Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Development of an oligonucleotide-based fluorescence assay for the identification of tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors

Walker, Sarah, Meisenberg, Cornelia, Bibby, Rachel A., Askwith, Trevor, Williams, Gareth, Rininsland, Frauke H., Pearl, Laurence H., Oliver, Antony W., El-Khamisy, Sherif, Ward, Simon ORCID: https://orcid.org/0000-0002-8745-8377 and Atack, John R. ORCID: https://orcid.org/0000-0002-3410-791X 2014. Development of an oligonucleotide-based fluorescence assay for the identification of tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors. Analytical Biochemistry 454 , pp. 17-22. 10.1016/j.ab.2014.03.004

[thumbnail of 1-s2.0-S0003269714000931-main.pdf]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (895kB) | Preview

Abstract

Topoisomerase 1 (TOP1) generates transient nicks in the DNA to relieve torsional stress encountered during the cellular processes of transcription, replication, and recombination. At the site of the nick there is a covalent linkage of TOP1 with DNA via a tyrosine residue. This reversible TOP1-cleavage complex intermediate can become trapped on DNA by TOP1 poisons such as camptothecin, or by collision with replication or transcription machinery, thereby causing protein-linked DNA single- or double-strand breaks and resulting in cell death. Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a key enzyme involved in the repair of TOP1-associated DNA breaks via hydrolysis of 3′-phosphotyrosine bonds. Inhibition of TDP1 is therefore an attractive strategy for targeting cancer cells in conjunction with TOP1 poisons. Existing methods for monitoring the phosphodiesterase activity of TDP1 are generally gel based or of high cost. Here we report a novel, oligonucleotide-based fluorescence assay that is robust, sensitive, and suitable for high-throughput screening of both fragment and small compound libraries for the detection of TDP1 inhibitors. We further validated the assay using whole cell extracts, extending its potential application to determine of TDP1 activity in clinical samples from patients undergoing chemotherapy.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Biosciences
Publisher: Elsevier Masson
ISSN: 0003-2697
Date of First Compliant Deposit: 9 November 2017
Date of Acceptance: 6 March 2014
Last Modified: 04 May 2023 21:11
URI: https://orca.cardiff.ac.uk/id/eprint/105856

Citation Data

Cited 14 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics