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A characteristic feature of differential-algebraic equations is that one needs to Pnd derivatives of some of
their equations with respect to time, as part of the so-called index reduction or regularization, to prepare
them for numerical solution. This is often done with the help of a computer algebra system. We show
in two signibcant cases that it can be done efpciently by pure algorithmic differentiation. The brst is the
Dummy Derivatives method; here we give a mainly theoretical description, with tutorial examples. The
second is the solution of a mechanical system directly from its Lagrangian formulation. Here, we outline
the theory and show several non-trivial examples of using the OLagrangian facility® of the NedialkovD
Pryce initial-value solver DAETS, namely a spring-mass-multi-pendulum system; a prescribed-trajectory
control problem; and long-time integration of a model of the outer planets of the solar system, taken from
the DETEST testing package for ODE solvers.

Keywords: algorithmic differentiation; differential-algebraic equations; dummy derivatives; Lagrangians

1. Introduction

1.1 DAE formulation and basic ideas

In industrial engineering, the modelling of systems to simulate their time evolution is increas-
ingly done by methods that lead to a differential-algebraic equation (DAE) system as the
underlying mathematical form. Such DAEs often come from equation-based modelling (EBM),
which describes system components by the basic physical laws they obey and supports Omulti-
physicsO models that combine several scientibc disciplines, as for instance mechanical, electrical,
chemical, and thermodynamic behaviour in a car engine.

Facilities created to support EBM include gPROMS, which is both a language and a graphical
modelling environment (GME) built on it; the Modelica language and GMEs such as OpenMod-
elica, Dymola and MapleSim that are built on it. Simulink, built oathdb , is a GME of similar
scope but less in tune with the general DAE concept.

A DAE is just a set oh equations connecting a vector X(t) of n state variableg, ..., X,
and some derivatives of them with respect to tim®ne can always reduce it to a brst-order
form F(t,x,x) = ONas accepted by the DASSL solver and its relativég[Nin the same way
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2 N.S. Nedialkov et al.

as one does for an ODE system. Hereneans d/ dt. However we use a more Bexible form
allowing arbitrary higher derivatives:

fi(t, thex; and derivatives of thejr= 0, i=1,...,n. (@)

This often lets one formulate problems to ouadds initial-value code 11,12] more concisely,
e.g. LagrangeOs equations for a mechanical systenmywthordinates and. constraints need
ng + nc variables, compared tang+ nc in the prst-order form.

1.2 Aim

In general, differentiating some of DAEOs equatfprs0 with respect td is an essential step in
solving a DAE. This article is about two signibcant and rather different uses of this. The brst is
the widely used dummy derivatives (DDs) method of Mattsson and SSde8]ridt prepares

a higher index DAE for numerical solution by a classical index-1 DAE code, or by an explicit
ODE code such as a RungebKutta method.

The second is the task of solving a, possibly constrained, mechanical system directly from
a Lagrangian formulation. Conceptually it has several phases. The motion is debned by a
Lagrangian functiori(t,q,q) whereq is a vector of generalized coordinatgs plus possibly
a vector ofn. constraintsC(t,q) = 0. To set up (phase 1), the equations of motion flomind
C one applies partial differentiatioh gqand / q, as well as straight/dit, to L andC. When
n. > 0 the result is an index 3 DAE, which must (phase 2) be readied for numerical solution and
(phase 3) solved.

Either use case at brst sight seems to need symbolic differentiation, e.g. in a computer algebra
system. We show pure AD sufpces in either case. This insight may not be new but we believe
the method is: for DDs it is new to combine index and order reduction in one simple framework;
for Lagrangian calculations it is new to combine all phases seamlessly by AD, giving a simple
user interface and efbcient numerical solution.

2. Structural analysis

In an ODEXx = f(t,x), causality is obvious: in differential language, it explicitly specibes the
statex + dx at the next instartt+ dt to bex + f(t, x) dt.

In a DAE, causality is not obvious. For instance, these size 2 DAEs are quite different, where
u(t) is a given driving function:

xSut)=0, xSx=0, (2)

and x%Su(t)=0, xSx=0. (3)

To solve (2), makex, the subject of its second equation Causess) and integrate the result;
it is really an ODE, with one degree of freedom. To solve (3), mgkihe subject of its second
equation %, causesq) and differentiate. DAE (3) has no degrees of freedomNit has the unique
solutionx; = u(t), xo = u(t) and does not look like an ODE at all; such behaviour is common in
control problems.

A solvable DAE has a chain of causality that must be found in order to prepare for numerical
solution. Knowing which equatiorfs= 0 to differentiate, and how often, is crucial to Pnding this
causal chain. When correctly done, the original DAE augmented by the differentiated equations
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can be solved to produce an ODE in some (possibly not all) of the original variablesNthe ODE
part. Once this ODE is solved, the remaining variables forming the algebraic part can be found
by algebraic manipulations combined with differentiations.

Let ¢ be the number of differentiations of equatibneeded by the Omost economical® way
of doing this. For reasons to do with the Taylor series method usedabysDve call them the
equation-offsets

For instance the equations of (2) do not need differentiatjog:c;) = (0,0). We solve to
produce the ODE par, = u(t) in justx,. By contrast, (3) haécy, ¢2) = (1, 0) meaning the brst
equation must be differentiated, after which we solve toxget u(t), xo = u(t). The ODE part
is empty.

In the DAE (2), it happens we can solve for the algebraic variabléo getx; = u(t),
independently of solving the ODE, but this need not be so: if we change it to

x1SxSut)=0, xSx=0, 4)

then the ODE part, namekg S x, S u(t) = 0, must be solved before we know.

Unlike a well-behaved ODK = f(t, x), which has a solution path through each point of the
regionR of (t,x) space where it is dePned, the union of a typical DAEOs solution paths is a
proper subset dR, the consistent manifold or set ofconsistent pointsThe dimension of its
intersection with any timé= t, is dof, the number otlegrees of freedonequivalently the size
of its ODE part (here assumed independertppf

Theindexof a DAE used in this paper is simply

= miaxci . (5)

The classicatlifferentiation index 4 of Brenanet al. [1] assigns index 1 to DAE (2) and 2 to
DAE (3). In summary for the examples above

DAE ODE part dof algebraic part offsets d
Equation (2) X2 1 x1 (found independently of ODE part) (0,0 0 1
Equation (3) empty 0 X1, X2 (1,0 1 2
Equation (4) X2 1 x1 (found usingx, in ODE part) (0,0 0 1

The structural analysigSA) approach aims to derive a DAEOs causal chain by studying its
sparsity, namely what derivatives of variables occur in what equations. The method is: seek a
numberc; of times to differentiate thé&h equation that gives a structurally nonsingular (SNS)
set of equations for the resulting highedfth, derivatives of thethhen c= (Cg,...,Cn),
d= (dy,...,d,) are the vectors of equation-offsets and corresponding variable-offsets. SNS
means one can make a matching of variables to equationsNequivalently a transversal, a set
T of n positions(i,j) in annx n matrix with just one in each row and in each columnNsuch
that derivativeg-(d’) occurs in the differentiated equatidqﬁi) = O for each(i,j) T. There exist
unique element-wise smallest non-negatiye, the canonical offsets, which we assume chosen
henceforth. They debne the Omost economicalO differentiations mentioned above.
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An SA-friendlyDAE by depnition is one for which these equations are actually (not just
structurally) nonsingular at some consistent point, that isnthen system Jacobian

J= fl(cl)/ Xj(dJ) (6)

ij=1..n

is nonsingular there. Assuming suitable smoothness df,ta@nique solution then exists locally
through this point, and through any nearby consistent points.

Experience shows most DAESs in practice are SA-friendly. This fact underlies the wide use
of the DDs method, which uses the results of SA and succeeds if and only if the DAE is SA-
friendly. The SA can be done by the graph-based Pantelides mettflpdfthe Pryce -method
[15] based on the signature matrix= ( ), where

order of highest derivative of in f; if X, occurs inf;,

L= 7
! S if not. )

The methods are equivalent except that the latter handles higher order DAEs without reduction
to brst order, while the former as describedid][does not.

The DAE (with index 4 = 3) derived from a constrained Lagrangian of a mechanical system
as in Section 4, is always SA-friendly when posed as an initial value problem. Posed otherwise,
e.g. as a prescribed-trajectory control problem, it need not be. The occurrence of non-SA-friendly
but solvable DAEs in applications is studied ¥6[18]. For systematic ways of converting such
a DAE to an equivalent SA-friendly one sef.

SA leads to a notion of structural indey, debned as the in (5), plus 1 if any offset; is
zero. For an SA-friendly DAEsis always 4, and usually equals it in practice, sd&].

3. Dummy derivatives

3.1 The DDs construction

Many numerical methods for higher index DAEs start with index reduction: augmenting the
DAE by time-derivatives of some of its equations to produce a DAE of larger size and smaller
index. Various index reduction methods have been used that convert the DAE to an ODE with
more degrees of freedom than the DAE. Then the DAEQOs solution paths form a proper subset
of those of the ODE. This tends to be bad numerically, as errors cause drift from the consistent
manifold that can be exponential once it starts.

Dummy derivatives (DDs) by contrast are a systematic way to form an equivalent ODE with
exactly as manfpOF as the (SA-friendly) DAE. If one views the DAE as a 3ow on the consistent
manifold M , DDs describe the Bow in a local coordinate systemMor Thus numerical drift
can only be withinM , where it is less harmful. However if the path leaves the patchl of
where the coordinate system is nonsingular, one must choose new coordinates. This need for DD
switching or pivoting complicates a numerical algorithm.

The following description of the DDs process is equivalent to tha8jnThe set of possible
matrix sequence@y) whenever one selects a state vector, below, is the same in either method,
but we PndGy from smallest up (each is a sub-matrix of the next), whileHnds them in the
opposite order.
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Assumec; andd; are the canonical offsets. First form the derivatives of éagh0 up to the
¢ith, forming the augmented systemMif = n+ , ¢; equations:

fV=0 1=0...,c, i=1,....n ®

Its unknowns are thél, = n+ . d; derivatives of the state variablegsup to thed;th. View
them for now as unrelated algebraic unknowns that we call items, and to emphasise this denote
themx; :

Xi renames<j('), I=0,....d, j=1,....n 9

The system has fewer equations than variables by the amothS i Gi, which equals the
numberdof of degrees of freedom. To balance this, the DDs method Pnds a ndaibefitems
X to be state items, fd(j, ) in a suitable se® of index pairs, chosen such that all the other items
can locally be solved for as functions of these. The state vagtiwrmed by the state items is
the associated local coordinate system of the mankibld

One required < d; for each(j,I) S, so thatxj+1 is also an item. Then the differential
relations between each state item and its next higher derivative:

X = X +1 (10)

can be interpreted as an ODE system for the state items.

State vector selectionNinitially or at a DD-switching pointNmay be done as follows. The
nx nsystem Jacobiad in Equation (6) is nonsingular there. AoE kg, kg + 1,...,S1 where
kq is minus the largest;, the Ostandard solution schemeO of theethod constructs sub-matrices
Jy of J by selecting those rowiswherek + ¢ 0 and columng wherek + dj 0. Then:Jy is
of full row rank; it has sizem x ne wherem,  ny; the sum of the differences | (ng S m)
equalsdof. For eaclk, selectmy columns ofJy that form a nonsingular matrig. This can and
must be done in such a way that the set of selected columns increasds sdtthat eaclGy is
a sub-matrix of the next. For each of thgSm,) unselected columrjsconsider the iterv(j(k+ @,
The set of all these is a valid state veckgrsince, briel3y, non-singularity dbx ensures that
at stagek, Oselected® iteva;ﬂ'(é'dj) belonging to selected columns can, by the Implicit Function
Theorem, be found locally as functions of the unselected items.

As said, (10) thus becomes a sizi®f ODE system,

Xg = F(t, Xs). (11)

This is locally equivalent to the sizdg DAE (8), (10) and hence to the original DAE. Though
Oindex-10 is the usual term used, the stronger property holds that

(8), (10) form animplicit ODE,
debned as an SA-friendly DAE whose offsetare all zero.

3.2 Example

Example 3.1 (Pendulum)Let the original DAE be the simple pendulum in cartesian coordi-
nates, shown with its signature matrix (7), with relevant transversals marked. Ggaatity
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length are constants, andt), y(t) and ( t) are state variables.

X 'y Gi
0= A=%X+X A 2 0 0
: €
0=B=y+y Sg, - B 2 00 (12)
0= C= X+ y?$ 2 C 0 O 2
g 2 2 0

The offsetx; = 0, 0, 2 implyC is to be differentiated twice, giving 5 equations in 7 unknowns.
On the left of (13), these are shown in the notation of (12); on the right they have been trans-
lated to the generat; notation wherex is called variable 1 so its derivativesx, X become
X10, X11, X12, and so on. The function&,B,C are renamed al0Os and a similar notation used for
their derivatives.

Augmented system After renaming
0= A=%+x 0= f10= X2+ X10X30
0= B=Vy+y ég 0:f0—X22+x20X30$g
0=C=x2+y*S 2 0= fao= X3p+ x3,S 2 (13)
0= C= 2(xx+ yy) 0= f31 = 2(xgoXu1 + X20X21)
0= C= 20xx+ X2+ yy+ y?) 0= fao = 2(XaoXe2 + X5; + XooXoz + X3,)

unknownsx, X, X, v, v, V, UNKNOWNSX10, X11, X12, X20, X21, X22, X30

One can choose any ¢x, x), (y,V), (X, ¥), (Y, X) as state vector (oneustchoose one undiffer-
entiated variable and one brst derivative), but only the brst two are OconvenientO for AD, as the
next section shows.

Suppose for examples = (x,X)  (X10,X11). It is easily seen that provideg i.e. Xyq, IS
nonzero one can bnd all the items as functions of these two, hence the pendulum DAE is
equivalent to an ODE (11) in thiss wheny =0.

The description of DDs given in Section 3.1 has the advantage of combining index reduction
and order reduction into one process. For computer solution, it is probably easiest to work with
the order 1 DAE formed by thdk = n+ ; d; Equations (8), (10). However Oby handO, one
can simplify by directly substituting the derivative relations into (8) where possible. E.g. the
right-hand set of equations of (13) becomes

0= Ao = Xu1+ X10%30,

0= By = X+ Xo0%30 S 0,

0= Co= o+ 35S 2,

0= C1= 2(XgoX11 + X20%21),

0= Cp = 2(xqo%X11 + X2 + XooXo2 + X3y),
0= X10 é X11.

In the Prst equatiory;, has becomexy;. The last equationxy = x;, can not be Osubstituted
awayONin general, any Equation (10) must stay ikjtendx;+ 1 are both state items, as this is
how order reduction occurs.

In Mattsson and S3derlind38 ferminology, a Odummy derivative® means a differentiated
item that, in our terms, is a solved for item but is not a state variable or the derivative of one. In
this example with this state vector, that makesandy, the DDs.
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3.3 Issues with switching, and numerical solution method

At a DD-switch, the set (8) of differentiated equations does not change. Thus at the housekeeping
level, a switch merely changes the Setf index pairyj, |) that debne the state vector. We veribed

that this switching method works, by a proof-of-concepatib implementation, as well as one

in C++to verify the AD aspects. One example was the double pendulum (one pendulum-rod hung
off another) inx,y coordinates, where each rod independently has four DD-switching points in a
full rotation, one in each quadrant, giving«44 = 16 possible ODD modesO.

It remains to be seen how efbcient one can make DD-switching for production code and for
larger problems. Finding th&y at a switch is non-trivial. Ideally one wants each one to be
maximally well-conditioned, which is expensive, so one seeks heuristic methods. This makes
Scholz and SteinbrecherOs simplibed metth@Hifiteresting. Less general than full DDs but
cheaper, it uses a highest-value transversal of the signature matrix to bPnd a state vector. One
might try it Prst, and if it gives ill-conditione@y, use full DDs.

It seems natural to solve the original DAE numerically, by giving formulation (8), (10) to a
standard index-1 DAE solver. However many models, especially mechanical ones, have many
equations but few degrees of freeddsy, dof. Then it makes sense to convert to the explicit
ODE form (11). In many mechanical contexts (though not all) this ODE is non-stiff and thus
amenable to, say, an explicit RungebKutta method. Working memory for sub-problems of size
up tonis needed by the root-bnding that forms (11), but is typically less than that needed by an
implicit DAE code on a problem of siz,.

3.4 AD for DDs

How can an AD tool help automate numerical solution by DDs, as described above?

It is helpful, but not essential, if the tool supporté di as a brst-class operator, of equal
status with+, %, sin(), etc., so that it can understand a representation of a DAE in the general
form (1). Tools such as ADOL-C and dcc/dcs 9] do not have this feature, but can handle
arbitrary expressions containing derivatives by renaming the latter as algebraic items and stating
their differential relations separately. This is like the method in Section 3.1, where derivatives
are renamed as algebraic in (9) and some differential relations between them stated in (10).

Our solver Daets uses Ole StauningOs AD pack&@dBAD++19], written in C++. It did
not originally include ddt but at our request in 2002, Stauning included the oper@iffr
such thaDiff( -, g) means & dt9. For instance, straightforward code for the pendulum, as in
the Daets user guide, is shown in Figude

More important, for DDs and other index reduction methods, an AD tool must be able to
differentiate thef; selectively. For instance in the pendulufandB are to be left alone, and
differentiated twice.

template <typename T>
void fcn(T t, const T xz, T »f, wvoid xparam) {
// z[0], z[1], z[2] are x, y, M.

const double G = 9.81, L = 10.0;

= Diff(z[0],2) + z[0]xz[2];
f[1] = Diff(z[1]1,2) + z[1l]lxz[2] - G;
£(2] = sqr(z[0]) + sgr(z[l]) - sqr(L);

1

2

3

4

5 £[0]
6

7

8 1}

Figure 1. Code for simple pendulum problem.
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At brst sight this seems to require a tool based on source code transformation, which could
generate code symbolically for the last two equations in (13), for instance. But this is not soN
the key is to treat different derivatives of a given variable, not in isolation but stored together
as a truncated power series (storage @&ef3 is already organized this way). For instance in the
pendulum, the unknowns form three objects

(Xo,X1,X2) order 2 power series,
(Yo,Y1,Y2) order 2 power series,
=( o) order 0 power series.

X
y

Here and in the next two paragraphs, sanserif denotes that the series is represented by Taylor
coefbcients (usually more convenient for implementation), not derivativesythetates to the
X¢ in (13) byxy = x/ k!, and so on.

AD by overloading, provided by many AD tools, now gives the needed values. For instance
evaluatingC = x>+ y?S 2 proceeds via these intermediate steps:

input

X = (Xo, X1, X2)

y = (Yo, Y1,Y2)

compute

Vi =x2 = (X3, AoX1, AoXz+ X2)

2 =y? = (Y3, 2Yoyi, 2Yoy2+ Y3

V3 =vi+ vy = (X34 Y3, 2XoXi+ VoY1), 2(XoXz + Yoy2) + X2+ y3)

C =vsSconsf{? = (x3+Yy3S 2, 2XoX1+ Yoy1), 2(XoXz+ Yoy2) + X2+ y?)

returning a degree 2 power series objedbolding the needed coefbcier{tsy, C1, Cy), that is
(C,C, C) in terms of derivatives.

EvaluatingA = X+ x andB=y+y S gis similar. Differentiating twice converts, e.g. the
degree 2 series = (Xo, X1, X2) to the degree O serig2x,). ThusA andB are returned as the
degree O serie& = (Ag) = (2x2 + Xg o) andB = (Bg) = (2y2+ Yo oé 0).

The above method gives an explicit evaluation offffdunctions (8) at thé\, arguments (9).

In the DDs context of reducing the DAE to an explicit ODE, one inputs state item values, say
Xs = (Xo,X1). The 5items<g = (X2, Yo, Y1,Y2, o) are trial values that produce 5 residual values

r = (Ao, Bo, Co, C1, Cy). By root-Pnding using suitable Jacobians, see below, wexpnithat
makesr = 0, thus solving forxg as a function oks. Extractx, from xg to form (xg, x2), which

is Xs. This implement$- in (11).

To make this work, the state items must comprise a contiguous set of derivatives of each
variable, with no gaps. (Hence, cf. the paragraph following (©8)y) and(y, X) are not useful
state vectors for the pendulum.) That$snust have the fornf(j,1) |0 I < j,j=1,...,n},
where = (1,..., n) is an integer DD-spec vector with O ; dyand ; ;= dof, which
uniquely specibes the DD scheme currently in use. DD switching can be based on changing this

, and following through the consequences for various associated index sets and Jacobian-related
matrices.

3.4.1 Complexity and efbciency aspects

We assumeNsee Section 3.3Nnumerical solution is by reducing (8), (10) to explicit ODE
form (11) and using an explicit ODE solver. To use an implicit, e.g. stiff, solver and compute
exact JacobiansF/ xg for this by AD is more challenging.
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Function values (8). Denote the vector of functidgni (1) by f, with inputs(t,x) wherex
denotes relevankCnd derivativesO. Viefas a computational graph or code list, overloaded to
compute different things depending on the type of inputs given to it.

Letx®@ denote the vector whogth component is a degrek truncated Taylor Series (TS) of
¥, equivalently the list ofOs derivatives up to tlgh. E.g. for the pendulum we usé? =
(x,y, ) @29 = ((x,x,%), (y,y,¥),()) , or the corresponding list of Taylor coefbcients. E€}
have the similar meaning. Then evaluating (8) can be written as follows:

O = f(t,x). (14)

with the rigorous interpretation that a numerical TS veat8r is given as input to the code list,
with each elementary operation overloaded to be a TS operation.

As the pendulum example illustrates, SA acts here as a scheduling algorithm: if one starts with
x@  each operation receives inputs of just the right degre&%sis returned as Pnal output. (A
differentiation reduces TS degree, while for algebraic operations the output degree is the least of
the input degrees.)

Since average degrees are typically low, say at most 3, the W¢ff®) of an evaluation of
(14) is a modest multiple of the wolk/(f) of a basic evaluation of the DAE (1), depending on
how the AD is implemented but independentof

Jacobians. The offsets give (8) a block-triangular structure. Evalugtimg(11) uses this,
solving subsystems of sizg, for k = ke, ..., 0, wherek, =S max ¢; andm, --- my = n.

Block kOs JacobiaBy is a square sub-matrix of th, x n, system Jacobiady for SA stagek,
which is a sub-matrix of the overall Jacobid= Jo.

NedialkovOs group has put im@s a forward-AD method to computd taken from Q). It
also overloads the code list, propagating compressed gradients instead of Taylor series; one can
write itas f = f(t, x) with an interpretation analogous to (14). By a topological sort one can
arrange that the code list fdy is an initial segment of that faly. 1, for eachk. If dense linear
algebra is used, the wol/(J) to evaluate] is of ordernW(f). However we use sparse linear
algebra which, with the compressed gradients, usually gives big speedups on larger problems.

In general each block of (8) is a nonlinear system, but the quasi-linearity analysis phase of SA
(overloadingf yet again) bPnds which blocks are linear, with further efbciency gains.

Experience with the corresponding task indds suggests that

€ With standard methods used in stepping codes for bnding a good initial guess for a nonlinear
solve, typically 1D3 evaluations 8 are needed for eadhevaluation.

€ With standard ways to re-use Ooldd Jacobians one can averag@luation of) per time
step.

€ The linear algebra cost is negligible compared with the AD cost.

Experiments by Nedialkov, using tie++ AD infrastructure of dets, conbrm this is a viable
way to implement DDs; as yet we do not have performance results to report.

4. The Lagrangian

4.1 Mechanics theory

For mechanical systems, such as in robotics, equations of motion can often be conveniently
derived from the systemOs Lagrangian functiol is assumed there are conservative (energy
preserving) forces such that one can debne a potential exiedtgpending only on system posi-

tion. ThenL= TSV , whereT is the systemOs total kinetic energy. Let the conbguration at any
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time be described by generalized coordinates (qy, . . ., dr,) Such thafl is a function ofg and
possiblyq, andV is a function ofg only. There may (depending on the coordinate system used)
be n. scalar constraints that are holonomic, i.e. functions of positions and possibly time but not
of velocities, namelyCi(t,q) = 0.
Then the variational principle of stationary action gives(itig- nc) EulerbLagrange equations
(ELESs) that describe the motion:
Ne

dlg by S iz1.n (15)

d g o ., G

Ct,g)=10, j=1,...,n (16)

where the ; are Lagrange multipliers for the constraints. For a system subject to external forces,
the zero right-hand sides of (15) are replacediiy; q,q),i = 1,...,ng, which are generalized
external force components.

If n.> 0, i.e. constraints are present, (15), (16) is termed a Lagrangian system of the brst
kind. It is a DAE system, of index 3 in the classical sense or index 2 as debned in (5), since two
t-differentiations of eacl; are needed. If the coordinates are chosen sofmtO, it is of the
second kind and is an ODE system.

E.g. for free motion of the simple pendulum, takipg (X, Y), the cartesian coordinates of the
pendulum bob (of mas®) with y downward, gives

= Im(¢+y),  V=Smgy

— - -1 2
L=TSV=21Imx+ y?)+ mgy (17)
with one constraint that we write
0=C= 3(x*+y*S ? (18)
//’ \\\\

\

/ \

| |
| |
\ \ ¢ / /
\ /
\ /
\ /

\\\ ~ B ,,7/j(X!y)
) (19)
Then (15), (16), on dividing through by, lead to the pendulum DAE
0=A=%+x from0= — —(;
0=B=y+y Sg from 0= —5 (20)
0=2C=x2+yS 2

On the other hand, taking to be (), the angle of the pendulum from the downward ver-
tical, givesL = %m(l )2+ mglcos , with no constraints. Then (15), (16) lead to the ODE
" =S (g/l)sin , which is equivalent to (20).
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template <typename T>

void fcn( T t, const T »z, T xf, wvoid xparam ) {
vector< B<T> > q(SIZEOFQ), gp(SIZEOFQ), C(SIZEOFC);
init_qg gp(z, 9, 9p);
double xp = (double x)param;
double m = p[0], g = p[l], 1 = p[2];
B<T> x = q[0], vy = qll], xp = gp[0], yp = gp[l];
B<T> L = 0.5 « m * (sqgr(xp) + sqr(yp)) + m x g *» y;
C[0] = sqgr(x) + sqgr(y) - sqr(l);
setupEquations (L, z, g9, gp, C, f);

© 0 N O U R W N

=
f=}

1}

Figure 2. Code to describe pendulum in Lagrangian form.

4.1.1 The Lagrangian facility irDaets

As said in Section 1.2, soluticeppparentlycomprises several phases: (1) Apply q, / gand
d/ dt onL andC to get the ELEs. (2) If these form a DAE, reduce index (e.g. by DDs) to prepare
it for solution. (3) Solve it numerically. By using a high index solver for SA-friendly DAEs, we
already merge phases 2 and 3. The new feature of the OLagrangian facilityO is to merge phase 1
with these. We use &ets with its built-in AD by FADBAD++another DAE code with another
AD system could do essentially the same.

The user describes a DAE system tadis by a functionfcn()  in which the mathemat-
ical variables become objects of a template types Figurel in Section 3.4 shows. &ets
instantiated during execution with various concrete types.

The user of the Lagrangian facility writes code foinstead of for the DAE equations. The
generalized coordinateg become variables of a reverse differentiation tygbuilt on top of
T, that isB. In the pendulum example, these are the coordinagesvhich becomex, y of
type B, see Figure2. The partial derivatives in the right of (18), as well as thedd are com-
puted by AD to obtain the equations on the left where the variables have been converted back
to type T. The transformation, done in one direction ioyt_q_qp() and in the other by
setupEquations() , is invisible to the user.

4.1.2 Complexity and efpbciency aspects

For current symbolic approaches, see, €8, [or webinar 1] for an introduction to Lagrangian
modelling with Matlab and Simulink . Using AD as we do to transform the Lagrangian has
several advantages over these methods, besides user convenience:

€ The complexity of computing a Taylor series of degpegfeom a code list (or computational
graph, CG) of length, using AD, isO(p?l), but a straight symbolic approach often gives
expressions that grow exponentiallypnFurther, see, e.g4], the recursive expression for
an ODEOs or DAEOs Taylor coefbcients of degiegointly linear in the coefbcients of
degrees> r/ 2. Hence a TS of degrgecan be computed in around lgg) sweeps though
the CG, rather than thesweeps of the most natural algorithm.

€ This applies to the use ®#ADBAD++as the AD package. THen() code is actually called
only once for each instantiating tyde WhenT is Taylor mode FADBAD++converts this
at run time to a CG representing the 3oating-point Taylor series evaluation, to the chosen
degree (like the Otape® used by the ADOL-C system).
It optimizes this using methods of common-subexpression elimination (CSE) developed by
NedialkovOs group, often signiPcantly shortening the CG (seeZjafilee optimized CG is
used by xets at each evaluation of functions (1) during numerical integration.
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Figure 3. Spring-Mass-Pendulum with one rod.

This, with our efpcient algorithm for System Jacobians and sparse linear algebra, mentioned
in Section 3.4, often gives speedups>0f.0 compared tGADBAD++without CSE.

4.2 Examples

We have applied the &ets Lagrangian facility to various systems, including the following
examples. Performance tests are on a 2017 MacBook Pro laptop with a 4-core 2.2 GHz Intel pro-
cessor running Mac OS X 10.11.6. T@e+ compiler isclang++ version 8.0.0. All numerics

are inC++ double .

Visualisations of some results, produced iathMb from the Daets output, can be viewed at
the YouTube channdlulti-body Lagrangian Simulationd 3] (Figure3).

Because of the perceived difbculty of solving DAES, generalized coordinates are often cho-
sen to eliminate the constraints and give a Lagrangian of the second kind. For instance, a rigid
bodyOs 3D position can be described by 3 coordinates of the position of its centre of mass and
3 of its angular position relative to this. However the mathematical formulation is often simpler
in cartesian coordinates. One plus of using a code for high-index DAEs sucheas B that it
handles resulting Obrst kindd systems easily. Further, sietseddes not set up a local coordi-
nate system for numerical solution as the DDs method does, it does not suffer the performance
penalty of DD-switching.

Example 4.1 (Spring-Mass-Pendulumyhis 2D model is taken from an article on the Acumen
mechanics modelling system by Zhu, Ta#tal.[22].

We have extended their model to a chain of any nunmbef rods. Namely, a horizontally
sliding point-masdM is connected by a spring of stiffnekgo a bxed point at the same level.
FromM hangs a chain af uniform rods, with frictionless joints between the end of one and the
start of the next. Purely to simplify the code, they all have the same massl length = 2a.

We assume the setup is constructed so that all components can slide or rotate freely without
colliding.

Forn 2 (possibly even fon= 1), the motion can be chaotic. The bgure (taken fr@g))[
shows the casa= 1. As the bgure indicates, Zhat al. [22] take g = (X, ) as coordinates,
leading to a Lagrangian of the second kihd; TS V where:

= J(M+ m)xX*+ max cos + Zma& 2, V= 1ké+ mgalS cos). (21)

Here the rotational kinetic energy teé‘ma2 2 uses the moment of inertia= g‘maz of a uniform
rod about its centre of mass.
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For the generat-rod model we use, instead, cartesian coordin@tes(Xo, X1, - - - s Xn; Y1, - - »
Yn)- Hererg = (o, Yo), With yp constant equal to 0, is the positionMfand the start of rod 1, and
ri = (x,y) fori = 1,...,nis the position of the joint between the end of iahd (fori < n) the
start of rodi + 1. We avoid moments of inertia by using the following, whedenotes the dot
product of vectors.

Lemmad4.1 If the ends of a uniform rod of mass m have position veatpesdr;, depending
on t, then its kinetic energy at any instant is

KE= Im(ro-ro+ ro-ry+ry-ry).

Proof We can parameterize position along the rod as(1S S)ro+ sr1,for0 s 1. Since
the rod has total mass, an element fronsto s+ dshas massds. The velocity of this element
isr= (1S 9)rg+ srysoits kinetic energy is

Imr-r)yds= Im (1S5 9%rg-ro+ 2(1S 9sro-r1+ s°ry-ry ds
Integrating this from 0 to 1 gives the result.

The potential energy of the rods comes from considering the mass dfade at its centre of
mass at heigh%(yigl + vi); there is a contribution o§kx§ from the spring and none from mass
M. This leads to the Lagrangiare TS V , and constraint€;, where

n

1, 1
T= EMXO"' ém (riga-rig1+ riga-ri+ri-ry
i=
1, 1" o
- EMX°+ gM (a1 + Yiag) + (XX + Yisayi) + (¢ + yi®)
i=1
1 "1 1 1 nS1
V= Ek><§+ mg  S(isit y) = Ekx(z)Jr g Tt v
= i=1

0=Ci= (xSxs)?+ i Svyis)?’S 2 (i=1,...,n).

The code in Figure, which replaces lines 7D9 in tffien of Figure2, implements the above
formulas. Heren, the numben of rods, is read in as one of the physical parame®iZEOFC
also equals. The arrays) andgp holdingq andq have length 8+ 1.

Listing line 1 use<C syntax to splitq into a scalar holdingo, and two sizen arrays holding
X, ..., %, andys, ..., Yn; similarly qp. The variableKEsumaccumulates3 + X2 + y2 + XoXq +

SH20¢ + y2) + XiXi+1 + ViYir1], Which is equivalent to the sum iR, and similarlyPEsum

In the computation of, the temporary dependent variabkSsum PEsum KE, andPE, are
local in the block between lines 3 andBADBAD++equires that in the reverse mode either all
intermediate dependent variables are differentiated or go out of scope, which is the case here.

In our tests, the physical parameters of the original modeél2hWere used, namely assuming
Slunits,g= 9.8ms$?,1=2a=2m,M = 5Kg,m= 2Kg,k= 10Kgs2.

The chosen initial conditions (ICs) are that the system is at rest with Maatxy=4, and
the rods stretched horizontally to the left. (Thus the spring is pushing against the row of rods;
animations show it Ofolds upO rods 1 and 2 as they start to fall.)

To conbrm that we are modelling the same system a22 the equations of motion derived
from the Lagrangian (21) given ir2] were coded in Mitlab and integrated bpde45 . The
results were compared with those of thadds version for the case= 1. The latter was coded
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1 B<T> x0 = q[0], »x = g+l, *y = x+n, x0p = gp[0], *xp = gp+l, *yp = xp+n;
2 B<T> L;

3 {

4 B<T> KEsum = sqr (x0p) + sqgr(xp[n-1]1) + sqr(yp[n-1]) + x0pxxp[0];

5 for (int i=0; 1 < n-1; i++)

6 KEsum += 2x( sqgr(xp[i]) + sqgr(ypl[i]) ) + xplil*xp[i+1l] + yp[ilxyp[i+1l];
7 B<T> KE = 0.5+M*sqgr (x0p) + m/6+xKEsum;

8

9 B<T> PEsum = 0.5%y[n-1];

10 for (int i=0; i<n-1; i++) PEsum += y[i];

11 B<T> PE = 0.5xkxsqgr (x0) — mxg*PEsum; // — as y goes downward

12

13 L = KE - PE;

14 }

15 C[0] = sqr(x[0]-x0) + sqgr(y[0]) - sqgr(l);

16 for (int i=1; i<SIZEOFC; i++)

17 Cli] = sqr(x[i]-x[i-1]) + sqgr(y[i]-y[i-1]1) - sqr(l);

Figure 4. Code for spring-mass-multi-pendulum system.

s «1078 ode45 tol 1e-12, DAETS tol 1e-8
Mass x —[
6 F pendulum x
pendulum y
4,
2 .
o leo s AN A AN AN A

\/\/\/\//\/\/\ //X

-8 . . . . . I .
0 5 10 15 20 25 30 35 40

Figure 5. Spring-mass-pendulum witte 1. It shows, for thex coordinate of the sliding mass and tkeandy
coordinates of the pendulum, the difference between the solution by our model and that by (19), aver4D.

Table 1. Time (seconds) to integratetto 100 for various numbens of rods, and tolerancesl .

tol n=1 2 4 6 8 10 12 14 16 18 20

1eS 04 3.6€S 02 1.2eS 01 3.5€S 07.3eS 01.3 2.1 3.1 4.2 5.6 7.2 8.8
1e$ 06 4.5¢S 02 1.565 01 3.865 09.3eS 01.8 2.8 43 55 7.9 9.9 12.0
1eS 08 5.86S 02 2.36S 01 6.3eS 01.3 2.4 3.7 5.6 7.7 10.0 13.3 16.5
1eS 10 8.0€S 02 2.76S 01 7.5€S 01.7 3.1 4.8 7.7 10.9 13.8 17.4 22.3
1e$ 12 1.1e5 01 4.36S 01 1.1 2.4 45 6.9 10.1 14.0 18.2 23.6 30.2

to outputq andq at each of its time points. These data were mapped to thehosen by the
Matlab version by Hermite cubic interpolation between adjadgof Daets. Figure5 shows

that overt = [0, 40], the differencesode45 solution at tolerance $£3%) S ( Daets solution at
tolerance 18%) are of order 18°. This gives conbdence that the programs are solving the same
physical model.
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Table 2. Number of nodes in the computational graph of the spring-mass-pendulum example, without and with CSE.

n 1 2 4 6 8 D 12 14 16 18 20

without CSE 154 348 964 1884 3108 4636 6468 8604 11044 13788 16836
with CSE 120 211 415 649 915 1213 1543 1905 2299 2725 3183
% reduction 241 429 621 71.5 76.9 80.5 83.0 84.9 86.3 87.5 88.4

For timing tests, the system was integrated aef3 over 0 t 100 for various numbens
of rods and (mixed relative-absolute) tolerant®s . Casen= 1 is the model in22]. The Taylor
series degree was set to 15, which works well for these problems at this range of accuracies.
Tablel shows the times taken.

Daets has a Omaximum step sizeO feature but this was not used so it chooses the step sizes
h freely. For the OhardestO probhen20 at tolerance 12, they ranged fronh= 0.00061 to
h=0.09. For the Oeasiest®,1 at tolerance 1%, they ranged fronm= 0.09 toh= 0.83.

In Table2, we report the number of nodes in the CGs for the above number of rods: without
CSE, with CSE, and the percentage of reduction in the number of nodes. Here it varies from
24.1% forn= 1 to 88.4% fom= 20.

Example 4.2 (Controlled simple pendulumyVe show one can solve a prescribed-trajectory con-
trol problem for a Lagrangian-described system. Namely, for the simple pendulum we introduce
a horizontal external force on the bob, modelled as a systemurpui(t) such that the equation

X+ x= 0becomes

X+ xSu=0. (22)

The aim is to Pndi(t) (plus suitable consistent ICs) so that thposition performs simple har-
monic motionx(t) = asin( t) exactly, where the constardsand are a given amplitude and
frequency, respectively.

Comparing the pendulum as initial-value problem in Figdrand as control problem in
Figure6 shows the implementation changes little. One paasa®d as extra parameters that
becomea andw. After thesetupEquations  line, the brst equatioff0] is modibed in line
12, and a new fourth equatidf8] is at line 13 (in which thex at line 7 in Figure2 cannot be
used as it has the wrong tyjnstead ofT).

But the revision has changed the DAEOs mathematical nature greatly. Now with 4 variables
and equations, it is shown below with its signature matriablank mean§ , and the unique
transversal is marked by.

Xy u g
0=A=x +x Su g 2 5 (? 0 8

0=B=y +y S

0= (::))/(2+))//2ég2 = C 00 2 (23)
0= D= xS asin( t) D 0 2

o
N
N
o
o

While (20) has 2 degrees of freedom, (23) has noneNspecifying the degifedetermines the
system inputi(t), as well asy and , uniquely.

With the physical parametegs= 9.8 and = 10, the problem was solved byaBts with
equal to the pendulum®s natural frequengy! of small oscillations, and for various and
again with changed by 20%, for the saraealues. Some examples of resultin@s are plotted
over several cycles in Figuig As expectedy is very small when is the natural frequency and
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1 template <typename T>

2 wvoid fcn( T t, const T *z, T *f, wvoid xparam ) {

3 vector< B<T> > g(SIZEOFQ), gp(SIZEOFQ), C(SIZEOFC);
4 init_qg gp(z, g, 9p);

5 double *p = (double =x)param;

6 double m = p[0], g =p[l], 1 = pl2],

7 a =pl3], w=pl4];

8 B<T> x = q[0], yv = qll], xp = gp[0], yp = gp[l];

9 B<T> L = 0.5 * m * (sqgr(xp) + sqgr(yp)) + m x g * y;
10 C[0] = sgr(x) + sqgr(y) - sqr(l);

11 setupEquations (L, z, g9, gp, C, f);

12 £10]1-= z[3];

13 f[3] = z[0] - axsin(wx*t);

14}

Figure 6. Thdcn for the controlled pendulum problem: new lines 12 and 13 are inserted.

a=1.0, w=0.990 a=10, w=1188

JWAWA VA
IRV VAR VAN i VAR VAR VAR

0 5 10 15 20 0 5 10 15 20
t t
a=5.0, w=0.990 5.0, w=1188

AN VAR
Y ALY

o
o

N

-
<

0 5 10 15 20 0 10 0
t t
a=99, w=0.990 a=9.9, w=1188
500 1000
of—— ] o fv—"——t—p—"—7—4
-500 -1000
0 5 10 15 20 0 5 10 15 20
t X t

Figure 7. Solution by Bets of system inputu(t) for controlled pendulum witlg= 9.8,1 = 10. Required response
x = asin( t). For equal to natural angular frequency (left column) and 20% larger (right column), andathadees.

ais small. It becomes large asapproaches, or as the frequency moves away from the natural
one. Daets took less than 0.1 seconds for each of the runs.

Example 4.3 (DETEST Non-stiff Problem C5Jhis problem from the non-stiff part of the
DETEST testing package for ODE solvetd,[and originall from Zonneveld 23, is titled

OFive Body Problem: Motion of bve outer planets about the Sun. Itis a order 2 ODE of size 15
(so size 30 when reduced to order 1), the variables being the positions of Jupiter, Saturn, Uranus,
Neptune and Pluto relative to the Sunxig,z coordinates such that the ecliptic plane, in which

the orbits approximately lie, is not close to any of the three axes.
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Figure 8. Logblog plot of divergence vs time. The planet model was integrated at two toleraskc®sandle-15 .
The norm of the difference between these solutions is plotted afflQ) n= 1,..., 8, showing no sign of chaotic
behaviour for this set of ICs.

To set up the Lagrangian formulatiogncomprising the 5 relative positiorfs(t),..., s5(t))
(each being a 3-vector) is converted to 6 positiqng(t), . . ., rs(t)) of Sun and planets relative
to their common centre of mass, which may be considered to be at rest in a Newtonian absolute
frame. Namely letmy be the mass of the Sun ama, ..., ms the masses of the planets and
subtract

_ MmO+ (Mg g+ 4+ Mg g)

=
© oM+ (Mg + e+ M)
from each component ¢0, 4,..., s5)toget(ro,...,rs). Then
5 5 5
1 - G .
T=> mn v=8% MM =73V, (24)
2._ P |riSrJ-|
i=0 i=0 j=i+1

whereG is the gravitational constant. The code, shown in the appendix, was made patrticularly
compact using &++ 3-vector class from3].

In the DETEST model the time unit (TU) is 100 days. Distance is measured in astronomical
units (AU), where 1 AU is the mean radius of the earthOs orbit. The task is to integrate from given
initial values up tot= 20 TU; at tolerance IX}° we get agreement with DETESTOs reference
solution to around 12 decimal places.

To see how fast the solution is, the problem was integratee 300,000 TU (about 55,000
earth years), with Taylor degree 20, at tolerances-1and 1¢!4. The two sets of results agree
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to bve decimal places, and somadds integration statistics are

Integration of Sun and 5 planetstte 200,000 TU
tol CPU secs no. of steps smallest step largest step

le-13 246 40855 2.66 8.32

le-14 275 45619 2.39 7.65

The number of CG nodes is 1002 without CSE and 880 with CSE, or 13.9% reduction.

It is known that Pluto is locked in a, currently stable, 3:2 resonance with Neptune. This was
easy to verify over short periods from our results. For the subtleties of solar system behaviour,
see B] and references therein. This article cites evidence that over very long times the system
switches between regular and chaotic behaviour in an irregular way that depends critically on
ICs. Hence numerical results showing linear (regular) divergence of neighbouring solutions up
to some large tim& Nrather than exponential (chaotic) divergence N are no evidence that such
behaviour will continue up to, say, timer2

What about the given ICs? We integrated the problem at two tolerdezé8 andle-15 ,
recording the solutions at successive powers of 10 up foT10( 4.2 hours CPU time for
each to reach £) and computing the relative error in the 2-norm at these times. The results, see
Figure8, show non-chaotic behaviour up to that point.

5. Conclusions and further work

For two signibcant applications to do with DAEs, we have shown that differentiation of expres-
sions, commonly done symbolically with the help of a computer algebra system, can be done
efbciently and simply by AD.

First, for the Dummy Derivatives index reduction method a theoretical scheme is given that
applies in principle to preparing a DAE for solution by any standard DAE or ODE initial value
code. DD-switching, which moves from one mode (local coordinate system) to another, is at the
housekeeping level just a change of the sdx- setS of indices(j, 1) that dePne the state vector.

The scheme reduces order and index together, so one need not pre-reduce to brst-order form.
Finally, following this paperOs theme, differentiating DAE comporfeagdectively (some more
than others) does not need symbolic algebra; it can be done by standard AD methods of treating
them as truncated power series.

We have proof-of-concept implementations iafldb andC++. It remains to be seen whether
the scheme can be made efbcient as a practical tool. For DAEs from industrial applications that
may need to switch among very many modes, it may (as in the more general case of hybrid
systems) be worth keeping a run time data base of modes used, if this can speed up re-entry to a
mode that has been met before.

Second, we have shown that for a DAE, all or part of whose equafiien® derive from the
LagrangiarL of a mechanical system, producing thé&om L can be done by pure AD without
symbolic algebra. The theory was illustrated by simulation examples: a constrained mechani-
cal system, a forced pendulum as a prescribed-path control problem, and an ODE of planetary
motion.

The method of directly solving from a Lagrangian by overlaying one AD type on another
might be used with other DAE solvers and AD tools. However our infrastructureaetDwith
FADBAD++and the Lagrangian facility has several advantages:

€ For any SA-friendly DAE, the user leaves both conversioh ¢6 equations of motion, and
index/order reduction of the resulting DAE, to be done ael® automatically.
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€ It avoids large symbolic expressions that a computer algebra system typically generates when
converting to a form suitable for integration by a standard ODE/DAE solver.

€ Constrained Obrst kindO Lagrangians in cartesian coordinates are often simpler to formulate
than unconstrained Osecond kind® ones in other coordinates. For a high-index DAE solver
such as Bets, possible obstacles posed by index reduction and DD-switching are absent,
and constrained systems are as easy to solve as unconstrained, which makes Obrst kind® forms
more attractive.

€ It can be programmed in a way that is intuitive and close to the mathematics, which using
cartesian coordinates is itself more readable and accessible.

€ It gives remarkably fast code in the cases we have tried (which can be seen froradtse D
statistics of the animations &t3]).

Current work is exploring our Lagrangian approach on a variety of research and engineer-
ing problems, and in particular rigid-body mechanics simulations and control problems. We are
particularly interested in hybrid systems, because of their importance in industrial engineering.
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Appendix. Extract from code for planetary problem

This is thefcn()  code for 3D motion oh+ 1 gravitating bodies, where body 0 is the Sun anddiie positions of the
other bodies are relative to it. It was specialized to the problem in Example 4.3 by providing suitable input to the main
program, not shown. Note this function is not restricted to 5 bodies: their number and masses are passed as parameters.

template  <typename T>

void fen( T t, const T xz, T =«f, void =*pp ) {
const double  *param = ( double *)pp;
const int nMASS = param[0],

n = nMASS-1;
const double G = param[1];
const double m = param + 2,
*mplanet = m+1; // the masses EXCLUDING the Sun
const double Mtotal = (m + nMASS)[0]; // total mass, calculated in main program

typedef  Vector3D< B<T> > vec3;

vector< B<T> > q(3 =*n), qp(3 =*n); // independent variables
B<T> L; // for storing Lagrangian
// { ... } ensures all intermediate variables go out of scope

init_q_qp(z,9,9p); // setup q, qp

// Convert to a vector of 3D vectors.

vector< vec3 > Q(n), Qp(n);

for (int imass=0; imass<n; imass++) {
Qimass] = vec3( q [3 =*imass], q[3 =*imass+1], q [3 *imass+2] );
Qplimass] = vec3( gp[3 *imass], qp[3 =*imass+1], gp[3 *imass+2] );

vector< vec3 > R(nMASS), Rp(nMASS);
R[0] = Rp[0] = vec3(0,0,0);
for (int imass=0; imass<n; imass++) {
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R [0] -= mplanet[imass] *Q [imass]; Rp[0] -= mplanet[imass]

}
R [0] /= Mtotal; Rp[0] /= Mtotal;

// then set r_1, ..., r_n and their derivatives:
for (int imass=1; imass<nMASS; imass++) {

R [imass ] = Q [imass-1]+R [0]; Rp[imass] = Qp[imass-1]+Rp[0];

}

// Compute KE and PE in terms of r and rp arrays
B<T> KE = 0;
for (int imass=0; imass<nMASS; imass++)
KE += m[imass] * Rp[imass] *Rp[imass];
KE *= 0.5;

// Potential Energy (sum of all mass-to-mass PEs, -> -0oo as bodies

// become close)
B<T> PE = 0;
for (int imass=0; imass<nMASS; imass++)
for (int jmass=imass+l; jmass<nMASS; jmass++)
PE -= m[imass] * m[jmass] / norm(R[imass]-R[jmass]);
PE = GPE; // bring in gravitational constant

L = KE-PE;
}
vector<B<T> > C; // dummy constraint variable
setupEquations(L,z,q,qp,C,f);

* Qp[imass];
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