Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Is molecular gas necessary for star formation?

Glover, Simon C. O. and Clark, Paul ORCID: https://orcid.org/0000-0002-4834-043X 2012. Is molecular gas necessary for star formation? Monthly Notices of the Royal Astronomical Society 421 (1) , pp. 9-19. 10.1111/j.1365-2966.2011.19648.x

Full text not available from this repository.

Abstract

On galactic scales, the surface density of star formation appears to be well correlated with the surface density of molecular gas. This has led many authors to suggest that there exists a causal relationship between the chemical state of the gas and its ability to form stars – in other words, the assumption that the gas must be molecular before star formation can occur. We test this hypothesis by modelling star formation within a dense cloud of gas with properties similar to a small molecular cloud using a series of different models of the chemistry, ranging from one in which the formation of molecules is not followed and the gas is assumed to remain atomic throughout, to one that tracks the formation of both H2 and CO. We find that the presence of molecules in the gas has little effect on the ability of the gas to form stars: star formation can occur just as easily in atomic gas as in molecular gas. At low densities (<104 cm−3), the gas is able to cool via C+ fine-structure emission almost as efficiently as via CO rotational line emission, while at higher densities, the main cooling process involves the transfer of energy from gas to dust, meaning that the presence of molecules is again unimportant. Cooling by H2 is particularly inefficient, accounting for as little as 1 per cent of the overall cooling in the cloud. Rather than the chemical makeup, we find that the most important factor controlling the rate of star formation is the ability of the gas to shield itself from the interstellar radiation field. As this is also a prerequisite for the survival of molecules within the gas, our results support a picture in which molecule formation and the formation of cold gas are both correlated with the column density of the cloud – and thus its ability to shield itself – rather than being directly correlated with each other.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Physics and Astronomy
Subjects: Q Science > QB Astronomy
Uncontrolled Keywords: stars: formation; ISM: clouds; ISM: molecules; galaxies: ISM
Publisher: Oxford University Press
ISSN: 0035-8711
Last Modified: 25 Oct 2022 09:43
URI: https://orca.cardiff.ac.uk/id/eprint/59764

Citation Data

Cited 176 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item