Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Development of a 3D printable maxillofacial silicone. Part II: Optimization of moderator and thixotropic agent

Jindal, Swati K., Sherriff, Martyn, Smay, James E., Waters, Mark and Coward, Trevor J. 2018. Development of a 3D printable maxillofacial silicone. Part II: Optimization of moderator and thixotropic agent. Journal of Prosthetic Dentistry 119 (2) , pp. 299-304. 10.1016/j.prosdent.2017.04.028

[thumbnail of Development of a 3D printable maxillofacial silicone. Part II optimization of moderator and thixotropic agent.pdf]
Preview
PDF - Accepted Post-Print Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (403kB) | Preview

Abstract

STATEMENT OF PROBLEM: Conventionally, maxillofacial prostheses are fabricated by hand carving the missing anatomic defect in wax and creating a mold into which pigmented silicone elastomer is placed. Digital technologies such as computer numerical control milling and 3-dimensional (3D) printing have been used to prepare molds, directly or indirectly, into which a biocompatible pigmented silicone elastomer can be placed. PURPOSE: The purpose of this in vitro study was to develop a silicone elastomer that could be 3D printed directly without a mold to create facial or body prostheses by varying its composition. MATERIAL AND METHODS: The room temperature vulcanizing silicone composition was divided into 2 components which were mixed 1:1 to initiate polymerization in the printer before printing began. Different types of moderators and thixotropic agents were used, and the base composition was varied to obtain 11 formulations. The specimens were printed and polymerized from these formulations and tested for tear and tensile strength and hardness. Ten readings of the specimens were recorded for tear and tensile strength and 6 for hardness. Results were analyzed using ANOVA (α=.05). Visual assessment of uncured printed specimens was undertaken for 5 formulations to assess any differences in their ability to hold their shape after printing. RESULTS: The tear and tensile strength of the 11 formulations with varying moderators, thixotropic agents, and base compositions were statistically similar to each other (P>.05). Five of 11 formulations were chosen for the visual assessment as they had sufficient thixotropic agent to avoid slumping while printing. The specimens showed varied slumping behavior until they polymerized. The filler content was increased in the selected formulation, and the tear and tensile strength of the formulation was increased to 6.138 kNm-1 and 3.836 MPa; these increases were comparable to those of commercial silicones currently used for the fabrication of facial prostheses. CONCLUSIONS: The optimum combination of mechanical properties implies the use of one of the formulations as a suitable material for the 3D printing of facial prostheses.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Dentistry
Publisher: Elsevier
ISSN: 0022-3913
Date of First Compliant Deposit: 12 September 2017
Date of Acceptance: 5 May 2017
Last Modified: 07 Nov 2023 03:45
URI: https://orca.cardiff.ac.uk/id/eprint/104567

Citation Data

Cited 21 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics