Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Integration of sensory and motor representations of single fingers in the human cerebellum

Wiestler, Tobias, McGonigle, David ORCID: https://orcid.org/0000-0001-9595-6352 and Diedrichsen, Jörn 2011. Integration of sensory and motor representations of single fingers in the human cerebellum. Journal of Neurophysiology 105 (6) , pp. 3042-3053. 10.1152/jn.00106.2011

Full text not available from this repository.

Abstract

The cerebellum is thought to play a key role in the integration of sensory and motor events. Little is known, however, about how sensory and motor maps in the cerebellum superimpose. In the present study we investigated the relationship between these two maps for the representation of single fingers. Participants made isometric key presses with individual fingers or received vibratory tactile stimulation to the fingertips while undergoing high-resolution functional magnetic resonance imaging (fMRI). Using multivariate analysis, we have demonstrated that the ipsilateral lobule V and VIII show patterns of activity that encode, within the same region, both which finger pressed and which finger was stimulated. The individual finger-specific activation patches are smaller than 3 mm and only show a weak somatotopic organization. To study the superposition of sensory and motor maps, we correlated the finger-specific patterns across the two conditions. In the neocortex, sensory stimulation of one digit led to activation of the same patches as force production by the same digit; in the cerebellum, these activation patches were organized in an uncorrelated manner. This suggests that, in the cerebellum, a movement of a particular finger is paired with a range of possible sensory outcomes. In summary, our results indicate a small and fractured representation of single digits in the cerebellum and suggest a fundamental difference in how the cerebellum and the neocortex integrate sensory and motor events.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Cardiff University Brain Research Imaging Centre (CUBRIC)
Psychology
Subjects: B Philosophy. Psychology. Religion > BF Psychology
R Medicine > RC Internal medicine > RC0321 Neuroscience. Biological psychiatry. Neuropsychiatry
Uncontrolled Keywords: functional magnetic resonance imaging; multivoxel pattern analysis; motor cortex; sensory cortex
Publisher: American Physiological Society
ISSN: 0022-3077
Last Modified: 20 Oct 2022 08:30
URI: https://orca.cardiff.ac.uk/id/eprint/28588

Citation Data

Cited 76 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item