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Abstract 

Total joint replacement (TJR), such as hip and knee replacement, is a popular procedure 

worldwide. Prosthetic joint infections (PJI) after this procedure have been widely reported, 

where treatment of such infections is complex with high cost and prolonged hospital stay. In 

cemented arthroplasties, the use of antibiotic loaded bone cement (ALBC) is a standard 

practice for the prophylaxis and treatment of PJI. Recently, the development of bacterial 

resistance by pathogenic microorganisms against most commonly used antibiotics increased 

the interest in alternative approaches for antimicrobial delivery systems such as 

nanotechnology. This review summarises the efforts made to improve the antimicrobial 

properties of PMMA bone cements using nanotechnology based antibiotic and non-antibiotic 

delivery systems to overcome drawbacks of ALBC in the prophylaxis and treatment of PJIs 

after hip and knee replacement.  
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1  Introduction 

Total joint replacement (TJR), such as hip and knee replacements, are increasing worldwide 

because of growing aging population and risk factors such obesity. For example, more than 

1 million hip and knee replacement are performed annually in the United States, while more 

than 160000 replacements were performed in the UK in 2014 only. Prosthetic joint infections 

(PJI) is a serious problem that is not only reduces success rate and need for revision 

surgery, but also leads to patient death. The treatment of such infections is complex with 

aggressive surgical intervention and long antimicrobial therapy, which places huge burden 

on health care systems worldwide.  

The use of PMMA bone cement is considered the gold standard in hip and knee 

replacement, because of its mechanical performance and well-documented clinical history. 

PMMA bone cements major function is to fix the implant in adjacent bone, but also they are 

frequently used to release antibiotics for the prophylaxis and treatment of PJI. The use of 

antibiotics loaded PMMA bone cements is a standard practice in TJR with concomitant 

systemic antibiotics. Local release of antibiotics is preferred over systemic release, because 

of higher concentration of antibiotics are delivered locally avoiding side effects associated 

with systemic therapy.  

Nowadays, antimicrobial resistance to many antibiotics decreased their efficacy in the 

treatment of infections, particularly PJI. This problem necessities the development of new 

antimicrobial agents to keep up with the emergence of bacterial strains resistant to currently 

used antibiotics. Nanotechnology have been applied successfully in the improving drug 

delivery in the treatment of many diseases such as cancer [1], inflammation [2], hypertension 

[3]. Therefore, nanotechnology can serve as an approach to solve the limitations of 

antimicrobial therapy and most importantly antimicrobial resistance by developing platforms 

for efficient drug delivery, and developing new antimicrobial nanomaterials which pathogens 

may not be able to develop resistance [4]. Nowadays, the development of antimicrobial 

resistance is much faster than the discovery of new antimicrobial agents, because of 
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occurrence of resistant bacterial strains and the long process for the approval of new drugs 

which increases the demand for long-term solution. This review introduces the use of 

nanotechnology in PMMA bone cements, especially in improving the antimicrobial properties 

and providing prophylaxis from PJI after hip and knee replacements. 

 

2 Total joint replacement 

The replacement of a dysfunctional joint with an orthopaedic implant is reserved as the last 

choice for the treatment of joint diseases. Arthritic and degenerative diseases is a leading 

cause of disability worldwide [5]. The most common form of arthritis is osteoarthritis which 

affects around 15% of the population [6]. In the United States (US), more than 26 million 

people are suffering from osteoarthritis [7], while that number reaches 8.5 million in the 

United Kingdom (UK) [8]. 

Total joint replacement (TJR) is the treatment of choice for patients with end-stage arthritis 

when less invasive therapies fail to alleviate the severe pain or dysfunction of the joint 

(Figure 1) [9]. This procedure showed noticeable progress in patients’ quality of life [10,11]. 

According to the National Joint Registry [12], the predominant indication for TJR was 

osteoarthritis (more than 90% in hip and knee replacements) between the years 2003 and 

2014. Whereas, a small percentage undertook TJR for other reasons, such as avascular 

necrosis, trauma infection and inflammatory arthritis.  

The popularity of total hip and total knee replacements is increasing worldwide which places 

a huge burden on health care systems [13–15]. In the US, over 1 million hip and knee 

replacement are performed annually [16]. This number is expected to increase drastically in 

the next 20 years because of ageing as well as growing prevalence of risk factors such as 

obesity [17,18]. In the UK, the same trend is apparent; between the years 2003 and 2014 

708,644 and 772,113 primary hip and knee replacements were performed, respectively. In 

2014, 83,125 hip and 91,955 knee replacement were performed in the UK (Figure 1) [12].  
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2.1 Revision surgery 

Despite the ability of TJR to improve the quality of life and retrieve mobility to many patients, 

the life expectancy for this procedure is around 10-15 years [19–21], hence there is a need 

for revision surgeries. Revision surgeries are the joint replacements performed after primary 

TJR because of implant failure. In the US, revision surgeries account for 18% of hip and 8% 

of knee total replacements performed each year [22]. Similarly, revisions in the UK are 11 % 

(8925) of hip and 6 % (5873) of knee primary procedures performed in 2014 [12]. The main 

reasons for revision are aseptic loosening, pain, and infection. 

Compared to primary surgery, revision surgery is more complex and takes longer time to 

perform [23]. In addition, clinical and functional outcomes are poorer such as pain, joint 

stiffness and stability, muscle impairment and atrophy, with lower patient satisfaction and 

quality of life after surgery, because of complexity and nature of revision surgery [24]. Thus, 

revision is accompanied by higher complication rates, longer patient hospital stay and the 

use of a more expensive implants [25,26]. Accordingly, revision surgeries are associated 

with higher costs when compared to primary replacements, as well as relatively shorter 

survival [27]. For example, the cost of primary knee replacement is around $15000, while the 

cost of revision surgery is higher and can reach $ 24000 [26]. In the UK, health care costs 

for revision surgery were estimated to be 80 million in the year 2010 [28]. 

Infection after joint replacements is a severe problem that not only decreases the success 

rates of surgery, but also can be life threatening to patients. Despite antibiotic prophylaxis 

and operation under laminar flow, infection rates in the first two years of primary replacement 

are 1% in knee replacements, 2% in hip replacements and can reach 9% in other types of 

TJRs. Also, infection rates are significantly higher after revision surgeries (up to 40%) 

[29,30]. These percentages translate into large numbers when we look at the total numbers 

of TJRs done annually. For example, 2,400 revision procedures were performed in the UK in 

2014 due to infection [12] and 22,000 revisions of infected knee and hip replacements were 

done in the US in 2009 [31]. Prosthetic infections extend hospitalization time, readmissions 
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and length of antimicrobial treatment, hence increasing the economic burden on health care 

systems; the cost of treatment for an incident of prosthetic infection can reach $50000 which 

is more than 3 times the cost of primary surgery and 2 times the cost of revision surgery [32].  

2.2 Cemented joint replacements 

Nowadays, there are two main types for TJRs, namely, cemented and cementless joint 

replacements (Figure 2). In cemented TJRs, bone cement is widely used for fixation of 

prosthesis. Poly(methyl methacrylate) (PMMA) based bone cement is the gold standard 

material used in such procedures.  This type of TJR involves complete removal of the 

impaired joint, after that a cavity is made inside the bone. The surgeon fills the cavity with 

PMMA bone cement. Then, the metallic implant is placed and positioned in the cavity while 

the cement sets. Cementless TJRs follow the same procedure except that the implant is 

inserted in direct contact with bone without using a cement [33]. 

Bone cements are routinely used in TJRs to fasten the orthopaedic implant in place; transfer 

mechanical stresses and loads between the stiff metallic implant and bone tissue; and, 

commonly, to provide prophylaxis from post-surgical prosthetic infections by releasing one or 

more antibiotic such gentamicin or tobramycin (Figure 3) [34]. In addition, advantages for 

using bone cement include that the bone cavity does not have to be perfect match with the 

implant and the use of bone cement reduces the need for blood transfusions, because of 

reduced blood loss and the cement tamponade effect [35,36]. Furthermore, the most 

important reason for using PMMA bone cement in TJR is the outstanding long term 

survivorship (98% at ten years and 91% at 20 years) [37,38]. However, there are always 

concerns about cemented replacements because of their degradation products and debris, 

as well as deterioration of bone cement interface and third body wear [39]. These concerns 

led researchers to seek new alternatives for fixation, i.e. cementless fixation. 

Cementless replacements depend on biological fixation or osteo-integration of the implant to 

the bone; advocates of this type of fixation believe that bone ingrowth through the 

micropores of the metallic implant can achieve more durable fixation with bone (Figure 2b). 
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The claimed advantages of cementless fixation are: shorter operation time, ease of revision, 

and improved longevity for active younger patients [40]. However, cementless fixation has 

inconsistent long term results and is not regularly used in most centres, because it is 

accompanied with a high rate of revision [12,41,42]. 

2.2.1 Total knee replacement 

The use of cemented implant is the ‘gold standard’ in total knee replacement (TKR) in the 

last 3 decades and has high success rates of more than 95% at 15 years with long term 

durability [37]. Many articles reported outstanding long term results for cemented TKR. 

Crowder et al. (2005) analysed 32 patients with cemented implants, he reported survivorship 

rate of 100% in 15 years and 93.7% in 20 years after TKR procedure. Gill et al. (1997) [44] 

reported 96.5 % survivorship 18 years after the procedure in patients 55 years old or 

younger. Ritter et al. (2007) [45] also reported 97.6% success rate in the same age group 

when followed for 9.1 years. Vessely et al. (2006) [46] looked at 244 patients with cemented 

TKR, survivorship was 95.7% in 15 years after the procedure. Another study, including 265 

patients with posterior stabilized prosthesis, had 94.1% success rate over 16 years [47]. 

Many authors have directly compared cemented fixation with cementless fixation in TKR 

[48,49]. Rand et al. (2003) [50] carried out a survivorship analysis for 11606 patients at 10 

years. The success rate was 92% in patients with cemented prostheses, whereas only 61% 

success rate reported in patients without cement (P<0.0001). Barrack et al. (2004) [48] 

compared 82 cementless mobile bearing knees with 73 cemented knees, 8% of cementless 

knees were revised, while no revision found in cemented knees. Rorabeck (1999) [12] 

looked at 484 patients of hybrid and cemented knee fixation, reporting 9.6% revision rate in 

hybrid group (uncemented femur and cemented tibia), compared to 1.6% in the cemented 

group after 3 years [49]. Figure 4 shows the number of TKR in UK between the years 2003-

2014. 
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2.2.2 Total hip replacement 

Clinical studies performed on total hip replacement (THR) with cemented implants have 

convincing long term results. Berry et al. (2002) [51] reported a survivorship rate of 80% in 

25 years after the procedure in 1689 patients with cemented implant. Another study about 

cemented implant including 226 patients reported similar survival rate of 81% in 25 years 

[52]. However, a tendency towards cementless hip replacement has been seen in recent 

days, because of the significant improvement in survival rate for cementless stems. In 

patients using cementless BiCONTACT stem, the survival rate is 94.4% in 15 years [53]. 

Emerson et al. (2002) [54] looked at 181 patients with cemented and cementless hip implant. 

The survivorship was 84 % in cemented group, while it was 100% in cementless group. 

Cementless implants are specifically selected for young active patients who have greater 

physical loads with greater failure rates secondary to loosening, whereas cemented implants 

are used for older patients with poor bone quality [55,56]. Figure 5 shows the number of 

THR in the UK between the years 2003-2014 [12]. 

2.3 PMMA bone cements 

Poly (methyl methacrylate) polymer (PMMA) is a polymer based on methyl methacrylate 

(MMA) monomer units. PMMA cement is prepared by mixing two constituents together:  

PMMA polymer powder and liquid MMA monomer (Figure 6). After mixing the two 

components, the hardened bone cement is formed by an exothermic free radical 

polymerization reaction, as the liquid monomer polymerizes around the pre-polymerized 

powder producing heat [57]. The heat of the setting reaction can reach (66-82.5 ºC). The 

setting time for the cement is relatively short (less than 15 min) and the cement must be 

inserted into the bone before cement hardening, otherwise the procedure cannot be 

completed [58]. Premature polymerization of the liquid component may happen because of 

exposure to heat and light. Therefore, Hydroquinone is added as a stabilizer to prevent 

polymerization before mixing of the cement constituents. Benzoyl peroxide is added to the 

powder to initiate the free radical polymerization reaction, while N, N-Dimethyl para-toluidine 
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(DMPT) is added as an accelerator to facilitate the polymerization reaction between the 

polymer and monomer at room temperature (Chaudhry & Dunlop, 2012). Barium sulphate 

(BaSO4) or zirconium dioxide (ZrO2) are added as radiopaque agent to allow X-ray imaging 

because PMMA is not radiopaque [59].  

At present, many commercial bone cements are marketed by different manufacturers (Table 

1). The main differences between different formulations are the molecular weight of PMMA, 

the ratio between homopoylmer and copolymer, the ratio between powder and liquid, the 

radiopacifier and other additives such as antibiotics.  Different copolymers of different acrylic 

monomers are added to modify the mechanical properties of the cement, such as MMA, 

styrene and Ethyl methacrylate [60]. Table 1 shows the composition of some commercially 

available PMMA bone cements. 

The main drawback of PMMA bone cement is the absence of bone bonding ability, i.e. 

bioactivity. This can lead to the formation of fibrous tissue around the implant and a space 

for the wear particles to accumulate [61]. As a result, bone resorption around the implant 

causes loosening and failure of the implant after a long period of time, which is the most 

commonly reported reason for revision in cemented replacements [12]. Despite the 

extensive research done on developing alternatives for PMMA in THR and TKR, PMMA 

stays to be the biomaterial of choice in TJRs since the 1960s, because of its acceptable long 

term survivorship and long-established clinical history as well as excellent mechanical 

properties [57]. Extensive research has been directed on developing new bioactive bone 

cements that integrate with bone, and improving the biocompatibility as well as mechanical 

properties of PMMA bone cements [62,63].  

One of the examples on bone cements with bioactive properties is calcium phosphate bone 

cement (CPC), which has been studied since 1980s [64]. Their poor mechanical properties 

such as strength, toughness and brittleness limited their application to low load-bearing 

arthroplasties e.g. craniofacial and maxillofacial surgeries (Table 2). Despite CPCs bioactive 

properties, their inferior mechanical properties are not sufficient to replace the use of PMMA 



11 
 

in high load-bearing arthroplasties such as knee and hip replacements [65,66]. The 

mechanism for setting reaction involves a dissolution-precipitation process that occurs at 

body temperature, without causing tissue necrosis in the surrounding tissue unlike the 

exothermic setting reaction for PMMA [67]. Despite the presence of many CPC formulations, 

the final product only could be either brushite or hydroxyapatite. Brushite is a metastable 

form that may transform into hydroxyapatite at pH>4 in vivo [68]. CPCs are microporous in 

nature which helps in the penetration of biological fluids, hence they are resorbable and can 

be replaced by bone [69]. In addition, the micropores enhance the ability of CPCs to load 

drugs which is an appealing option for any type of biomaterial [70,71].  

Apatite/wollastonite is another bioactive bone cement that has been researched for use in 

knee and hip replacements. Apatite/wollastonite glass bioactive ceramics have currently 

many medical applications and used as bone filler or bulk material [72]. Also, they have 

higher mechanical properties than other bioactive ceramics and cortical bone (Table 2). 

However, they cannot be used in high load arthroplasties such as hip and knee 

replacements, because their fracture toughness is lesser and elastic modulus is greater than 

those of cortical bone [73].  

Dental cements have been also researched for orthopaedic application such as glass 

polyalkenoate and Bioglass [74,75]. Glass polyalkenoate is a dental cement with good 

mechanical properties (Table 2), but the release of aluminium from the glass phase causes 

defective bone mineralization and limits their use in the orthopaedic field [76]. In order to 

avoid this problem aluminium was replaced with Zn, as it has a positive effect on osteoblast 

proliferation and increases bone mass. However, Zn based glass polyalkenoate has 

substantially inferior mechanical and setting properties compared with aluminium containing 

counterparts [75]. Moreover, resin modified glass polyalkenoate, another biomaterial, was 

developed to improve the poor mechanical properties of conventional glass polyalkenoate. 

Although it has good mechanical properties, they suffer from volumetric shrinkage after 

curing which causes mechanical failure at the implant interface [77,78].  



12 
 

None of the previously mentioned bioactive cements have the required mechanical 

properties to be used in high load bearing arthroplasties. Despite the lack of bone-bonding 

properties of PMMA, it is still the only biomaterial to be used in cemented hip and knee 

arthroplasties. Therefore, PMMA fails to achieve a long-lasting replacement making aseptic 

loosening the most common cause for revision. Newly developed bone cement should have 

both bone-bonding properties (bioactivity), as well as mechanical properties that match 

those of bone and optimally have antimicrobial properties [79]. 

2.4 Prosthetic infections 

The success of TJRs in relieving pain and improving the quality of life for patients is 

increasingly growing. Infection is considered the most serious problem after joint prosthesis 

implantation, which decreases success rate of the surgery and can be life threatening to 

patients in some cases [29]. Prosthetic infections are difficult to diagnose and occur at 

variable times after the primary surgery. Management of prosthetic infections is complex and 

needs multiple procedures and prolonged antimicrobial therapy with poor functional outcome 

[30]. This places considerable burden on medical resources and health care expenditure, 

because of the high cost of prosthetic joint infection incidence treatment that can reach up to 

$50000 [32]. Efforts have been made to reduce the risk of prosthetic infections such as the 

use of perioperative antimicrobial prophylaxis and surgical laminar airflow environment, 

however the incidence of prosthetic infection is still high and can reach up to 2% in total hip 

and knee replacement, and even higher after revision surgeries (up to 40%) [29]. 

Prosthetic infections have 3 classifications based on the onset of infection, namely, (i) early, 

(ii) delayed, (iii) late infections. For early infections, the signs and symptoms of infections 

appear in the first 3 months after surgery, and the infection are usually because of bacterial 

contamination during or after surgery caused by highly virulent microorganisms. Early 

infections account for up to 45% of prosthetic infections. In delayed infections, the first signs 

and symptoms appear after 3 months to 2 years after surgery. The causes of delayed 

infections are low virulent microorganisms inoculated during surgery. In late infections, the 
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onset starts after 2 years from surgery, and caused by seeding via the blood from an 

infection in other body parts such as skin, respiratory or urinary tract infections [80–82]. 

Biofilm formation is the typical mode of growth for bacteria involved in prosthetic infections, 

which adds to the difficulty and length of treatment. The microorganisms in biofilms form 

ordered and complex clusters enclosed by a hydrophilic polymeric matrix [30,80]. Biofilms 

shelter microorganisms form antibiotics and host immune defence, as well as increase 

bacterial resistance and reduce susceptibility to antibiotics by 500-5000 times compared to 

planktonic, free floating bacteria [29]. In addition, the implant acts as a binding site for 

bacterial accumulation into biofilms and decreases the minimum dose of bacteria needed to 

cause infection [30]. 

The most commonly encountered bacteria in prosthetic joint infections are coagulase-

negative staphylococci (30-43%) and Staphylococcus aureus (12-23%), followed by 

streptococci (9-10%), Gram-negative bacilli (3-6%), enterococci (3-7%), and anaerobes (2-

4%). Polymicrobial infections, which usually occur postoperatively, are seen in (10-12%) and 

they are difficult to treat.[80,83]. 

2.4.1 Treatment 

The treatment of prosthetic infection aims to relieve patients from pain, restore joint mobility 

and eradicate infections. Treatment of such infections is typically challenging and complex 

with combined aggressive surgical interventions and antimicrobial therapy, which make it 

hard to achieve all of the 3 aims together. Management of prosthetic infections should be 

customised for each patient and usually includes one of 3 main types of surgical 

interventions [29,84]. First, prosthetic retention with debridement of all infected tissue and 

irrigation, which is a choice for early postoperative or late haematogenous infections with 

retention of the prosthesis and long term antibiotic treatment  [85,86]. Second, prosthetic 

exchange, the most frequently used, by one stage or two stage revision. In one stage 

revision, the removal of all foreign material debridement and reimplantation of a new 

prosthesis are done in the same procedure [87]. While in two stages revision, the removal of 
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foreign material and debridement are done, and the reimplantation of a new prosthesis is 

delayed for a variable period of time (typically after > 6 weeks) [88]. Third, salvage 

procedure including resection arthroplasty, arthrodesis and amputation which are the last 

choice when infection management is not achievable by the previously mentioned 

interventions [89]. 

 Two stage revision has become the standard procedure in the treatment of deep tissue 

prosthetic infections [90]. The two-stage approach gives sufficient time for debridement and 

removal of the infected tissues, the determination of the infecting microorganism and its 

sensitivity to antibiotics, modifying the antimicrobial therapy before reimplantation. However, 

extended hospitalization increases the surgery costs, while delayed mobilization and risk of 

other surgery is cautiously considered, particularly in elderly people [91].   

 In two stage surgery, the use of antibiotic-impregnated spacers is considered the gold 

standard for the eradication of infection and avoiding limb shortening [92,93]. Spacers are 

bone cement pieces that is placed in the joint place to prevent muscle contractions and 

preserve their length. The use of a temporary spacer in two-stage surgery in knee 

replacement gives the patient the ability to move, also provides good alignment of the knee 

between the two stages [94,95]. Success rates with the use of antibiotic impregnated PMMA 

interim spacer/prosthesis are reported to be higher than 90% [96]. The advantage offered by 

such spacer is delivering high level of antibiotic locally, while maintaining joint mobility [97]. 

Table 3 shows common antibiotic combinations used for the impregnation of PMMA bone 

cement spacers. 
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2.4.2 Prophylaxis 

Antibiotic loaded bone cements (ALBC)s are routinely used in hip and knee TJRs not only in 

the treatment of prosthetic infections, but also to prevent infections after cemented 

replacements, and their use become a well-established practise along with peri-operative 

systemic antibiotics [98,99]. More than 90% of surgeons use ALBC in primary TKR in the UK 

[100], Sweden [101], and Norway [99]. The use of ALBC in knee replacements reduces the 

percentage of prosthetic infection compared to bone cements lacking antibiotics [102,103]. 

Similarly, the use of ALBC in hip replacements improves survivorship by reducing the risk of 

prosthetic infections after primary replacements [104,105]. A meta-analysis evaluating the 

efficacy of ALBC in hip replacements reported that the use of ALBC reduces prosthetic 

infections after primary hip replacements from 2.3% to 1.2%, and 40% after revision [98]. 

Local antibiotic release from the bone cement gives higher concentration in the joint 

compared with systemic antibiotics, which are hindered by limited blood circulation at the site 

of implantation [106,107]. Moreover, local delivery of antibiotics avoids the adverse effects of 

high antibiotic levels in the blood, such as nephrotoxicity and ototoxicity [108]. Hence, ALBC 

provide an alternative strategy for the prosthetic infection prophylaxis. 

The antibiotic loaded acrylic bone cements available commercially can be either a premixed 

powder, where the antibiotic is blended with the cement powder by the manufacturer, or an 

off-label formulation. In off-label formulations the antibiotic powder is provided separately to 

be mixed with the cement by the surgeon during surgery [109,110]. Low concentrations of 

the antibiotic (0.5-1.0 g per 40 of powder) are used for primary arthroplasty prophylaxis and 

second stage of a two-stage revision arthroplasty, while high concentrations (2.0-4.0 g per 

40 g powder) are used for the treatment of existing active infection [111]. 

The choice of antibiotic for incorporation in the bone cement depends on several factors. 

Desirable antibiotic characteristics include availability in powder form, wide antibacterial 

spectrum, thermal stability to withstand the high exothermic temperature of the setting 

reaction, elution from the bone cement for a prolonged period, low allergic effects and most 
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importantly low influence on the mechanical properties of the bone cement [112]. Among the 

antibiotics used, which usually meet these criteria, are aminoglycoside (gentamicin and 

tobramycin) [113] and glycopeptides (vancomycin) [114]. The combination of antibiotics from 

more than one group gives a wide antimicrobial spectrum [115]. Table 4 shows some of the 

commercially available bone cement brands and the incorporated antibiotics. 

 

2.5 Limitations for antibiotic loaded bone cements 

2.5.1 Antibiotic elution properties from bone cement 

The elution kinetics of antibiotics from PMMA bone cements are highly variable and depend 

on many factors. Different brands of bone cements come with different compositions, 

viscosities and porosities [116,117]. Hence this leads to differences in their ability to release 

antibiotics. Porosity is introduced into the cement by the formation of air bubbles during the 

exothermic setting reaction and depends on the viscosity and manipulation technique [118]. 

Porosity increases antibiotic elution from bone cement but at the same time has a negative 

impact on it’s mechanical properties [119]. Among other factors affecting elution kinetics is a 

type of antibiotic used or antibiotic combinations [115,120]. 

The ideal ALBC should sustain the release of antibiotic at high concentrations for a long time 

to prevent early onset infections and avoid the development of resistant bacterial strains 

[112]. However, the antibiotic release from ALBC, in reality, is characterised by initial 

uncontrolled burst release for the first few hours after surgery. Subsequently, the antibiotic 

release drops rapidly below inhibitory levels within few days, and does not provide long term 

sustained delivery of antibiotics [121–124]. Moreover, more than 90% of the loaded antibiotic 

may still be entrapped within the hydrophobic PMMA matrix [125,126]. The initial burst 

release occurs when the ALBC is exposed to fluid surrounding the joint and governs mainly 

by a surface phenomenon because of the presence of antibiotic agglomerates on the 
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surface of bone cement, while the sustained release over the next few days is a bulk 

phenomenon and more affected by the porosity of cement [127]. 

2.5.2 Development of antimicrobial resistance 

Antibiotic burst release from the bone cement is followed by slow release of antibiotic at low 

concentrations below the minimum inhibitory concentration needed to kill bacteria [122,124]. 

This slow release increases the chances for selecting resistant microbial strains which raises 

concerns about future effectiveness of antibiotics used in ALBCs [128,129].  The bacterial 

strains selected at low antibiotic concentrations are generally highly resistant [130]. Some 

experimental studies show the capacity of pathogens to grow on the surface of ABLC and 

the ability to form biofilms [30,127]. Anguita-Alonso et al. (2005) investigated the 

susceptibility of Staphylococci taken from patients with prosthetic infection against 

gentamicin and tobramycin (aminoglycoside antibiotics) [131]. 41% and 66% of bacteria 

were resistant to gentamicin and tobramycin respectively. Corona et al. (2014) compared 

antibiotic susceptibility between patients having infection for the first time and patients with 

previous use of ALBC and found a significantly higher resistance, indicating the risk of 

selecting aminoglycosides resistant strains after using ALBC [132]. 

2.5.3 Antibiotics effect on the mechanical properties of bone cement 

Addition of antibiotics to bone cements has a negative impact on their mechanical 

properties. Small quantities of antibiotics (< 1g per 40 g of bone cement) slightly decrease 

compressive and bending strength of bone cement but stays in the acceptable range stated 

by the standard ISO 5833:2002, while high antibiotic quantities cause a significant decrease 

in the mechanical properties [110,133]. The acceptable ranges for the mechanical properties 

of a set bone cement are > 70 MPa compressive strength, > 1800 MPa bending modulus 

and >50 MPa bending strength [134]. High dose ALBCs (>2g per 40g cement) are only used 

temporarily in spacers for the treatment of prosthetic infection in two stage surgery, because 

their poor mechanical properties, while low dose ALBCs (< 2g per 40g cement) are used for 

prophylaxis where mechanical properties are important for implant fixation [121,135].  
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Persson et al. (2006) reported a detrimental decrease in the bending (-22%) and fatigue 

strength (-15%) of bone cement when vancomycin was added at 2.5% w/w [136]. He et al. 

observed that the use of gentamicin at concentrations below 3% had no significant effect on 

the compressive and elastic modulus of bone cement; however, higher concentrations 

caused significant decrease in these two parameters [137].  

3 Novel bone cement formulations 

3.1 Role of nanotechnology 

Currently used antibiotics have many limitations including microbial resistance, narrow 

therapeutic index, cytotoxicity and side effects linked to non-selectivity in their mode of 

action and poor release profiles from carrier systems. Nanotechnology, which refers to the 

production and application of materials in the size range (1-100nm), has been used in the 

treatment of many diseases such as cancer [1], inflammation [2], hypertension [3]. The 

success of nanotechnology in improving drug release in the treatment of many diseases 

makes it an appealing approach for application in antimicrobial therapy. Nowadays, the 

development of antimicrobial resistance is rapidly increasing compared to the discovery of 

new antimicrobial agents. Therefore, the development of nanotechnology drug delivery 

systems or new antimicrobial nanomaterials can be used to overcome the problems of 

inefficient delivery of antimicrobial agents and resistance to currently used antimicrobials [4].  

 Novel nanotechnology drug delivery systems offer many advantages to overcome the 

current challenges with antimicrobial therapy. Nanoparticles have unique physicochemical 

properties such as large ratio of surface area to mass, small size, and ease of structural or 

functional modification. The antibiotics can be loaded into nanoparticles by physical 

encapsulation, adsorption or chemical conjugation where the drug release profiles can be 

significantly altered compared to free drug counterpart, enhancing poor delivery of drugs and 

sustaining release [138]. In addition, specific microbial resistance mechanisms to antibiotics 

can be overcome using nano-systems, which act on multiple biological pathways present in 
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most types of bacteria [139]. Moreover, nano-carriers can be used for the delivery of multiple 

antibiotics to provide synergistic effect against resistant strains [140]. Nanoparticles labelled 

antibiotics increase binding to bacteria and the concentration at the site of infection. These 

improvements can be attributed to the enhanced solubility of drugs and controlled release 

profiles. Also, nano-systems decreases side effects by enhancing cellular internalization and 

uniform distribution in the target tissue, and improving the pharmacokinetic profiles and 

patient compliance to antibiotics [141]. Compared to antibiotic synthesis, the preparation of 

nanoparticles is cost-effective giving stable formulations for long term storage. Although, 

antibiotics can be degraded easily at harsh conditions, nanoparticles can withstand harsh 

conditions such as high temperature and sterilization [4]. 

3.2 Nanotechnology based antibiotic based antimicrobial bone cements 

Nanotechnology based antibiotic delivery systems is a becoming a new approach for solving 

the limitation of antimicrobial therapy. Nanoparticles can be used to improve the release 

kinetics of antibiotics by enhancing delivery and providing controlled release. These 

improvements are attributed to large area to mass ration and small size, and different ways 

available for modification and for antibiotic loading [138]. Many nanotechnology-based 

antibiotic carriers have been researched to improve the antibiotic release profile from PMMA 

bone cement including liposomes [142], mesoporous silica [143], carbon nano-tubes, 

hydroxyapatite nano-rods and clay nanotubes [144].  

Although liposomes have miscibility problems in non-aqueous environment because of their 

hydrophilic surface, they were used to improve gentamicin distribution within PMMA bone 

cement. Liposomes have been largely used as drug carrier in aqueous suspensions, and 

have miscibility problems when mixed with PMMA leading to phase separation [145]. Ayre et 

al. (2015) [142] solved the problem of phase separation using Pluronics on the surface of 

liposomes (Figure 7).  
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Pluronics are surfactants made of interconnected chains of polyethylene oxide (PEO) and 

poly propylene oxide (PPO) subunits. It is hypothesized that the hydrophilic PEO will attach 

to the hydrophilic surface of liposomes, while the PPO will attach to the hydrophobic matrix 

of PMMA. Liposomes were suspended to the liquid MMA part of before mixing with PMMA 

powder. Moreover, pelleted liposomes of 100 nm size were prepared by extrusion and ultra-

centrifuged with 3 different Pluronic surfactants (L31, L43, and L61). Gentamicin release 

from liposomal bone cement was sustained for 30 days with 22% of the loaded antibiotic 

released compared to 9% from commercial formulation. Gentamicin release was 

characterized by bust release in the first 72 hrs for commercial bone cement, while liposomal 

cement showed nearly linear release profile. Despite the slight reduction in compressive 

strength, the liposomal formulation enhanced the toughness, bending strength and Vickers 

hardness of cement when compared to Palacos R+G. The addition of liposomes improved 

the dispersion of gentamicin in bone cement and improved the mechanical properties as 

well.  

In another work, Shen et al. (2016) [143] mesoporous silica nanoparticles (MSN) were used 

to improve the release kinetics of gentamicin from PMMA bone cement. The presence of 

10% MSN enhanced the release for more than 60% of loaded gentamicin over 80 days. 

Furthermore, the concentration of MSN was found to be crucial to build a nano network to 

facilitate the diffusion of gentamicin molecules as supported by images (Figure 8). Hence, 

MSN concentration below 6 % could not improve gentamicin release. The compressive 

strengths of MSN functionalized bone cements is nearly the same as the commercial bone 

cement. However, the bending modulus is reduced by 10%. Moreover, the 10% MSN bone 

cement was cytocompatible with 3T3 mouse fibroblasts, showing 96% cell viability in 3T3 

mouse.  

Carbon nanotubes (CNT) were also tested for enhancing gentamicin release from PMMA 

bone cement. Although 5% (CNT) loaded bone cement lead to 75% release of gentamicin 

for 60 days, the compressive strength is reduced by 90% compared with the commercial 
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bone cement. Furthermore, CNT showed high toxicity to 3T3 mouse fibroblasts with 85% cell 

viability. Cytotoxicity of CNT is among the most concerns for its application in biological 

systems and it has also attracted more attention in recent investigation [147]. In the same 

work, hydroxyapatite nano-rods (HAP) were loaded with gentamicin by wet impregnation and 

loaded into PMMA bone cement at 32% concentration. At this concentration, 75% 

gentamicin was released over 60 days. Despite low cytotoxicity of HAP, as it is one of major 

compositions of bone structure, the compressive strength is decreased by 50% compared to 

the commercial bone cement.  

In another study, clay nanotubes Halloysite is used to improve gentamicin release from 

PMMA bone cement [144]. Halloysite is a naturally occurring nanotube with a length of 500–

1000 nm, diameter of 50 nm, and lumen of 15 nm. Therefore, it is highly biocompatible as 

confirmed by blue cell essays on HeLa and MCF-7 cell lines [148]. PMMA bone cement was 

loaded with 5-8% Halloysite and with 10-15% gentamicin. The release profile was 

characterised by burst in the first few days. After that, gentamicin release slowly continued 

for 250 hours. Furthermore, the addition of 5-7% Halloysite nanotubes improves the tensile 

strength and adhesive properties, except for flexural strength which is slightly reduced with 

higher concentration such as is 5% which gives both higher tensile strength and good 

flexural properties. Table 5 summarizes the mechanical properties of previously mentioned 

nanocomposites and Table 6 is a list of different nanotechnology based antibiotic loaded 

PMMA bone cements. 

3.3 Non-antibiotic based antimicrobial bone cements 

Quaternary ammonium compounds attracted research because of their antimicrobial 

properties and stable structure [149]. Chitosan quaternary ammonium nanoparticles 

impregnated bone cement showed antimicrobial activity against viable bacterial at a 

concentration of 15% w/w [150]. In another study, hydroxypropyl trimethyl ammonium 

chloride chitosan loaded (HACC) bone cement inhibited biofilms caused by methicillin-

resistant Staphylococcus strains showing in vitro release for 120 hours [151], with enhanced 
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physical and osteogenic properties [152]. HACC-loaded bone cement was further evaluated 

in vivo for the treatment of Methicillin-resistant Staphylococcus epidermidis infection of the 

tibial metaphysis in a rabbit model, and exhibited effectiveness in the inhibition of bone 

infections [153]. One quaternary ammonium dendrimer of tripropylene glycol diacrylate 

(TPGDA) was mixed with bone cement at a concentration of 10%. At this concentration, 

TPGDA modified bone cement showed antimicrobial activity for 30 days. In addition, the 

dendrimer bone cement composite was potent to kill 108 CFU/mL of bacteria on regular 

intervals of 5 days for a month. However, the addition of dendrimer resulted in a reduction of 

compressive strength (>15%) compared to the original sample. Furthermore, the MTT assay 

for the dendrimer modified bone cement showed 12.5% reduction in the viable cells 

compared to the control, and cytotoxicity needs to be further determined [149]. Table 7 

summarizes some examples of antimicrobial bone cements with potential application in total 

joint arthroplasties. 

Quaternary ammonium chitosan derivative nanoparticles (QCS) achieved a 103-fold 

reduction in the number of viable bacterial cells upon contact with the surface when added at 

concentration of 15% to bone cement. Chitosan in the form of nanoparticles is better in 

preserving the mechanical properties of the bone cement compared to powdered chitosan, 

i.e. Young modulus and bending modulus is >90% of the original bone cement values. When 

the CS (powder not NP) loading was decreased to 15%, the Young’s modulus and bending 

modulus are about 90% of the corresponding properties of the original bone cement. This 

can be explained by the homogenous distribution of nanoparticles inside the bone cement 

matrix, which minimizes the macroscopic cracks in cement mantle. QCS nanoparticles 

showed higher antimicrobial activity compared to chitosan nanoparticles at the same 

concentration, where the viable cell number declined by about three orders and two orders 

of magnitude, respectively. However, The MTT assay showed that there is no significant 

difference in cytotoxicity between the CS NP, QCS NP and the non-toxic control [150].   
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Silver nanoparticles have many applications in medical field as safe and effective 

antimicrobial agents, such as bandages, catheters and surgical scrubs. However, systemic 

administration of silver nanoparticles can cause various health problems when it reaches 

toxic levels in different body organs [154]. Consequently, local delivery of silver may 

decrease the adverse effects of high silver levels in the blood. Oei et al. (2012) [155] 

investigated the antimicrobial properties of a PMMA bone cement impregnated with silver 

nanoparticles. Despite in vitro release of silver ions for 28 days and broad spectrum 

antimicrobial activity, the mechanical properties of bone cement was negatively affected at 

the concentration used (1% w/w) and showed lower bending modulus. Silver nanoparticles 

prepared with different capping agents were studied for bone cement impregnation. 

Prokopovich et al. (2015) [156], reported a broad spectrum antimicrobial activity of silver 

nanoparticles capped with oleic acid at low concentrations of 0.05 w/w %, without affecting 

the mechanical properties and cytotoxicity of the bone cement. Similar preferable 

antimicrobial and mechanical properties were identified when silver nanoparticles capped 

with tiopronin were impregnated in PMMA bone cement at a concentration of 0.1 w/w % 

[157]. 

 In another study, Perni et al. (2015) [158] developed a propyl paraben nanoparticle loaded 

bone cement at a concentration of 7% w/w. Nanoparticles at this concentration exhibited 

wide spectrum antimicrobial killing with no detrimental effect on mechanical properties and 

cytocompatibility. 

4 Drug delivery systems and nano-formulations for potential use 

in bone cements 

Some approaches to prolong drug release have been conducted but efficacy has not been 

tested in bone cement yet (Table 8). One of the novel approaches for enhancing the delivery 

of aminoglycoside antibiotics is Layer by Layer assembly (LbL). LbL has numerous 

applications in drug delivery [159]. This coating technique is a versatile method and involves 
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the deposition of alternative oppositely charged polyelectrolytes on different substrates, 

allowing control of the thickness and composition of coating at nanoscale level in a 

reproducible manner [160,161]. Tamanna et al. (2015) [162] managed to control the release 

of gentamicin from gentamicin loaded mesoporous silica nanoparticles coated using LbL 

technique. The coating polyelectrolytes were polystyrene sulfonate (PSS) and poly 

(allylamine hydrochloride) (PAH). The coated layer controlled drug release for 10 days with 

no burst release compared to the same gentamicin loaded nanoparticles without coating. In 

another work, Lichter & Rubner (2016) [163] developed an antimicrobial LbL assembly 

without the addition of biocidal species, by optimizing the conditions during and after layers 

deposition in order to expose the cationic charges needed for antimicrobial activity. 

Multilayers of PAH, PSS and poly(acrylic acid) (PAA) were constructed at high pH and 

subsequently immersed in low pH solutions, which showed antimicrobial activity against S. 

epidermidis and E. coli. In a similar work, Kovačević et. al. (2016) [164] studied the changes 

in surface material properties by using LbL coating, and their effect on the bacterial adhesion 

of P. aeruginosa. Multilayers of PAH and PSS were built on the silica surface, where the 

polyelectrolyte multilayers terminating with negatively charged polyelectrolyte showed less 

bacterial adhesion on the surface.   

Mu et al. (2016) [165] evaluated the antimicrobial properties of phosphatidylcholine-

decorated Au nanoparticles loaded with gentamicin (size 180 nm), which showed broad 

spectrum activity and inhibition of biofilm formation. The presence of phosphatidylcholine on 

the surface facilitated the electrostatic binding of gentamicin. The nanoparticles were more 

efficient in the inhibition of Pseudomonas aeruginosa and Staphylococcus aureus biofilm, 

when compared to gentamicin or phosphatidylcholine Au nanoparticles without gentamicin. 

Gentamicin release continued for 7 days in buffer media pH 7.4, and the loading efficiency 

was 38µg/ml (gentamicin/Au). Cytocompatibility studies were done using RAW 264.7 cells 

and the nanoparticles were nontoxic and can be engulfed by macrophages. 
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Fan et al. (2016) [166] loaded chlorhexidine on Ca-silicate mesoporous nanoparticles (size 

78.6 nm) using mixing-coupling technique. The nanoparticles were able to release 

chlorhexidine as well as Ca2+ and silicate2- ions for up to 9 days in simulated body fluids. 

They showed antimicrobial activity against Enterococcus faecalis which is commonly 

reported to be involved in root canal infection. The nanoparticles did not show any negative 

effect on cell proliferation and showed in vivo mineralization effect, which give them the 

potential to be used in intra-canal defects or bone infections. 

Poly (lactide-co-glycide) (PLGA) is hydrophobic biodegradable and biocompatible polymer 

that is approved for clinical use. Abdelgahany et al. (2012) [167] prepared gentamicin PLGA 

nanoparticles through emulsion evaporation method, using two approaches: water/oil/water 

and solid/oil/water. The size for the nanoparticles were 251 nm and 359 nm, respectively, 

with loading efficiency reached up to 22.4 µg/ml. Gentamicin release from the nanoparticles 

continued for up to 16 days at pH 7.4. In addition, the nanoparticles showed antimicrobial 

activity against P. aeruginosa planktonic bacteria and biofilms, as well as in vivo infected 

mice model.   

Kurtjak et al. (2016) [168] loaded gallium nanoparticles (size 22nm) into hydroxyapatite 

nano-rods bioactive composite through ultrasonic emulsification. The gallium nanocomposite 

showed better antimicrobial properties against Pseudomonas aeruginosa, when compared 

to silver nanocomposite, as illustrated by microdilution assay and MIC determination. Also, 

gallium nanoparticles had lower toxicity for human lung fibroblast and mouse fibroblasts.  

 

5 Conclusion 

The currently used ALBCs have many limitations in terms of antimicrobial performance and 

elution of antibiotics from PMMA matrix. In addition, there is a need for the development of 

new antimicrobial agents and antibiotic delivery systems to overcome the emergence of 

resistant bacterial strains encountered in PJIs. The use of nanotechnology in antimicrobial 
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treatment is attracting more attention in literature. As a result, its application in ALPC is 

increasing to improve the properties of bone cement and its antimicrobial performance. The 

field of nanotechnology based antimicrobial medicine and its application in ALBC is still in its 

infancy, and not well researched as the case in nano-cancer medicine and cardiovascular 

drug targeting. However, nanotechnology shows promising results in improving antibiotic 

release and the antimicrobial properties of PMMA bone cement, while preserving its other 

characteristics needed for physiological performance. The ideal ALBC should sustain the 

release of antibiotic or antimicrobial agent at high concentration for > 30 days to prevent 

early and delayed onset postsurgical infections. At the same time, the addition of the 

antimicrobial species should not compromise the mechanical properties of bone cement, and 

it’s cytocompatibility with the surrounding tissue. The incorporation of gentamicin loaded 

MSN in the bone cement is a clear example of how a nanotechnology-based approach 

improved the release kinetics of gentamicin to reach extended release for 80 days, whilst 

preserving the mechanical properties and cytocompatibility of the bone cement [143].   
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Tables  

Table 1. Composition of some commercially available PMMA bone cements.  

Constituent* Cemex® 

XL 

Genta LV 

EnduranceTM 

Gentamicin 

Copal® Palacos® 

R+G 

SmartSet® 

GHV 

Liquid 

MMA 98.20 98.00 97.98 97.98 97.50 

N,N dimethyl-p-toluidine 

(DMPT) 

1.80 < 2.00 2.02 2.02 < 2.50 

Hydroquinone 75 75 75 75 75 

Chlorophyll - - 0.002 0.002 - 

Powder 

Poly(methyl methacrylate) 

(PMMA) 

82.78 65.28 - - - 

Methyl methacrylate 

(MMA)/styrene 

co-polymer 

- 18.65 - - - 

PMMA/MMA co-polymer - - 82.65 82.15 80.46 

Benzoyl peroxide (BPO) 3.00 1.85 0.75 0.78 0.96 

Barium sulfate 10.00 10.00 - - - 

Zirconium dioxide - - 10.03 15.01 14.37 

Gentamicin sulfate 4.22 4.22 3.76 2.06 4.22 

Clindamycin hydrochloride - - 2.82 - - 

Chlorophyll  - 0.002 0.002 - 

 

*The amount of each constituent of a cement is in wt. /wt. %, except for hydroquinone, which 
is ppm. 
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Table 2. Mechanical properties for some bioactive cements, PMMA and human bone 
(cortical and cancellous bone). 

 

 

Strength (MPa) Young’s 

modulus 

(GPa) 

Fracture 

toughness, KIC 

(MPam1/2) 

Reference 
Compressive Bending 

Bioglass® (45S5) - 42 35 - [73] 

glass polyalkenoate 175.21 - 12.82 0.63 [169] 

Hydroxyapatite 39-103 - 4.5-9 0.15-0.5 [170] 

Apatite/wollastonite 1080 220 118 2.0 [73] 

PMMA 73-117 50-125 2.552 1.03-2.32 [134,171] 

Human 

bone 

Cancellous 2-12 - 0.05-0.5 - [73] 

Cortical 100-230 50-150 7-30 2-12 [73] 

 

Table 3. Antibiotic combinations used for the impregnation of PMMA bone cement spacers 

for hip and knee prosthetic infections. 

 

 

 

 

 

 

 

 

 

 

 

Reference Antibiotic combination used per 40g PMMA  

[172] 0.76 g gentamicin + 1 g vancomycin 

 [173,174] 0.25 g gentamicin + 2 g vancomycin 

[175] 1.2-4.8 g tobramycin + 1-2 g vancomycin 

[176] 4 g vancomycin + 2 g piperacillin 

[177–179] 3.6-4.8 g tobramycin + 4 g vancomycin  

[180] 4.5 g piperacillin-tazobactam + 2 g vancomycin 

+ 1 g erythromycin  



50 
 

Table 4. Some of the commercially available antibiotic loaded bone cement brands. 

 

Brand Antibiotics Antibiotic used 

per 40g PMMA 

Manufacturer 

Palacos R+G Gentamicin 1.0 g Zimmer 

Palacos LV+G Gentamicin 1.0 g  Zimmer 

CMW 1 Gentamicin 1.0 g  DePuy  

CMW 2 Gentamicin 1.0 g DePuy 

SmartSet GHV Gentamicin 1.0 g DePuy 

SmartSet GMV Gentamicin 1.0 g DePuy 

Simplex P  Tobramycin 1.0 g Stryker 

Copal G+V Gentamicin + Vancomycin 0.5 g + 2.0 g  Heraeus 

Copal G+V Gentamicin + Clindamycin 1.0 g + 1.0 g Heraeus 

 

Table 5. Summary of mechanical properties for different PMMA nanocomposites. 

 Compressive 

strength 

(MPa) 

Bending 

strength 

(MPa) 

Bending 

Modulus 

(MPa) 

Fracture 

Toughness 

(MPam1/2) 

Vickers 

Hardness 

(MPa) 

Liposomes 

(L31)  

80.8 79 3200 3.0 26.6 

Mesoporous 

silica 

85 - 2100 - - 

Carbon nano-

tubes 

8.7 - - - - 

Hydroxyapatite 

nano-rods 

43.5 - - - - 

Clay nano-

tubes 

- 35 - - - 
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Table 6. Summary list of nanotechnology based antibiotic loaded PMMA bone cements. 

 

Nano-carrier % of 

NPs in 

bone 

ce-

ment 

Loading 

capacity of 

gentamicin 

Dura-

tion of 

release  

% of 

gentami-

cin 

released  

Test-

ed 

bacte-

ria  

Limitation Referen-

ce 

Liposomes   ---- 30 days 22 S. 

aureus 

-- [142] 

Mesoporous 

silica 

10 ---- 80 days 60 --- -- [143] 

Carbon nano-

tubes 

5 ---- 60 days 75 ---- Cytotoxici-

ty, 

negative 

impact on 

mechani-

cal 

properties 

[143] 

Hydroxyapatit

e nano-rods 

32 ---- 60 days 75 ---- Negative 

impact on 

mechani-

cal 

properties 

[143] 

Clay nano-

tubes 

5-7 10-15 10 days 60 S. 

aureus

, E. 

coli 

Burst 

release  

[144] 
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Table 7. Summary list of nanotechnology non-antibiotic based antimicrobial PMMA bone 

cements. 

Type of 

Antimic-

robial 

nanopar-

ticles 

% 

of 

NP

s 

in 

bo-

ne 

ce-

me

nt 

Dura

-tion 

of 

rele

a-se  

% of 

antimic-

robial 

released  

Antimic-

robial 

spectrum 

Tes-

ted 

bacte-

ria 

Mode of 

action 

Limitations Referen-

ce 

Chitosan 15 --- --- Broad 

spectrum 

(Gram 

positive  

and Gram 

negatibe) 

S. 

aureus, 

S. 

epider

midis 

Interacti

on with 

negativel

y 

charged 

cell wall 

and cell 

lysis. 

 [150] 

QCS  15 --- --- Broad 

spectrum 

(Gram 

positive  

and Gram 

negatibe) 

S. 

aureus, 

S. 

epider

midis 

Interacti

on with 

negativel

y 

charged 

cell wall 

and cell 

lysis. 

 [150] 

dendrime

r 

10 30 

days 

--- Broad 

spectrum 

(Gram 

positive  

and Gram 

S. 

aureus, 

 E coli,   

P. 

aerugi

Interacti

on with 

negativel

y 

charged 

Cytocompa

tibility  

problems 

[149] 
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negatibe) nosa cell wall 

and cell 

lysis. 

Silver 

nanoparti

cles  

1 28 

days  

 Broad 

spectrum 

(Gram 

positive  

and Gram 

negatibe) 

P. 

aerugi

nosa,  

A. 

baum

annii,  

 S. 

aureu

s,   

P. 

mirabi

lis 

Ag NPs 

or Ag 

ions can 

interact 

with 

DNA 

replicatio

n, 

respirato

ry chain 

and cell 

division. 

Negative 

effect on 

mechanical 

properties  

[155] 

oleic acid  

capped 

Silver 

nanoparti

cles  

0.0

5 

  Broad 

spectrum 

(Gram 

positive  

and Gram 

negatibe) 

S.aur 

beus 

MRS

A 

S. 

epider

midis 

A. 

baum

annii 

 

Ag NPs 

or Ag 

ions can 

interact 

with 

DNA 

replicatio

n, 

respirato

ry chain 

and cell 

division. 

 [156] 

Tiopronin 

capped 

Silver 

nanoparti

cles 

0.1   Broad 

spectrum 

(Gram 

positive  

and Gram 

negatibe) 

MRS

A 

Ag NPs 

or Ag 

ions can 

interact 

with 

DNA 

replicatio

 [157] 
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Table 8. Nano-formulations with potential use in bone cements. 

 

Nano-carrier 

system 

Antimicrobia

l loaded  

Duratio

n of 

release  

Loading 

efficienc

y  

Method of 

preparation  

Application Referenc

e 

LbL coated 

Mesoporous 

silica  

Gentamicin  10 

Days  

211 

µg/mg 

 Promising for 

future 

applications 

to coat 

biomedical 

device 

surfaces 

such as 

pacemakers 

[162] 

n, 

respirato

ry chain 

and cell 

division. 

Propyl 

paraben 

7 5  Broad 

spectrum 

antibacter

ial (Gram 

positive  

and Gram 

negatib) 

and 

antifungal 

activity 

S.aur

eus 

MRS

A 

S. 

epier

midis 

A. 

baum

annii 

Inhibition 

of the 

synthesis 

DNA and 

RNA or 

ATPases 

and 

phosphotr

ansferase

s 

 [181] 
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and other 

implanted 

devices. 

 Au Gentamicin 7 days 38µg/ml   [165] 

Ca-silicate Chlorhexidin

e  

9 days ---  intra-canal 

medication in 

dentistry or a 

new bone 

defect 

filling 

material for 

infected 

bone 

defects. 

[166] 

PLGA Gentamicin 16 

days  

22 µg/ml Emulsion 

evaporation  

Treating 

sepsis and 

Pseudomona

s infections 

[167] 

Hydroxyapatiti

e nano-rods 

Gallium 

nanoparticle

s   

--- 16% ultrasonic 

emulsificatio

n 

tissue 

engineering, 

wound 

healing, 

bone fracture 

repair, 

prevention of 

infections 

during 

implantation 

[168] 

  



56 
 

 Figure captions 

Figure 1 Total joint replacements undertaken during 2014: (a) Hip and (b) Knee prosthesis, 

adapted from National Joint Registry (NJR 2015). 

 

Figure 2   Total hip replacement: (a) cemented implant, (b) cementless implant. 

 

Figure 3   Cemented total hip replacement (functions of bone cement). 

 

Figure 4   The number of TKR procedures performed in the UK between the years 2003-

2014, adapted from NJR, 2015. 

 

Figure 5   The number of THR in UK between the years 2003-2014, adapted from NJR, 

2015. 

 

Figure 6    Free radical polymerization reaction of PMMA .  

 

Figure 7   Proposed liposome-Pluronics structure. 

 

Figure 8  Scheme of (a) GTMC mixed with bone cement (b) bone cement formulated with 

MSN at low loading and (c) effective diffusion network formed by MSN in PMMA based bone 
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