Up a level |
Pryce, John, Nedialkov, Nedialko S., Tan, Guangning and Li, Xiao 2018. How AD can help solve differential-algebraic equations. Optimization Methods and Software 10.1080/10556788.2018.1428605 |
Tan, Guangning, Nedialkov, Nedialko and Pryce, John D. 2017. Conversion methods for improving structural analysis of differential-algebraic equation systems. BIT Numerical Mathematics 57 (3) , pp. 845-865. 10.1007/s10543-017-0655-z |
McKenzie, Ross and Pryce, John D. 2017. Structural analysis based dummy derivative selection for differential algebraic equations. BIT Numerical Mathematics 57 (2) , pp. 433-462. 10.1007/s10543-016-0642-9 |
Coffey, Mark W., Hindmarsh, James, Lettington, Matthew C. and Pryce, John D. 2017. On higher-dimensional Fibonacci numbers, Chebyshev polynomials and sequences of vector convergents. Journal de Theorie des Nombres de Bordeaux 29 (2) , pp. 369-423. 10.5802/jtnb.985 |
McKenzie, Ross and Pryce, John D. 2016. Solving differential-algebraic equations by selecting universal dummy derivatives. In: Belair, J., Frigaard, I., Kunze, H., Makarov, R., Melnik, R. and Spiteri, R. eds. Mathematical and Computational Approaches in Advancing Modern Science and Engineering, Springer, pp. 665-676. (10.1007/978-3-319-30379-6_60) |
Pryce, John D. 2016. The forthcoming IEEE Standard 1788 for interval arithmetic. Presented at: 16th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numbers, Würzburg, Germany,, 21-26 September 2014. Published in: Nehmeier, M., Wolff von Gudenberg, J. and Tucker, W. eds. Scientific Computing, Computer Arithmetic, and Validated Numerics. SCAN 2015. Lecture Notes in Computer Science Springer, pp. 23-39. 10.1007/978-3-319-31769-4_3 |
Pryce, John D. and McKenzie, Ross 2016. A new look at dummy derivatives for differential-algebraic equations. In: Belair, J., Frigaard, I. A., Kunze, H., Makarov, R., Melnik, R. and Spiteri, R. J. eds. Mathematical and Computational Approaches in Advancing Modern Science and Engineering, Springer International Publishing, pp. 713-723. (10.1007/978-3-319-30379-6_64) |
Nedialkov, Ned, Pryce, John D. and Tan, Guangning 2015. Algorithm 948: DAESA — a Matlab tool for structural analysis of differential-algebraic equations: software. ACM Transactions on Mathematical Software 41 (2) , 12. 10.1145/2700586 |
Pryce, John D., Nedialkov, Nedialko and Tan, Guangning 2015. DAESA - a Matlab tool for structural analysis of differential-algebraic equations: theory. ACM Transactions on Mathematical Software 41 (2) , 9:1-9:20. 10.1145/2689664 |
Rauh, Andreas, Aschemann, Harald, Nedialkov, Nedialko S. and Pryce, John D. 2013. Uses of differential-algebraic equations for trajectory planning and feedforward control of spatially two-dimensional heat transfer processes. Presented at: 2013 18th International Conference on Methods & Models in Automation & Robotics (MMAR), 26-29 August 2013. Methods and Models in Automation and Robotics (MMAR), 2013 18th International Conference on. IEEE, pp. 155-160. 10.1109/MMAR.2013.6669898 |
Rauh, A., Dittrich, C., Aschemann, H., Nedialkov, N. S. and Pryce, John D. 2013. A differential-algebraic approach for robust control design and disturbance compensation of finite-dimensional models of heat transfer processes. Presented at: 2013 IEEE International Conference on Mechatronics (ICM), 27 Feb -1 Mar 2013. Mechatronics (ICM), 2013 IEEE International Conference on. IEEE, pp. 40-45. 10.1109/ICMECH.2013.6518508 |
Rauh, Andreas, Senkel, Luise, Aschemann, Harald, Nedialkov, Nedialko S. and Pryce, John D. 2012. Sensitivity analysis for systems of differential-algebraic equations with applications to predictive control and parameter estimation. Presented at: 2012 IEEE International Conference on Control Applications, 3-5 October 2012. Control Applications (CCA), 2012 IEEE International Conference on. IEEE, pp. 1640-1645. 10.1109/CCA.2012.6402467 |
Pryce, John D. 2011. Basic methods of linear functional analysis. London, UK: Dover Publications. |
Nedialkov, Nedialko S. and Pryce, John D. 2008. Solving differential algebraic equations by Taylor Series(III): the DAETS Code. Journal of Numerical Analysis, Industrial and Applied Mathematics 3 (1-2) , pp. 61-80. |
Pryce, John D. and Tadjouddine, Emmanuel M. 2008. Fast automatic differentiation Jacobians by compact LU factorization. SIAM Journal on Scientific Computing 30 (4) , pp. 1659-1677. 10.1137/050644847 |
Nedialkov, N. S. and Pryce, John D. 2007. Solving differential-algebraic equations by Taylor series (II): Computing the System Jacobian. BIT Numerical Mathematics 47 (1) , pp. 121-135. 10.1007/s10543-006-0106-8 |
Nedialkov, N. S. and Pryce, John D. 2005. Solving differential-algebraic equations by Taylor series (I): Computing Taylor coefficients. BIT Numerical Mathematics 45 (3) , pp. 561-591. 10.1007/s10543-005-0019-y |
Pryce, John D. 1993. Numerical solution of Sturm-Liouville problems. Oxford, UK: Oxford University Press. |