Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Biofilm-grown Burkholderia cepacia complex cells survive antibiotic treatment by avoiding production of reactive oxygen species

Van Acker, Heleen, Sass, Andrea, Bazzini, Silvia, De Roy, Karen, Udine, Claudia, Messiaen, Thomas, Riccardi, Giovanna, Boon, Nico, Nelis, Hans J., Mahenthiralingam, Eshwar ORCID: https://orcid.org/0000-0001-9014-3790 and Coenye, Tom 2013. Biofilm-grown Burkholderia cepacia complex cells survive antibiotic treatment by avoiding production of reactive oxygen species. PLoS ONE 8 (3) , e58943. 10.1371/journal.pone.0058943

[thumbnail of Van Acker 2013.pdf]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (407kB) | Preview

Abstract

The presence of persister cells has been proposed as a factor in biofilm resilience. In the present study we investigated whether persister cells are present in Burkholderia cepacia complex (Bcc) biofilms, what the molecular basis of antimicrobial tolerance in Bcc persisters is, and how persisters can be eradicated from Bcc biofilms. After treatment of Bcc biofilms with high concentrations of various antibiotics often a small subpopulation survived. To investigate the molecular mechanism of tolerance in this subpopulation, Burkholderia cenocepacia biofilms were treated with 1024 µg/ml of tobramycin. Using ROS-specific staining and flow cytometry, we showed that tobramycin increased ROS production in treated sessile cells. However, approximately 0.1% of all sessile cells survived the treatment. A transcriptome analysis showed that several genes from the tricarboxylic acid cycle and genes involved in the electron transport chain were downregulated. In contrast, genes from the glyoxylate shunt were upregulated. These data indicate that protection against ROS is important for the survival of persisters. To confirm this, we determined the number of persisters in biofilms formed by catalase mutants. The persister fraction in ΔkatA and ΔkatB biofilms was significantly reduced, confirming the role of ROS detoxification in persister survival. Pretreatment of B. cenocepacia biofilms with itaconate, an inhibitor of isocitrate lyase (ICL), the first enzyme in the glyoxylate shunt, reduced the persister fraction approx. 10-fold when the biofilms were subsequently treated with tobramycin. In conclusion, most Bcc biofilms contain a significant fraction of persisters that survive treatment with high doses of tobramycin. The surviving persister cells downregulate the TCA cycle to avoid production of ROS and at the same time activate an alternative pathway, the glyoxylate shunt. This pathway may present a novel target for combination therapy.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Biosciences
Subjects: Q Science > QH Natural history > QH301 Biology
Publisher: Public Library of Science
ISSN: 1932-6203
Date of First Compliant Deposit: 30 March 2016
Last Modified: 16 May 2023 22:43
URI: https://orca.cardiff.ac.uk/id/eprint/49878

Citation Data

Cited 96 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics