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Abstract 

Rare copy number variants contribute significantly to the risk for schizophrenia, with the 

22q11.2 locus consistently implicated. Individuals with the 22q11.2 deletion syndrome 

(22q11DS) have an estimated 25-fold increased risk for schizophrenia spectrum disorders,

compared to individuals in the general population. The International 22q11DS Brain Behavior 

Consortium is examining this highly informative neurogenetic syndrome phenotypically and 

genomically. Here we detail the procedures of the effort to characterize the neuropsychiatric and 

neurobehavioral phenotypes associated with 22q11DS, focusing on schizophrenia and 

subthreshold expression of psychosis. The genomic approach includes a combination of whole 

genome sequencing and genome-wide microarray technologies, allowing the investigation of all 

possible DNA variation and gene pathways influencing the schizophrenia-relevant phenotypic 

expression. A phenotypically rich data set provides a psychiatrically well-characterized sample 

of unprecedented size (n=1,616) that informs the neurobehavioral developmental course of 

22q11DS. This combined set of phenotypic and genomic data will enable hypothesis testing to 

elucidate the mechanisms underlying the pathogenesis of schizophrenia spectrum disorders.
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INTRODUCTION

Advances in technology for the characterization of entire genomes, e.g. next generation whole 

genome sequencing (WGS), and the availability of large samples with DNA, promise to propel

our mechanistic understanding of neuropsychiatric disorders. Rare structural and other variants,

including copy number variants (CNVs), have contributed to recent advances. Large rare CNVs 

throughout the genome have been identified as contributors to the etiology of schizophrenia,

conferring significant risk with large effect sizes.
1-4

 Arguably, none is more clinically relevant or 

feasible as a model for focused investigation than the recurrent 22q11.2 deletion underlying the 

22q11.2 deletion syndrome (22q11DS).
4

The link between 22q11DS and schizophrenia has long been recognized.
5-11

Multiple 

studies confirm that ~1 in 4 individuals with 22q11DS develop schizophrenia, and that ~1 in 

100-200 individuals with schizophrenia in community samples have a 22q11.2 deletion.
12,13

These observations led a large international group of investigators to collaborate with the goal of

identifying the underlying mechanisms of schizophrenia expression in 22q11DS that may be 

applicable to idiopathic schizophrenia in the general population. They agreed to share phenotypic 

information and existing DNA samples. Recognizing the potential of this collaboration to 

provide a wealth of data on the link between 22q11DS and schizophrenia spectrum disorders, the 

U.S. National Institute of Mental Health (NIMH) has forged a collaborative effort to investigate 

this important neurogenetic syndrome through the newly established International 22q11DS

Brain Behavior Consortium (IBBC). Here we provide the goals and underlying hypotheses of the 

IBBC, an overview of clinical aspects of 22q11DS, and the rationale for focusing on this 

condition. We outline the phenotypic procedures and the genetics workflow, and summarize 

early findings.
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GOAL OF THE CONSORTIUM

The IBBC is taking a multifaceted unbiased genome-wide approach to uncover genetic variation

that contributes to the expression and high prevalence of schizophrenia in 22q11DS. The 

overarching hypothesis is that taking advantage of the magnifying effect of the 22q11.2 deletion 

and comprehensively studying genetic variation across the genome may elucidate genes and, 

more plausibly, gene networks and functional biological pathways that contribute to the etiology 

of schizophrenia and other neuropsychiatric phenotypes in 22q11DS and in the general 

population. A related hypothesis is that the study of youths with 22q11DS allows for the 

identification of early behavioral and/or cognitive markers associated with schizophrenia but 

preceding the onset of the first psychotic episode. It is expected that youths with 22q11DS and 

greater cognitive decline will share some of the genetic factors identified in individuals with

schizophrenia. The expectations are that the biological pathways identified may be similar to 

those for individuals with schizophrenia without the 22q11.2 deletion, and that the elevated risk 

in 22q11DS will provide an enhanced effect size to identify the salient genetic factors and 

systems involved.
14-16

THE 22q11.2 DELETION SYNDROME

The 22q11.2 deletion is the most common chromosomal microdeletion (~1:4000 live births; 

~1/1000 fetuses) associated with a highly penetrant genomic syndrome.
13

Over 90% of affected 

individuals have a ~3 million base pair (Mb) hemizygous deletion encompassing 46 protein-

coding and 44 additional genes (Figure 1).
13,17,18

Some have smaller nested deletions within the 

interval.
13

The deletion typically occurs as a de novo event arising by non-allelic homologous 

recombination between chromosomes during meiosis, mediated by chromosome-specific low-
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copy repeats across the chromosome 22q11.2 region.
19-21

The phenotypic presentation is heterogeneous, often involving multiple systems including

cardiac, palatal, endocrine, immune, gastrointestinal, skeletal and, most commonly,

neuropsychiatric abnormalities.
13

Brain dysfunction may be expressed as developmental delay 

and/or elevated prevalence of developmental neuropsychiatric disorders including attention 

deficit hyperactivity (ADHD), autism spectrum, anxiety and psychotic disorders.
22-26

 The ~25-

fold increased risk for psychotic illness in 22q11DS is far greater than the estimated 3-fold 

increased risk of psychotic illness associated with general developmental delay.
6,27

Therefore, 

22q11DS provides a unique opportunity to investigate mechanisms underlying the evolution of 

schizophrenia and schizophrenia spectrum features across the lifespan. The existence of mouse 

models of individual or multiple genes within the region of synteny to the human 22q11.2 region

also lays the foundation for a broad array of translational research to understand molecular 

mechanisms.
17,18, 28-32

The fact that the genetic risk is identifiable prenatally and postnatally,
13

coupled with 

comparable age at onset, symptom pattern and early clinical signs, including neurocognitive 

deficits, all similar to idiopathic disease, support 22q11DS as a particularly promising genetic 

model for schizophrenia.
14

SCHIZOPHRENIA SPECTRUM AND BRAIN BEHAVIOR PARAMETERS IN 22q11DS

As in the general population, schizophrenia in 22q11DS commonly emerges in late adolescence 

to early adulthood and is characterized by positive symptoms (hallucinations, delusions), 

negative symptoms (amotivation, asociality) and disorganized behavior.
33-35

 Within the context 

of the syndrome, response to antipsychotic medications appears similar to that in schizophrenia 

in the general population, considering the context of a multisystem disorder.
36, 37 
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Youths at risk for psychosis in the general population have been studied in help-

seekers
38,39

and community samples.
40,41

 Neurocognitive measures and neuroimaging parameters 

show abnormalities in at-risk individuals, suggesting the presence of neurobiological aberrations

early in the psychosis process.
42-44

 With a known high risk for schizophrenia, 22q11DS provides 

the opportunity to systematically investigate early abnormalities in development as well as the 

emergence of psychotic illness in cross-sectional and prospective studies of individuals who 

share the same genetic abnormality.
45-47

 Investigations applying standard procedures to assess 

subthreshold psychotic symptoms in 22q11DS have reported their presence across samples.
48-50

Integration of phenotypic parameters with genomics may generate mechanistic insights that lead 

to improved clinical diagnosis and offer new therapies.

Neurocognitive dysfunction is a central feature of schizophrenia
51

 with intellectual 

decline evident years prior to the emergence of psychotic symptoms.
52,53

Similarly, in 22q11DS 

there is a steeper decline in verbal IQ associated with the emergence of psychotic disorders.
46,54

Divergence of intellectual trajectories between those who subsequently develop a psychotic 

disorder and those who do not is distinguishable from age 11 years onward.
54

In schizophrenia, there are well-documented deficits in specific domains including verbal 

memory, executive functions and social cognition.
51,55

Comparable patterns of impairments 

evident in clinical high-risk populations,
56,57

and family members of patients,
58,59

implicate these 

as potential endophenotypes. Similar impairments in executive function, social cognition, non-

verbal memory, working memory and visual-spatial function in 22q11DS,
24,45-47,60-62

 suggest

possible sharing of underlying neural networks. 

Historically, studies of brain and behavior in 22q11DS have involved relatively small 

samples, with convergent findings emerging. Recognizing that multicenter samples are necessary 
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to generate large datasets, enabling integration of genomic and phenotypic data, investigators 

with complementary expertise who had established an international collaborative effort to study

22q11DS came together to form the IBBC.

THE INTERNATIONAL 22q11.2 BRAIN BEHAVIOR CONSORTIUM (IBBC)

OBJECTIVES

The IBBC established several aims to harmonize existing cohorts of 22q11DS participants with 

both phenotypic data and DNA available to perform next-generation sequencing and other 

genome-wide genomic analyses: 1) to examine the neuropsychiatric and neurocognitive-

behavioral phenotypes associated with schizophrenia spectrum disorders in 22q11DS; 2) to 

generate and analyze genome-wide data for >300 adults with 22q11DS, about half with 

schizophrenia and half, aged 25 years and older with no psychotic illness, and use the same 

strategy for at-risk youths with 22q11DS; 3) to develop and pilot commonly used measures to 

optimize assessment of neuropsychiatric and cognitive-behavioral phenotypes in 22q11DS as a 

platform for future prospective longitudinal studies; 4) to build coordinated resources in the 

public domain for the international scientific community. The genetic analyses involve genome-

wide data from WGS and high-resolution microarrays, with the goal of identifying genetic 

pathways that may influence the expression of schizophrenia and related phenotypes.

ORGANIZATIONAL STRUCTURE

The IBBC includes multiple international phenotyping sites, contributing DNA samples and 

phenotypic data, and genomic sites (Table 1). The phenotyping working group provides 

neuropsychiatric and neurobehavioral expertise and the genomic working group the genetic 
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analytic approach. An executive committee (EC) is comprised of 13 representatives from the 

working groups, including 9 members who lead the four phenotyping groups. The EC

communicates regularly by conference calls and in-person meetings to implement research plans,

communicate with NIMH, disseminate information to collaborative sites, arrange general 

meetings, oversee the development and quality of the database and the website, and review

proposals for ancillary studies and publications.

SAMPLE AND ELIGIBILITY CRITERIA

For inclusion in the study, the IBBC took advantage of available cohorts of well-characterized

individuals with 22q11DS where DNA samples exist. Initial steps in the IBBC study involve 

extensive quality control. These include reviewing the phenotypic data, verifying the presence of

a typical 22q11.2 deletion (Figure 1), and determining relatedness between and ancestry of 

participants with high-quality DNA samples. Table 2 details the sample characteristics.

PHENOTYPIC PROCEDURES

Psychiatric Assessment

Harmonization of existing clinical psychiatric data for the IBBC has involved two main phases. 

To enable dichotomous �case-control� categorization, the presence of schizophrenia (or related 

psychotic illness), or the absence of any psychotic illness in subjects assessed at age 25 years or 

older, is established for all subjects. Complementary methods enable the study of at-risk youths 

with 22q11DS. 

Schizophrenia spectrum disorders. Across sites, a semi-structured diagnostic 

interview,
63,64

with collateral information and medical records, provided details on clinical 

presentation and longitudinal history for establishing a DSM-IV diagnosis of schizophrenia, 
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schizoaffective disorder, or related psychotic disorders such as delusional disorder or psychotic 

disorder not otherwise specified. After extensive discussion, the few cases with a psychotic 

mood disorder were excluded from initial analyses. For phenotypic harmonization, two 

investigators with clinical expertise independently reviewed standardized clinical summaries 

(average 2-3 subjects/site). There was full consensus among the two reviewers and the diagnosis 

provided by the sites for case-control classification. Individuals of any age who met diagnostic 

criteria for a major psychotic disorder, predominantly schizophrenia, were included as �cases�. 

Non-psychotic adults. Participants > 25 years-old at the time of assessment, with no 

evidence for a psychotic disorder or psychotic mood disorder (i.e., bipolar disorder or major 

depression with psychosis), were classified as �non-psychotic,� as they were likely to be through 

the major risk period for developing psychosis. Consequently, individuals <25 years at the time 

of the last assessment without a psychotic disorder nor subthreshold psychotic symptoms are 

labeled as �putative controls.� This categorization does not exclude the possibility of other 

neuropsychiatric conditions that are common in 22q11DS (e.g., anxiety, ADHD).
22

Subthreshold psychosis youths. The majority of existing participants in the IBBC cohort 

are young, thus not yet through the risk period for developing schizophrenia when assessed 

(Table 2). Subthreshold psychosis is systematically assessed by applying established diagnostic 

interviews and scales.
65-67

 Investigators with expertise in child and adolescent psychiatry reached

a best estimate �subthreshold psychosis� designation based on review of a standard clinical 

summary provided across sites (on average 3 subjects/site). Subthreshold psychosis is applied 

when positive psychotic symptoms are persistently reported, but severity and impact on function 

do not justify a formal diagnosis of a psychotic disorder. Most sites provided quantification of

subthreshold symptom severity, based on structured interview data (Structured Interview for 
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Prodromal Syndromes, SIPS;
66

 or Comprehensive Assessment of At-Risk Mental States, 

CAARMS
67

). Because many youths who have not yet passed through the risk period for the 

development of psychotic illness have been followed longitudinally at IBBC sites, data available 

on quantitative cognitive phenotypes relevant to schizophrenia risk, including decline in verbal 

abilities in individuals,
54

 will also be used for genomic analyses. 

Cognitive assessments

Standardized IQ scores, available for many subjects across sites, provide measures of general 

cognitive ability, verbal abilities, nonverbal abilities, and selected executive functions. Using

both cross-sectionally and longitudinally obtained standardized IQ scores allowed definition of

an average cognitive trajectory for 22q11DS individuals, on which individual trajectories can be 

plotted to identify deviations from what is expected in this population. This approach has 

enabled generation of a quantitative measure of IQ decline as a phenotype of interest for genetic 

analyses.
46,54

To enhance commonality across other neurocognitive variables, several 

considerations were applied: representation across at least five IBBC sites, and comparability of 

neurocognitive test versions, administration procedures, and scoring. This will allow the 

application of standard procedures to create composite measures for the domains of executive 

function, social cognition and verbal learning. These domains were initially prioritized given 

their relevance of these domains to schizophrenia vulnerability.
51,56-59

 Also, the majority of sites 

used comparable measures within these domains.

GENOMIC APPROACH

The IBBC genomic approach to identify variants that may contribute to expression of 

schizophrenia and related conditions in the 22q11DS population is outlined in Figure 2. The 
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approach envisions testing four genetic models. One model is that variants on the haploid (single 

copy) 22q11.2 deletion region segment are enriched in those with psychotic illness and related 

conditions. The other three models will test for enrichment of genome-wide variants outside this 

22q11.2 region: in common sequence variants (i.e., single nucleotide polymorphisms (SNPs), in 

a traditional genome-wide association study (GWAS) paradigm), in rare sequence variants, and 

in rare structural variants. 

To test these models the IBBC plans to use both existing and new genotypic data. Indeed, 

a major focus of the IBBC is to generate WGS data for this valuable cohort. In comparison to 

whole exome sequencing, WGS permits more complete analysis of sequence and structural 

variation including coding and non-coding regions of the genome, while not suffering from 

capture and coverage biases.
67

 The rapid drop in price increased feasibility, and thus the bulk of 

the grant funding has supported the generation of WGS data for >80% of subjects in the IBBC 

22q11DS cohort (estimated n=1,576, before quality control measures, Figure 2). DNA samples 

were submitted for WGS (average depth 30X) using two platforms: for the first ~100 samples 

the Illumina HiSeq 2000,
68

 and thereafter the Illumina HiSeq X Ten. Initially, participants with 

schizophrenia (�cases�), or with no psychotic disorder and age ≥25 years (�controls�), were 

prioritized.

Mapping and variant calling of SNVs (including SNPs) includes use of novel software 

tools (PEMapper/PECaller) developed at Emory.
69

 Cleaned and annotated (reference genome 

assembly GRCh38) sequence data are placed into Variant Call Format (VCF) and annotated 

using ANNOVAR,
70

enabling standard analytic approaches to be applied, including variant 

classes (i.e., exonic, intronic), rarity, and functional effects.
71-73

 Annotation of SNVs from coding 

regions uses standard pipelines and bioinformatic filters for functional impact.
15,74-78

 Similarly, 
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variants from non-coding regions are annotated using the most up-to-date methods available in 

this evolving area of genomic study.
15,74

WGS data allow detection of small structural variants beyond the resolution of 

microarray data. Calling of structural variants across the size spectrum from WGS data requires a 

combination of complementary methods. The analytic strategy for the IBBC includes 

interrogating read depth data, and discordant pair/split read data needed to call both balanced 

(inversions and translocations) and unbalanced (CNV) variants.
79-82

 CNV calls will provide a 

comprehensive genome-wide structural map for each subject, ready for further computational 

analyses. 

Complementing the WGS approach, the study takes advantage of existing data from 

Affymetrix 6.0 microarrays (Figure 2) available for many participating 22q11DS subjects from 

previous studies of cardiac phenotypes,
83,84

 with comparable array data generated for remaining 

subjects. Arrays provide both SNP data for use in genome-wide association study (GWAS) 

analyses and calculation of schizophrenia polygenic scores,
85

 and for genome-wide studies of 

structural variants (CNV) in addition to the 22q11.2 deletion.
86,87 

These common sequence and 

rare and common structural variant data also serve an important role in quality control, e.g., for 

comparison with variants identified by WGS.

The potential power of the proposed IBBC genomic approach and the enhanced effect 

sizes in 22q11DS are supported by the results to date reported in the Early Findings section 

below for additional rare structural variants.
87

 For genome-wide rare sequence variants, 

published power calculations in a proof-of-principle study using a WGS method to assess 

patients with 22q11DS with and without schizophrenia are available for gene-set burden 
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tests.
15

For n=100 subjects per group, power for plausible functional gene-sets was >0.90 for 

various types of coding sequence variants, with Cohen�s d effect size estimates of, e.g., 1.90, 

0.88, and 0.55, based on the nine genomes investigated.
15

With respect to aggregate common 

variants, there were also promising though non-significant results reported for the schizophrenia 

polygenic risk score in this study.
15

Estimates for detecting individual common variants with 

relative risk of 2 to 3 using a typical GWAS genome-wide significance threshold (5 x 10
-8

) show 

power >0.80 in the IBBC cohort (sample sizes as in Table 2) but, as expected, very low power 

for individual rare variants.

Variants in the 22q11.2 deletion region that increase likelihood of expressing schizophrenia 

and related phenotypes

Individuals with 22q11DS have just a single copy of the genes within the 22q11.2 deletion

region, a region of the genome well known for its complexity, partly due to the multiple low 

copy repeats (LCR22s) flanking and within this region (Figure 1).
19-21 

Comprehensive analysis of 

genotype-phenotype associations in 22q11DS mandates special expertise and consideration of 

this region. The IBBC study thus involves initial analysis of the haploid allele on the intact 

chromosome 22 separately from WGS data from the rest of the genome (Figure 2).
88,89

To call 

hemizygous single nucleotide variants (SNVs), PEcaller is rerun for this region in a haploid 

mode. 22q11.2 deletion region variants are then annotated and analyzed as for variants from 

other regions, but with special consideration of the hemizygosity and its potential effects on 

phenotype.
13

Detailed annotation and investigation of the complex architecture of the LCR22s,
89-

91 
and analysis of breakpoints and corresponding 22q11.2 deletion extent, including for rare 

nested 22q11.2 deletions, provide further unique data. These will allow regional and haplotype-

based analyses of the deleted or non-deleted allele, effects related to coding and non-coding 
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sequence variants within and flanking the 22q11.2 deletion region, and the potential for 

identifying hotspots for meiotic chromosomal rearrangements. Collectively, these data will 

enable the development of a morbid/benign variation map of the entire 22q11.2 region for testing 

with phenotypic expression.
88

Genome-wide variants that increase likelihood of expressing schizophrenia and related 

phenotypes 

Planned analyses of SNV data include logistic-regression modelling to compare allele 

frequencies between the 22q11DS schizophrenia and no psychotic illness groups, accounting for 

covariates such as sex, ethnicity, genotyping platform, and read length. Statistical significance is 

established via permutation. These sequence-based variant analyses will proceed in a logical 

fashion, using standard genome-wide approaches. These will include GWAS for common 

variants of >5% minor allele frequency (MAF), gene-based analyses for other SNPs (1-5% 

MAF), and modified Sequence Kernel Association Test (SKAT) or other burden tests for rare 

SNVs with <1% MAF.
91

 Rare coding and non-coding variants will be grouped by type (e.g., 

missense, lincRNAs) and prioritized using factors such as functional scores (e.g., CADD) and 

conservation.
15,76

 Inspection of expected variant frequencies using public databases (e.g., ExAC, 

gnomAD) will be important.
75  

Both individual variants and groups of variants at the gene or 

pathway (e.g., functional gene-set) level will be tested, using such aggregate-type tests as 

polygenic risk scores (for common variants) and burden tests (for rare variants).
15,92

 Notably, a 

test like SKAT can detect genes or pathways that contain causal variants that act in different 

directions on phenotypes (e.g., some variants may increase risk, while others decrease risk). 

Also, as noted above, there is some published evidence for the utility of functional gene-set 

based burden analyses for rare functional variants and for polygenic risk scores in 22q11DS.
15,87
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For the rapidly evolving area of analyzing non-coding variants, including intragenic enhancers 

distal to coding sequence, the most up-to-date resources and functional-based variant scoring 

methods available will be used, appropriate to common or rare variant analyses.
15,71

To test the generalizability of individual and aggregate rare and common, coding and 

non-coding, top hits will be evaluated in available general population schizophrenia samples.
85

Other resources will also be used to prioritize the schizophrenia-related variants identified in 

22q11DS, including in silico analyses of potential function (including regulatory function) using 

animal model data and human tissue expression data.
16

To adjust for multiple testing while 

avoiding overcorrection in analyses that involve inherently correlated data (e.g. testing two 

pathways that may have genetic overlap), various methods may be applied, e.g., using 

permutation or other standard methods (e.g., Benjamini-Hochberg False Discovery Rate).
15,74  

To 

appreciate the overall genomic architecture of schizophrenia in 22q11DS will require eventual 

integration of all genomic variant findings with the phenotypic data, and other downstream 

analyses to investigate potential disease mechanism and function
16

using actual animal models, 

tissue expression profiles, and spatiotemporal expression profiles during brain development

(Figure 2).

Alternative phenotype approach

Initial analyses prioritize comparisons between participants with 22q11DS and schizophrenia and 

those with no psychotic disorder over age 25 years (Table 2).
87

 Other analyses involving data 

from youths where numbers are far greater (Table 2) will test whether various definitions of 

subthreshold psychosis and related phenotypes, including IQ decline,
54

 produce similar genetic 

findings. Thus, all of the analyses described above will also be performed using alternative 

schizophrenia-related phenotypes. Notably, the vast majority of the 22q11DS sample with WGS 
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results from this cross-sectional IBBC study comprises youths with their years of greatest risk for 

psychotic illness ahead of them. 

EARLY FINDINGS

The IBBC has provided an unprecedented large sample, establishing a database for 22q11DS 

with common phenotypes that enable data integration. Initial published findings illustrate the 

promise of this consortium. In the largest study of psychiatric disorders in 22q11DS (n=1,402; 

ages 6�68 years) using validated diagnostic instruments, psychotic disorders were present in 

41% of adults over age 25 years. Autism spectrum disorders and ADHD in children and

adolescents, and anxiety disorders across all age ranges, were also prevalent with sex differences 

in ADHD and anxiety disorders similar to those reported in the general population.
22

To evaluate the relationship between psychosis and cognitive functioning, clinical 

assessment and IQ measures were examined longitudinally in 411 participants with 22q11DS.
54

Across the sample, mild decline in IQ, especially in the verbal domain, was noted with 

increasing age.
53

 However, in youth who developed psychotic illness, this decline was 

significantly steeper, similar to observations in schizophrenia in the general population.
94

In another recent Consortium-based paper, individuals with 22q11DS (n=692) were 

assessed for subthreshold psychotic symptoms. Nearly one-third of the participants met criteria 

for positive subthreshold psychotic symptoms and almost a quarter met criteria for 

negative/disorganized subthreshold symptoms. Adolescents (aged 13�17 years) showed the

highest rates of subthreshold psychotic symptoms. Cognitive deficits were associated with 

subthreshold psychosis.
95
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To investigate the role of additional rare genome-wide CNVs in expression of 

schizophrenia in 22q11DS,
87

 high quality genome-wide CNV from the available microarrays

were annotated using stringent methods and adjudicated for rarity using independent control 

microarray data as in previous studies.
12,86,96-101

Compared to participants aged 25 years and 

older with no psychotic illness, the schizophrenia group was significantly enriched for genome-

wide rare CNVs that implicated known and novel schizophrenia risk genes and loci.
87

 Evidence 

of interactions at a network level of these genes with 22q11.2 deletion region genes is consistent 

with the threshold-lowering effect of the deletion, highlighting the importance of an integrated 

genome-wide approach.
92

A novel data mining strategy that integrates biological information from gene association, 

gene network, and disease/trait phenotypes has been developed to help prioritize potential 

schizophrenia risk genes and networks.
93

 This method is to be applied in the IBBC WGS 

analyses. Other upcoming IBBC publications include findings on novel structural 

polymorphisms that predispose to chromosome 22q11.2 rearrangements, and analysis of the 

extent to which schizophrenia polygenic risk score predicts outcome in 22q11DS. 

LIMITATIONS AND FUTURE DIRECTIONS

The IBBC has capitalized on existing global collaborations in an effort to assemble the largest 

sample available of a highly informative neurogenetic syndrome. The consortium includes 

retrospective data. While carefully assessed, the IBBC data do not have the depth and scope that 

prospective studies can attain. Importantly, prospective studies can use the same standardized 

validated and efficient measures for deep phenotyping. Such future studies could use novel tools, 

such as computerized assessment, which can be administered in multisite large scale studies 

across a broad age range, and have been validated in 22q11DS. To investigate the possible 
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contribution of environmental non-genetic factors to schizophrenia will require recontacting 

subjects or collection of new data. Prospective longitudinal studies would help address these 

limitations and enhance the contributions to the field. Although the current work of the IBBC is 

focused on schizophrenia, the dataset and findings might also be of interest to researchers 

working in other areas, such as anxiety in neurodevelopmental disorders and cognitive 

development in young people with intellectual disabilities.

The genomic efforts were also built on the expertise of established investigators and the 

promise of WGS to help delineate the genomic architecture of human disease. Nevertheless, 

other molecular approaches may well be needed to fully understand the changes wrought by a 

22q11.2 deletion, including risk for schizophrenia and the variable expression of 22q11DS in 

general. The potential roles of transcriptional regulation, post-translational modification, and 

other yet to be identified mechanisms will be important to pursue with emerging technologies. 

These investigations are likely to need expanded sample sizes. This would also be the case for 

the current study which is underpowered, despite the large sample amassed, for lower effect size 

individual variants or variant groups, and for analyses of interaction effects.

With advances in technology and reduction in costs, future studies can also consider 

informative replication samples and the best methods to address hypotheses generated in the 

field, particularly those that focus on relevant genotype-phenotype associations. Novel strategies 

to identify potential protective factors, and develop possible preventive and therapeutic 

interventions, are also promising future directions.

CONCLUSION

The IBBC has demonstrated the feasibility and utility of large-scale collaborations to examine an 

informative rare CNV that can contribute to advancing the mechanistic understanding of 
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schizophrenia spectrum disorders. The rich phenotypic dataset amassed for individuals with 

22q11DS and schizophrenia spectrum disorders, compared to those without psychotic features, 

as well as at-risk youth is unprecedented and buttresses the generalizability to schizophrenia and 

clinical risk for the disorder in the general population. Integration with the broad genomic 

approach, combining whole genome sequencing, genome-wide microarray technologies and 

novel emerging technologies can contribute to advancing the pathogenesis of schizophrenia and 

ultimately to targeted preventive and therapeutic efforts. Likely outcomes include identifying 

genetic modifiers from both the intact 22q11.2 region alleles and genome-wide
87

 that will not 

only address the key goal of delineating schizophrenia vulnerability but could also inform other 

important aspects of expression in this syndrome and beyond. The implications for other 

molecular models, for understanding development, and for neuropsychiatric research in general 

are potentially profound.
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Table 1. IBBC Sites, Roles and Samples

IBBC Site (by Group)
Samples Submitted

per Site

Toronto*^ 155

Australia 28

Santiago 73

Total by group CAN+ 256

Leuven*^ 125

Geneva 119

Maastricht 95

Marseilles 25

Tel Aviv 103

Utrecht* 151

Total by Group EUA 618

Cardiff* 122

Dublin 64

London 22

Madrid 34

Mallorca 27

Rome 89

Total by Group EUB 358

Albert Einstein NY
+

NA

CHOP-Penn*^ 335

Duke 70

Emory*^ 29

SUNY 101

UCLA 81

UC Davis 69

Total by Group USA 685

Total Samples Submitted
1

1,917

IBBC �International 22q11.2 Brain Behavior Consortium

*-Indicates Group Organizing Site; ^ -Indicates both Phenomic and Genomic Site; +-Indicates Genomic 

only site; NA �Not applicable 
1
Total samples submitted will be greater than the number of those with usable genomic and phenotypic 

data, after extensive data cleaning.
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Table 2. Demographic and genotypic characteristics of the 22q11DS IBBC sample with 

typical 22q11.2 deletions (c February 15, 2017)
1

Main diagnostic groups (n=582)

At risk group

(n=1,034)

Total

(n=1,616)

Psychotic 

illness
2

(n=292)

No psychotic 

illness at age ≥25 y

(n=290)

n % n % n % n %

Females 143 49.0 177 61.0 513 49.6 833 51.6

Youths 

(< age 21 y)
97 33.2 - - 915 88.5 1012 62.6

European ethnicity 241 86.7 258 91.5 809 78.2 1308 80.9

A to D 22q11.2 

deletion
268 91.8 263 90.7 953 92.2 1484 91.8

WGS data 

available
271 92.8 275 94.8 918 88.8 1464 90.6

Mean SD Mean SD Mean SD Mean SD

Mean age 29.3 13.0 35.6 9.8 14.4 4.5 20.9 11.8

Age at onset 22.3 8.9 - - - - - -

1
All numbers are best estimates for subjects with typical 22q11.2 deletions, subject to data 

checking and cleaning; individuals (total n=301 of 1,917) without available 22q11.2 deletion 

data as yet, and a small number (<20) with atypical 22q11.2 deletions, are not included (see text 

for details).

2
The psychotic illness designation comprises schizophrenia (66.1%), schizoaffective or psychotic 

disorder not otherwise specified (25.3%), or other psychotic spectrum disorders (8.6%), but 

excludes a small number of subjects with psychotic mood disorders.
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Figure legends

Figure 1. The 22q11.2 region. Cytogenetic representation of chromosome 22 showing the short 

(p) and long (q) arms with the centromere, which functions to separate both arms. Chromosome 

22 is an acrocentric chromosome, as indicated by the two horizontal lines in the p arm.  The 

22q11.2 deletion occurs on the long arm of one of the two chromosomes, depicted by dashed 

lines in the 22q11.2 band. The position of the two low copy repeats (LCRs) on 22q11.2 

(LCR22A and LCR22D), which flank the typical 3-Mb deletion, LCR22B and LCR22C and 

genes (protein-coding and selected non-protein-coding) within the 22q11.2 deletion region, as 

well as the three typical 22q11.2 deletions that include LCR22A and two nested 22q11.2 

deletions that do not include LCR22A (all indicated by blue bars below), are depicted in the 

inset.
13

Figure 2. Genomics flow diagram.

The figure provides an overview of the ongoing and planned genomics analyses in the IBBC 

study, beginning with genomic DNA samples available from subjects with 22q11DS from 

participating international centers. Samples were sent to one laboratory (Albert Einstein College 

of Medicine, NY) that serves as a central clearinghouse, and provides a unique IBBC 

identification number to enable linking of genotypic and phenotypic data. Data primarily from 

studies that pre-dated the IBBC are indicated on a cyan background. The mauve and yellow 

backgrounds indicate data generated from the IBBC study from WGS and microarray data, 

respectively. Dotted lines indicate the work flow for microarray data. These provided data for 

initial analyses, and available for comparison with WGS data, albeit at lower resolution. Red font 

indicates analyses using the phenotypic data available for subjects with 22q11DS from 

participating international centers. Main analyses involve comparisons of subjects with 22q11DS 
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and schizophrenia vs. those with no psychotic illness at age 25 years and older. See text for 

details. 

1
Quality control measures applied to both WGS and microarray data include checking for 

duplicate and related samples, for sex and ethnicity using phenotypic data to help detect sample 

mix-ups, and for 22q11.2 deletion size (assisted by available multiplex ligation dependent probe 

amplification (MLPA) data and heat-map data generated from microarrays). Additional quality 

control measures, following transfer of raw WGS data (fastq files) generated at HudsonAlpha 

Genome Sequencing Center (Huntsville, AL) to the Human Genetics Computational Cluster 

(Emory U), include checking for mixing of samples, level of genetic variation, base transition to 

transversion ratios, too many variants in particular regions, and variants that departed from 

Hardy�Weinberg equilibrium at p<10
-4

. 

2
The intact haploid 22q11.2 allele requires special computational considerations, thus is analyzed 

separately from data from the rest of the genome.
82,83

3
Annotation of structural variation from WGS data is a pioneering area of genomics. Availability 

of CNV data from standard microarrays in this study will be valuable for comparison 

purposes.
74-77

4
Integrated analysis using all variant data, common and rare, sequence and structural, will 

provide an overview of the genomic architecture of schizophrenia in 22q11DS. Validation 

studies, e.g., polymerase chain reaction for SNV, quantitative polymerase chain reaction for SV, 

will proceed according to results.
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CNV = copy number variation; LOF = loss of function; SNP = single nucleotide polymorphisms 

(common sequence variants); SNVs = single nucleotide variants; SV = structural variants; WGS 

= whole genome sequencing
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McDonald-McGinn, D. M. et al. (2015) 22q11.2 deletion syndrome

Nat. Rev. Dis. Primers doi:10.1038/nrdp.2015.71

Figure 1 - Chromosome 22 ideogram with inset indicating low copy repeats and genes within the 22q11.2 region 
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Figure 2
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