icf: A new term weighting scheme for clustering dynamic data streams. In Proceedings of

the 5th International Conference on Machine Learning and Applications, ICMLA ’06, pages 258–

263, Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2735-3. . URL http:

//dx.doi.org/10.1109/ICMLA.2006.50.

Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic text retrieval. Inf.

Process. Manage., 24(5):513–523, August 1988. ISSN 0306-4573. . URL http://dx.doi.org/10.1016/

0306-4573(88)90021-0.

Hassan Sayyadi and Louiqa Raschid. A graph analytical approach for topic detection. ACM Trans.

Internet Technol., 13(2):4:1–4:23, December 2013. ISSN 1533-5399. . URL http://doi.acm.org/10.

1145/2542214.2542215.

Emmanouil Schinas, Georgios Petkos, Symeon Papadopoulos, and Y.Kompatsiaris. Certh @ mediaeval

2012 social event detection task. In Proceedings of the MediaEval 2012 Workshop, pages 6–7, 2012.

Axel Schulz, Benedikt Schmidt, and Thorsten Strufe. Small-scale incident detection based on micro-

posts. In Proceedings of the 26th ACM Conference on Hypertext &#38; Social Media, HT ’15, pages

3–12, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3395-5. . URL http://doi.acm.org/10.1145/

2700171.2791038.

David A. Shamma., Lyndon Kennedy, and Elizabeth F. Churchill. Tweetgeist: Can the twitter time-

line reveal the structure of broadcast events? 2010. URL http://www.research.yahoo.net/files/

horizon4s-shamma.pdf.

Beaux Sharifi, Mark-Anthony Hutton, and Jugal Kalita. Summarizing microblogs automatically. In

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the

Association for Computational Linguistics, HLT ’10, pages 685–688, Stroudsburg, PA, USA, 2010.

Association for Computational Linguistics. ISBN 1-932432-65-5. URL http://dl.acm.org/citation.

cfm?id=1857999.1858099.

Chao Shen, Fei Liu, Fuliang Weng, and Tao Li. A participant-based approach for event summarization

using twitter streams. In Human Language Technologies: Conference of the North American Chap-

ter of the Association of Computational Linguistics, Proceedings, June 9-14, 2013, Atlanta, Georgia,

USA, pages 1152–1162, 2013. URL http://aclweb.org/anthology/N/N13/N13-1135.pdf.

Kate Starbird and Leysia Palen. (how) will the revolution be retweeted?: Information diffusion and

the 2011 egyptian uprising. In Proceedings of the ACM 2012 Conference on Computer Supported

Cooperative Work, CSCW ’12, pages 7–16, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1086-

4. . URL http://doi.acm.org/10.1145/2145204.2145212.

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 0000.



0:26 • N. Alsaedi, P. Burnap, O. Rana

Nicholas A. Thapen, Donal Stephen Simmie, and Chris Hankin. The early bird catches the term: Com-

bining twitter and news data for event detection and situational awareness. volume abs/1504.02335,

2015. URL http://arxiv.org/abs/1504.02335.

Mike Thelwall, Kevan Buckley, and Georgios Paltoglou. Sentiment in twitter events. J. Am. Soc. Inf.

Sci. Technol., 62(2):406–418, February 2011. ISSN 1532-2882. . URL http://dx.doi.org/10.1002/asi.

21462.

Lucy Vanderwende, Hisami Suzuki, Chris Brockett, and Ani Nenkova. Beyond sumbasic: Task-focused

summarization with sentence simplification and lexical expansion. Inf. Process. Manage., 43(6):

1606–1618, November 2007. ISSN 0306-4573. . URL http://dx.doi.org/10.1016/j.ipm.2007.01.023.

Konstantinos N Vavliakis, Andreas L Symeonidis, and Pericles A Mitkas. Event identification in web

social media through named entity recognition and topic modeling. Data and Knowledge Engineer-

ing, 88:1–24, 2013.

Sarah Vieweg, Amanda L. Hughes, Kate Starbird, and Leysia Palen. Microblogging during two natural

hazards events: What twitter may contribute to situational awareness. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’10, pages 1079–1088, New York, NY,

USA, 2010. ACM. ISBN 978-1-60558-929-9. . URL http://doi.acm.org/10.1145/1753326.1753486.

Sarah Vieweg, Carlos Castillo, and Muhammad Imran. Integrating social media communications into

the rapid assessment of sudden onset disasters. In Proceedings of the 6th International Conference

on Social informatics, pages 444–461, 2014.

Maximilian Walther and Michael Kaisser. Geo-spatial event detection in the twitter stream. In

Proceedings of the 35th European Conference on Advances in Information Retrieval, ECIR’13,

pages 356–367, Berlin, Heidelberg, 2013. Springer-Verlag. ISBN 978-3-642-36972-8. . URL

http://dx.doi.org/10.1007/978-3-642-36973-5 30.

Kazufumi Watanabe, Masanao Ochi, Makoto Okabe, and Rikio Onai. Jasmine: A real-time local-event

detection system based on geolocation information propagated to microblogs. In Proceedings of the

20th ACM International Conference on Information and Knowledge Management, CIKM ’11, pages

2541–2544, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0717-8. . URL http://doi.acm.org/10.

1145/2063576.2064014.

Jianshu Weng and Bu-Sung Lee. Event detection in twitter. In Proceedings of the 5th International

AAAI Conference on Weblogs and Social Media, ICWSM ’11, 2011. URL http://www.aaai.org/ocs/

index.php/ICWSM/ICWSM11/paper/view/2767.

Matthew Williams and Pete Burnap. Cyberhate on social media in the aftermath of woolwich: A case

study in computational criminology and big data. British Journal of Criminology, pages 1–28, 2015.

Wei Xu, Ralph Grishman, Adam Meyers, and Alan Ritter. A preliminary study of tweet summarization

using information extraction. In Workshop on Language in Social Media (LASM 2013), Conference

of the Association of Computational Linguistics, Proceedings, June 13, 2013, Atlanta, Georgia, USA,

pages 20–29, 2013. URL http://aclweb.org/anthology/N/N13/N13-1135.pdf.

Duan Yajuan, Chen Zhumin, Wei Furu, Zhou Ming, and Heung Y. Shum. Twitter topic summariza-

tion by ranking tweets using social influence and content quality. In COLING 2012, 24th Inter-

national Conference on Computational Linguistics, Proceedings of the Conference: Technical Papers,

8-15 December 2012, Mumbai, India, pages 763–780, 2012. URL http://aclweb.org/anthology/C/C12/

C12-1047.pdf.

Xintian Yang, Amol Ghoting, Yiye Ruan, and Srinivasan Parthasarathy. A framework for summarizing

and analyzing twitter feeds. In Proceedings of the 18th ACM SIGKDD Conference on Knowledge

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 0000.



Can we predict a riot? Disruptive Event Detection using Twitter • 0:27

Discovery and Data Mining, KDD ’12, pages 370–378. ACM, 2012. ISBN 978-1-4503-1462-6. . URL

http://doi.acm.org/10.1145/2339530.2339591.

Jie Yin, Sarvnaz Karimi, Andrew Lampert, Mark A. Cameron, Bella Robinson, and Robert Power.

Using social media to enhance emergency situation awareness: Extended abstract. In Proceedings

of the 24th International Joint Conference on Artificial Intelligence, IJCAI, pages 4234–4239, 2015.

URL http://ijcai.org/papers15/Abstracts/IJCAI15-602.html.
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