Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Synthesis and crystal structures of phthalocyanine derivatives containing bulky phenyloxy substituents

Bezzu, Caterina Grazia 2009. Synthesis and crystal structures of phthalocyanine derivatives containing bulky phenyloxy substituents. PhD Thesis, Cardiff University.

[thumbnail of U585182.pdf] PDF - Accepted Post-Print Version
Download (15MB)

Abstract

The planar extended shape of the phthalocyanine macrocycle results in a strong tendency of its derivatives to form densely packed co-facial aggregates. The strategy to avoid co-facial self-association that forms the basis of this thesis involves the use of substituents that can introduce severe steric crowding adjacent to the phthalocyanine core. Previous work showed that the introduction of 2,6-di-/jo-propylphenoxy groups on the peripheral positions of the phthalocyanine seems to be perfect for this purpose. Of particular interest is zinc octa(2,6-di-/$o-propylphenoxy) phthalocyanine (PclZn), which forms a remarkable cubic crystal structure, containing interconnected solvent-filled voids 2 nm across. The aim of the research programme was to investigate the crystal forming properties of related phthalocyanine derivatives containing different metal cations and bulky phenoxyl substituents. A range of metal cations were introduced into 2,3,9,10,16,17,23,24-octa(2',6'-di-/s0-propylphenoxy) phthalocyanine (Pel) to establish which, if any, were compatible with the formation of the nanoporous cubic crystal observed for the zinc derivative. It was found that any metal capable of binding to a ligand at its axial site formed the cubic crystal including metals of primary catalytic relevance such as cobalt, iron, manganese and ruthenium. Single crystal X-ray diffraction studies demonstrated the exchange of axial ligands to confirm the interconnectivity of the nanovoids, which is essential for the potential exploitation of these molecules in heterogeneous catalysis. Of particular interest is the introduction of bidentate ligands, which act as structural wall ties that bind metals between cubic subunits. Since loss of crystallinity occurs after removal of the guest solvent from the cubic clathrates, the introduction of substituents at the 4-position of the phenoxy groups was also investigated in order to induce stronger dipole-dipole (e.g., R = Br, CI, CN, OMe) or hydrogen bond interactions (e.g., R = OH), which might stabilise the crystal structure. Unfortunately, these derivatives formed non-cubic crystals, although in each case solvent was included within the structure to form novel clathrates.

Item Type: Thesis (PhD)
Status: Unpublished
Schools: Chemistry
Subjects: Q Science > QD Chemistry
ISBN: 9781303214066
Date of First Compliant Deposit: 30 March 2016
Last Modified: 15 Jan 2019 16:28
URI: https://orca.cardiff.ac.uk/id/eprint/54793

Citation Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics