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A characteristic feature of differential-algebraic equations is that one needs to Þnd derivatives of some of
their equations with respect to time, as part of the so-called index reduction or regularization, to prepare
them for numerical solution. This is often done with the help of a computer algebra system. We show
in two signiÞcant cases that it can be done efÞciently by pure algorithmic differentiation. The Þrst is the
Dummy Derivatives method; here we give a mainly theoretical description, with tutorial examples. The
second is the solution of a mechanical system directly from its Lagrangian formulation. Here, we outline
the theory and show several non-trivial examples of using the ÔLagrangian facilityÕ of the NedialkovÐ
Pryce initial-value solver DAETS, namely a spring-mass-multi-pendulum system; a prescribed-trajectory
control problem; and long-time integration of a model of the outer planets of the solar system, taken from
the DETEST testing package for ODE solvers.

Keywords: algorithmic differentiation; differential-algebraic equations; dummy derivatives; Lagrangians

1. Introduction

1.1 DAE formulation and basic ideas

In industrial engineering, the modelling of systems to simulate their time evolution is increas-
ingly done by methods that lead to a differential-algebraic equation (DAE) system as the
underlying mathematical form. Such DAEs often come from equation-based modelling (EBM),
which describes system components by the basic physical laws they obey and supports Ômulti-
physicsÕ models that combine several scientiÞc disciplines, as for instance mechanical, electrical,
chemical, and thermodynamic behaviour in a car engine.

Facilities created to support EBM include gPROMS, which is both a language and a graphical
modelling environment (GME) built on it; the Modelica language and GMEs such as OpenMod-
elica, Dymola and MapleSim that are built on it. Simulink, built on Matlab , is a GME of similar
scope but less in tune with the general DAE concept.

A DAE is just a set ofn equations connecting a vectorx = x(t) of n state variablesx1, . . . , xn

and some derivatives of them with respect to timet. One can always reduce it to a Þrst-order
form F(t, x, �x) = 0Ñas accepted by the DASSL solver and its relatives [1,7]Ñin the same way
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2 N.S. Nedialkov et al.

as one does for an ODE system. Here�x means dx/ dt. However we use a more ßexible form
allowing arbitrary higher derivatives:

fi(t, thexj and derivatives of them) = 0, i = 1,. . . , n. (1)

This often lets one formulate problems to our Daets initial-value code [11,12] more concisely,
e.g. LagrangeÕs equations for a mechanical system withnq coordinates andnc constraints need
nq + nc variables, compared to 2nq + nc in the Þrst-order form.

1.2 Aim

In general, differentiating some of DAEÕs equationsfi = 0 with respect tot is an essential step in
solving a DAE. This article is about two signiÞcant and rather different uses of this. The Þrst is
the widely used dummy derivatives (DDs) method of Mattsson and Sšderlind [8] that prepares
a higher index DAE for numerical solution by a classical index-1 DAE code, or by an explicit
ODE code such as a RungeÐKutta method.

The second is the task of solving a, possibly constrained, mechanical system directly from
a Lagrangian formulation. Conceptually it has several phases. The motion is deÞned by a
Lagrangian functionL(t, q, �q) whereq is a vector of generalized coordinatesqi , plus possibly
a vector ofnc constraintsC(t, q) = 0. To set up (phase 1), the equations of motion fromL and
C one applies partial differentiation�/� q and�/� �q, as well as straight d/ dt, to L andC. When
nc > 0 the result is an index 3 DAE, which must (phase 2) be readied for numerical solution and
(phase 3) solved.

Either use case at Þrst sight seems to need symbolic differentiation, e.g. in a computer algebra
system. We show pure AD sufÞces in either case. This insight may not be new but we believe
the method is: for DDs it is new to combine index and order reduction in one simple framework;
for Lagrangian calculations it is new to combine all phases seamlessly by AD, giving a simple
user interface and efÞcient numerical solution.

2. Structural analysis

In an ODE �x = f(t, x), causality is obvious: in differential language, it explicitly speciÞes the
statex + dx at the next instantt + dt to bex + f(t, x) dt.

In a DAE, causality is not obvious. For instance, these size 2 DAEs are quite different, where
u(t) is a given driving function:

x1 Š u(t) = 0, x1 Š �x2 = 0, (2)

and x2 Š u(t) = 0, x1 Š �x2 = 0. (3)

To solve (2), make�x2 the subject of its second equation (x1 causesx2) and integrate the result;
it is really an ODE, with one degree of freedom. To solve (3), makex1 the subject of its second
equation (x2 causesx1) and differentiate. DAE (3) has no degrees of freedomÑit has the unique
solutionx1 = �u(t), x2 = u(t) and does not look like an ODE at all; such behaviour is common in
control problems.

A solvable DAE has a chain of causality that must be found in order to prepare for numerical
solution. Knowing which equationsfi = 0 to differentiate, and how often, is crucial to Þnding this
causal chain. When correctly done, the original DAE augmented by the differentiated equations
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can be solved to produce an ODE in some (possibly not all) of the original variablesÑthe ODE
part. Once this ODE is solved, the remaining variables forming the algebraic part can be found
by algebraic manipulations combined with differentiations.

Let ci be the number of differentiations of equationi needed by the Ômost economicalÕ way
of doing this. For reasons to do with the Taylor series method used by Daets we call them the
equation-offsets.

For instance the equations of (2) do not need differentiating:(c1, c2) = (0, 0). We solve to
produce the ODE part�x2 = u(t) in just x2. By contrast, (3) has(c1, c2) = (1, 0) meaning the Þrst
equation must be differentiated, after which we solve to getx1 = �u(t), x2 = u(t). The ODE part
is empty.

In the DAE (2), it happens we can solve for the algebraic variablex1 to get x1 = u(t),
independently of solving the ODE, but this need not be so: if we change it to

x1 Š x2 Š u(t) = 0, x1 Š �x2 = 0, (4)

then the ODE part, namely�x2 Š x2 Š u(t) = 0, must be solved before we knowx1.
Unlike a well-behaved ODE�x = f(t, x), which has a solution path through each point of the

region R of (t, x) space where it is deÞned, the union of a typical DAEÕs solution paths is a
proper subset ofR, theconsistent manifoldM or set ofconsistent points. The dimension of its
intersection with any timet = t0 is dof , the number ofdegrees of freedom, equivalently the size
of its ODE part (here assumed independent oft0).

Theindexof a DAE used in this paper is simply

� = max
i

ci . (5)

The classicaldifferentiation index� d of Brenanet al. [1] assigns index 1 to DAE (2) and 2 to
DAE (3). In summary for the examples above

DAE ODE part dof algebraic part offsets � � d

Equation (2) x2 1 x1 (found independently of ODE part) (0, 0) 0 1
Equation (3) empty 0 x1, x2 (1, 0) 1 2
Equation (4) x2 1 x1 (found usingx2 in ODE part) (0, 0) 0 1

The structural analysis(SA) approach aims to derive a DAEÕs causal chain by studying its
sparsity, namely what derivatives of variables occur in what equations. The method is: seek a
numberci of times to differentiate theith equation that gives a structurally nonsingular (SNS)
set of equations for the resulting highest,dj th, derivatives of thexjÑthen c = (c1, . . . , cn),
d = (d1, . . . , dn) are the vectors of equation-offsets and corresponding variable-offsets. SNS
means one can make a matching of variables to equationsÑequivalently a transversal, a set
T of n positions(i, j) in an n × n matrix with just one in each row and in each columnÑsuch
that derivativex

(dj )
j occurs in the differentiated equationf (ci )

i = 0 for each(i, j) � T. There exist
unique element-wise smallest non-negativec,d, the canonical offsets, which we assume chosen
henceforth. They deÞne the Ômost economicalÕ differentiations mentioned above.
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An SA-friendlyDAE by deÞnition is one for which these equations are actually (not just
structurally) nonsingular at some consistent point, that is, then × n system Jacobian

J =
�
� f (ci )

i /� x
(dj )
j

�

i,j= 1,...,n
. (6)

is nonsingular there. Assuming suitable smoothness of thefi , a unique solution then exists locally
through this point, and through any nearby consistent points.

Experience shows most DAEs in practice are SA-friendly. This fact underlies the wide use
of the DDs method, which uses the results of SA and succeeds if and only if the DAE is SA-
friendly. The SA can be done by the graph-based Pantelides method [14], or the Pryce� -method
[15] based on the signature matrix� = (� ij ), where

� ij =

�
order of highest derivative ofxj in fi if xj occurs infi ,
Š� if not.

(7)

The methods are equivalent except that the latter handles higher order DAEs without reduction
to Þrst order, while the former as described in [14] does not.

The DAE (with index� d = 3) derived from a constrained Lagrangian of a mechanical system
as in Section 4, is always SA-friendly when posed as an initial value problem. Posed otherwise,
e.g. as a prescribed-trajectory control problem, it need not be. The occurrence of non-SA-friendly
but solvable DAEs in applications is studied in [16,18]. For systematic ways of converting such
a DAE to an equivalent SA-friendly one see [20].

SA leads to a notion of structural index� s, deÞned as the� in (5), plus 1 if any offsetdj is
zero. For an SA-friendly DAE� s is always� � d, and usually equals it in practice, see [15].

3. Dummy derivatives

3.1 The DDs construction

Many numerical methods for higher index DAEs start with index reduction: augmenting the
DAE by time-derivatives of some of its equations to produce a DAE of larger size and smaller
index. Various index reduction methods have been used that convert the DAE to an ODE with
more degrees of freedom than the DAE. Then the DAEÕs solution paths form a proper subset
of those of the ODE. This tends to be bad numerically, as errors cause drift from the consistent
manifold that can be exponential once it starts.

Dummy derivatives (DDs) by contrast are a systematic way to form an equivalent ODE with
exactly as manyDOF as the (SA-friendly) DAE. If one views the DAE as a ßow on the consistent
manifold M , DDs describe the ßow in a local coordinate system forM . Thus numerical drift
can only be withinM , where it is less harmful. However if the path leaves the patch ofM
where the coordinate system is nonsingular, one must choose new coordinates. This need for DD
switching, or pivoting, complicates a numerical algorithm.

The following description of the DDs process is equivalent to that in [8]. The set of possible
matrix sequences(Gk) whenever one selects a state vector, below, is the same in either method,
but we ÞndGk from smallest up (each is a sub-matrix of the next), while [8] Þnds them in the
opposite order.
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Assumeci anddj are the canonical offsets. First form the derivatives of eachfi = 0 up to the
ci th, forming the augmented system ofNf = n +

�
i ci equations:

f (l)
i = 0, l = 0,. . . , ci , i = 1,. . . , n. (8)

Its unknowns are theNx = n +
�

j dj derivatives of the state variablesxj up to thedj th. View
them for now as unrelated algebraic unknowns that we call items, and to emphasise this denote
themxjl :

xjl renamesx(l)
j , l = 0,. . . , dj , j = 1,. . . , n. (9)

The system has fewer equations than variables by the amount
�

j dj Š
�

i ci , which equals the
numberdof of degrees of freedom. To balance this, the DDs method Þnds a numberdof of items
xjl to be state items, for(j, l) in a suitable setSof index pairs, chosen such that all the other items
can locally be solved for as functions of these. The state vectorxS formed by the state items is
the associated local coordinate system of the manifoldM .

One requiresl < dj for each(j, l) � S, so thatxj,l+ 1 is also an item. Then the differential
relations between each state item and its next higher derivative:

�xjl = xj,l+ 1 (10)

can be interpreted as an ODE system for the state items.
State vector selectionÑinitially or at a DD-switching pointÑmay be done as follows. The

n × n system JacobianJ in Equation (6) is nonsingular there. Fork = kd, kd + 1,. . . ,Š1 where
kd is minus the largestdj , the Ôstandard solution schemeÕ of the� -method constructs sub-matrices
Jk of J by selecting those rowsi wherek + ci � 0 and columnsj wherek + dj � 0. Then:Jk is
of full row rank; it has sizemk × nk wheremk � nk; the sum of the differences

�
k(nk Š mk)

equalsdof . For eachk, selectmk columns ofJk that form a nonsingular matrixGk. This can and
must be done in such a way that the set of selected columns increases withk, so that eachGk is
a sub-matrix of the next. For each of the(nkŠmk) unselected columnsj consider the itemx

(k+ dj )
j .

The set of all these is a valid state vectorxS since, brießy, non-singularity ofGk ensures that
at stagek, ÔselectedÕ itemsx

(k+ dj )
j belonging to selected columns can, by the Implicit Function

Theorem, be found locally as functions of the unselected items.
As said, (10) thus becomes a size-dof ODE system,

�xS = F(t, xS). (11)

This is locally equivalent to the size-Nx DAE (8), (10) and hence to the original DAE. Though
Ôindex-1Õ is the usual term used, the stronger property holds that

(8), (10) form animplicit ODE,

deÞned as an SA-friendly DAE whose offsetsci are all zero.

3.2 Example

Example 3.1 (Pendulum)Let the original DAE be the simple pendulum in cartesian coordi-
nates, shown with its signature matrix (7), with relevant transversals marked. Gravityg and
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length� are constants, andx(t), y(t) and�( t) are state variables.

0 = A = ẍ + x� ,
0 = B = ÿ + y� Š g,
0 = C = x2 + y2 Š � 2,

� =

x y � ci� �A 2€ 0� 0
B 2� 0€ 0
C 0� 0€ 2
dj 2 2 0

(12)

The offsetsci = 0, 0, 2 implyC is to be differentiated twice, giving 5 equations in 7 unknowns.
On the left of (13), these are shown in the notation of (12); on the right they have been trans-
lated to the generalxjl notation wherex is called variable 1 so its derivativesx, �x, ẍ become
x10, x11, x12, and so on. The functionsA,B,C are renamed asf Õs and a similar notation used for
their derivatives.

Augmented system
0 = A = ẍ + x�
0 = B = ÿ + y� Š g
0 = C = x2 + y2 Š � 2

0 = �C = 2(x�x + y�y)
0 = C̈ = 2(xẍ + �x2 + yÿ + �y2)

unknownsx, �x, ẍ, y, �y, ÿ, �

After renaming
0 = f10 = x12 + x10x30

0 = f20 = x22 + x20x30 Š g
0 = f30 = x2

10 + x2
20 Š � 2

0 = f31 = 2(x10x11 + x20x21)
0 = f32 = 2(x10x12 + x2

11 + x20x22 + x2
21)

unknownsx10, x11, x12, x20, x21, x22, x30

(13)

One can choose any of(x, �x), (y, �y), (x, �y), (y, �x) as state vector (onemustchoose one undiffer-
entiated variable and one Þrst derivative), but only the Þrst two are ÔconvenientÕ for AD, as the
next section shows.

Suppose for examplexS = (x, �x) � (x10, x11). It is easily seen that providedy, i.e. x20, is
nonzero one can Þnd all the items as functions of these two, hence the pendulum DAE is
equivalent to an ODE (11) in thisxS wheny 	= 0.

The description of DDs given in Section 3.1 has the advantage of combining index reduction
and order reduction into one process. For computer solution, it is probably easiest to work with
the order 1 DAE formed by theNx = n +

�
j dj Equations (8), (10). However Ôby handÕ, one

can simplify by directly substituting the derivative relations into (8) where possible. E.g. the
right-hand set of equations of (13) becomes

0 = A0 = �x11 + x10x30,

0 = B0 = x22 + x20x30 Š g,

0 = C0 = x2
10 + x2

20 Š � 2,

0 = C1 = 2(x10x11 + x20x21),

0 = C2 = 2(x10�x11 + x2
11 + x20x22 + x2

21),

0 = �x10 Š x11.

In the Þrst equation,x12 has become�x11. The last equation,�x0 = x1, can not be Ôsubstituted
awayÕÑin general, any Equation (10) must stay if itsxjl andxj,l+ 1 are both state items, as this is
how order reduction occurs.

In Mattsson and SšderlindÕs [8] terminology, a Ôdummy derivativeÕ means a differentiated
item that, in our terms, is a solved for item but is not a state variable or the derivative of one. In
this example with this state vector, that makesy1 andy2 the DDs.
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3.3 Issues with switching, and numerical solution method

At a DD-switch, the set (8) of differentiated equations does not change. Thus at the housekeeping
level, a switch merely changes the setSof index pairs(j, l) that deÞne the state vector. We veriÞed
that this switching method works, by a proof-of-concept Matlab implementation, as well as one
in C++to verify the AD aspects. One example was the double pendulum (one pendulum-rod hung
off another) inx,y coordinates, where each rod independently has four DD-switching points in a
full rotation, one in each quadrant, giving 4× 4 = 16 possible ÔDD modesÕ.

It remains to be seen how efÞcient one can make DD-switching for production code and for
larger problems. Finding theGk at a switch is non-trivial. Ideally one wants each one to be
maximally well-conditioned, which is expensive, so one seeks heuristic methods. This makes
Scholz and SteinbrecherÕs simpliÞed method [17] interesting. Less general than full DDs but
cheaper, it uses a highest-value transversal of the signature matrix to Þnd a state vector. One
might try it Þrst, and if it gives ill-conditionedGk, use full DDs.

It seems natural to solve the original DAE numerically, by giving formulation (8), (10) to a
standard index-1 DAE solver. However many models, especially mechanical ones, have many
equations but few degrees of freedom,Nx 
 dof . Then it makes sense to convert to the explicit
ODE form (11). In many mechanical contexts (though not all) this ODE is non-stiff and thus
amenable to, say, an explicit RungeÐKutta method. Working memory for sub-problems of size
up ton is needed by the root-Þnding that forms (11), but is typically less than that needed by an
implicit DAE code on a problem of sizeNx.

3.4 AD for DDs

How can an AD tool help automate numerical solution by DDs, as described above?
It is helpful, but not essential, if the tool supports d/ dt as a Þrst-class operator, of equal

status with+ ,× , sin(), etc., so that it can understand a representation of a DAE in the general
form (1). Tools such as ADOL-C and dcc/dco [5,9] do not have this feature, but can handle
arbitrary expressions containing derivatives by renaming the latter as algebraic items and stating
their differential relations separately. This is like the method in Section 3.1, where derivatives
are renamed as algebraic in (9) and some differential relations between them stated in (10).

Our solver Daets uses Ole StauningÕs AD packageFADBAD++[19], written in C++. It did
not originally include d/ dt but at our request in 2002, Stauning included the operatorDiff
such thatDiff( ·, q) means dq/ dtq. For instance, straightforward code for the pendulum, as in
the Daets user guide, is shown in Figure1.

More important, for DDs and other index reduction methods, an AD tool must be able to
differentiate thefi selectively. For instance in the pendulum,A andB are to be left alone, andC
differentiated twice.

Figure 1. Code for simple pendulum problem.
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At Þrst sight this seems to require a tool based on source code transformation, which could
generate code symbolically for the last two equations in (13), for instance. But this is not soÑ
the key is to treat different derivatives of a given variable, not in isolation but stored together
as a truncated power series (storage in Daets is already organized this way). For instance in the
pendulum, the unknowns form three objects

x = (x0, x1, x2) order 2 power series,
y = (y0, y1, y2) order 2 power series,
� = (� 0) order 0 power series.

Here and in the next two paragraphs, sanserif denotes that the series is represented by Taylor
coefÞcients (usually more convenient for implementation), not derivatives, thusxk relates to the
xk in (13) byxk = xk/ k!, and so on.

AD by overloading, provided by many AD tools, now gives the needed values. For instance
evaluatingC = x2 + y2 Š � 2 proceeds via these intermediate steps:

input
x = (x0, x1, x2)
y = (y0, y1, y2)
compute

v1 = x2 = (x2
0, 2x0x1, 2x0x2 + x2

1)
v2 = y2 = (y2

0, 2y0y1, 2y0y2 + y2
1)

v3 = v1 + v2 = (x2
0 + y2

0, 2(x0x1 + y0y1), 2(x0x2 + y0y2) + x2
1 + y2

1)
C = v3 Š const(� 2) = (x2

0 + y2
0 Š � 2, 2(x0x1 + y0y1), 2(x0x2 + y0y2) + x2

1 + y2
1)

returning a degree 2 power series objectC holding the needed coefÞcients(C0,C1,C2), that is
(C, �C, 1

2C̈) in terms of derivatives.
EvaluatingA = ẍ + x� andB = ÿ + y� Š g is similar. Differentiating twice converts, e.g. the

degree 2 seriesx = (x0, x1, x2) to the degree 0 series(2x2). ThusA andB are returned as the
degree 0 seriesA = (A0) = (2x2 + x0� 0) andB = (B0) = (2y2 + y0� 0 Š g).

The above method gives an explicit evaluation of theNf functions (8) at theNx arguments (9).
In the DDs context of reducing the DAE to an explicit ODE, one inputs state item values, say
xS = (x0, x1). The 5 itemsxF = (x2, y0, y1, y2, � 0) are trial values that produce 5 residual values
r = (A0,B0,C0,C1,C2). By root-Þnding using suitable Jacobians, see below, we ÞndxF that
makesr = 0, thus solving forxF as a function ofxS. Extractx2 from xF to form (x1, x2), which
is �xS. This implementsF in (11).

To make this work, the state items must comprise a contiguous set of derivatives of each
variable, with no gaps. (Hence, cf. the paragraph following (13),(x, �y) and(y, �x) are not useful
state vectors for the pendulum.) That is,S must have the form{ (j, l) | 0 � l < � j , j = 1,. . . , n},
where� = (� 1, . . . , � n) is an integer DD-spec vector with 0� � j � dj and

�
j � j = dof , which

uniquely speciÞes the DD scheme currently in use. DD switching can be based on changing this
� , and following through the consequences for various associated index sets and Jacobian-related
matrices.

3.4.1 Complexity and efÞciency aspects

We assumeÑsee Section 3.3Ñnumerical solution is by reducing (8), (10) to explicit ODE
form (11) and using an explicit ODE solver. To use an implicit, e.g. stiff, solver and compute
exact Jacobians� F/� xS for this by AD is more challenging.
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Function values (8). Denote the vector of functionsfi in (1) by f, with inputs(t, x) wherex
denotes relevant Ôxj and derivativesÕ. Viewf as a computational graph or code list, overloaded to
compute different things depending on the type of inputs given to it.

Let x(d) denote the vector whosejth component is a degreedj truncated Taylor Series (TS) of
xj , equivalently the list ofxjÕs derivatives up to thedj th. E.g. for the pendulum we usex(d) =
(x, y, �) ((2,2,0)) = ((x, �x, ẍ), (y, �y, ÿ), (�)) , or the corresponding list of Taylor coefÞcients. Letf(c)

have the similar meaning. Then evaluating (8) can be written as follows:

f(c) = f(t, x(d)). (14)

with the rigorous interpretation that a numerical TS vectorx(d) is given as input to the code list,
with each elementary operation overloaded to be a TS operation.

As the pendulum example illustrates, SA acts here as a scheduling algorithm: if one starts with
x(d), each operation receives inputs of just the right degree, sof(c) is returned as Þnal output. (A
differentiation reduces TS degree, while for algebraic operations the output degree is the least of
the input degrees.)

Since average degrees are typically low, say at most 3, the workW(f(c)) of an evaluation of
(14) is a modest multiple of the workW(f) of a basic evaluation of the DAE (1), depending on
how the AD is implemented but independent ofn.

Jacobians. The offsets give (8) a block-triangular structure. EvaluatingF in (11) uses this,
solving subsystems of sizemk for k = kc, . . . , 0, wherekc = Š maxi ci andmkc � · · · � m0 = n.
Block kÕs JacobianGk is a square sub-matrix of themk × nk system JacobianJk for SA stagek,
which is a sub-matrix of the overall JacobianJ = J0.

NedialkovÕs group has put in Daets a forward-AD method to computeJ, taken from [10]. It
also overloads the code list, propagating compressed gradients instead of Taylor series; one can
write it as� f = f(t, � x) with an interpretation analogous to (14). By a topological sort one can
arrange that the code list forJk is an initial segment of that forJk+ 1, for eachk. If dense linear
algebra is used, the workW(J) to evaluateJ is of ordernW(f). However we use sparse linear
algebra which, with the compressed gradients, usually gives big speedups on larger problems.

In general each block of (8) is a nonlinear system, but the quasi-linearity analysis phase of SA
(overloadingf yet again) Þnds which blocks are linear, with further efÞciency gains.

Experience with the corresponding task in Daets suggests that

€ With standard methods used in stepping codes for Þnding a good initial guess for a nonlinear
solve, typically 1Ð3 evaluations off(c) are needed for eachF evaluation.

€ With standard ways to re-use ÔoldÕ Jacobians one can average< 1 evaluation ofJ per time
step.

€ The linear algebra cost is negligible compared with the AD cost.

Experiments by Nedialkov, using theC++AD infrastructure of Daets, conÞrm this is a viable
way to implement DDs; as yet we do not have performance results to report.

4. The Lagrangian

4.1 Mechanics theory

For mechanical systems, such as in robotics, equations of motion can often be conveniently
derived from the systemÕs Lagrangian functionL. It is assumed there are conservative (energy
preserving) forces such that one can deÞne a potential energyV depending only on system posi-
tion. ThenL = T Š V , whereT is the systemÕs total kinetic energy. Let the conÞguration at any
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time be described by generalized coordinatesq = (q1, . . . , qnq) such thatT is a function of�q and
possiblyq, andV is a function ofq only. There may (depending on the coordinate system used)
benc scalar constraints that are holonomic, i.e. functions of positions and possibly time but not
of velocities, namelyCj(t, q) = 0.

Then the variational principle of stationary action gives the(nq+ nc) EulerÐLagrange equations
(ELEs) that describe the motion:

d
dt

� L
� �qi

Š
� L
� qi

+
nc�

j= 1

� j
� Cj

� qi
= 0, i = 1,. . . , nq, (15)

Cj(t, q) = 0, j = 1,. . . , nc, (16)

where the� j are Lagrange multipliers for the constraints. For a system subject to external forces,
the zero right-hand sides of (15) are replaced byui(t, q, �q), i = 1,. . . , nq, which are generalized
external force components.

If nc > 0, i.e. constraints are present, (15), (16) is termed a Lagrangian system of the Þrst
kind. It is a DAE system, of index 3 in the classical sense or index 2 as deÞned in (5), since two
t-differentiations of eachCj are needed. If the coordinates are chosen so thatnc = 0, it is of the
second kind and is an ODE system.

E.g. for free motion of the simple pendulum, takingq = (x, y), the cartesian coordinates of the
pendulum bob (of massm) with y downward, gives

T = 1
2 m(�x2 + �y2), V = Š mgy,

L = T Š V = 1
2 m(�x2 + �y2) + mgy (17)

with one constraint that we write

0 = C = 1
2(x2 + y2 Š � 2) (18)

(19)

Then (15), (16), on dividing through bym, lead to the pendulum DAE

0 = A = ẍ + x� from 0 =
d
dt

� L
� �x

Š
� L
� x

+ �
� C
� x

,

0 = B = ÿ + y� Š g from 0 =
d
dt

� L
� �y

Š
� L
� y

+ �
� C
� y

,

0 = 2C = x2 + y2 Š � 2.

	





�






�

(20)

On the other hand, takingq to be (	) , the angle of the pendulum from the downward ver-
tical, givesL = 1

2 m(l �	 ) 2 + mglcos	 , with no constraints. Then (15), (16) lead to the ODE
	̈ = Š (g/ l) sin	 , which is equivalent to (20).
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Figure 2. Code to describe pendulum in Lagrangian form.

4.1.1 The Lagrangian facility inDaets

As said in Section 1.2, solutionapparentlycomprises several phases: (1) Apply�/� q, �/� �q and
d/ dt onL andC to get the ELEs. (2) If these form a DAE, reduce index (e.g. by DDs) to prepare
it for solution. (3) Solve it numerically. By using a high index solver for SA-friendly DAEs, we
already merge phases 2 and 3. The new feature of the ÔLagrangian facilityÕ is to merge phase 1
with these. We use Daets with its built-in AD by FADBAD++; another DAE code with another
AD system could do essentially the same.

The user describes a DAE system to Daets by a functionfcn() in which the mathemat-
ical variables become objects of a template typeT, as Figure1 in Section 3.4 shows. Daets
instantiatesT during execution with various concrete types.

The user of the Lagrangian facility writes code forL instead of for the DAE equations. The
generalized coordinatesqi become variables of a reverse differentiation typeB built on top of
T, that is B. In the pendulum example, these are the coordinatesx,y which becomex, y of
type B, see Figure2. The partial derivatives in the right of (18), as well as the d/ dt, are com-
puted by AD to obtain the equations on the left where the variables have been converted back
to type T. The transformation, done in one direction byinit_q_qp() and in the other by
setupEquations() , is invisible to the user.

4.1.2 Complexity and efÞciency aspects

For current symbolic approaches, see, e.g. [22], or webinar [21] for an introduction to Lagrangian
modelling with Matlab andSimulink . Using AD as we do to transform the Lagrangian has
several advantages over these methods, besides user convenience:

€ The complexity of computing a Taylor series of degreep from a code list (or computational
graph, CG) of lengthl, using AD, isO(p2l), but a straight symbolic approach often gives
expressions that grow exponentially inp. Further, see, e.g. [4], the recursive expression for
an ODEÕs or DAEÕs Taylor coefÞcients of degreer is jointly linear in the coefÞcients of
degrees> r/ 2. Hence a TS of degreep can be computed in around log2(p) sweeps though
the CG, rather than thep sweeps of the most natural algorithm.

€ This applies to the use ofFADBAD++as the AD package. Thefcn() code is actually called
only once for each instantiating typeT. WhenT is Taylor mode,FADBAD++converts this
at run time to a CG representing the ßoating-point Taylor series evaluation, to the chosen
degree (like the ÔtapeÕ used by the ADOL-C system).
It optimizes this using methods of common-subexpression elimination (CSE) developed by
NedialkovÕs group, often signiÞcantly shortening the CG (see Table2). The optimized CG is
used by Daets at each evaluation of functions (1) during numerical integration.
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Figure 3. Spring-Mass-Pendulum with one rod.

This, with our efÞcient algorithm for System Jacobians and sparse linear algebra, mentioned
in Section 3.4, often gives speedups of> 10 compared toFADBAD++without CSE.

4.2 Examples

We have applied the Daets Lagrangian facility to various systems, including the following
examples. Performance tests are on a 2017 MacBook Pro laptop with a 4-core 2.2 GHz Intel pro-
cessor running Mac OS X 10.11.6. TheC++ compiler isclang++ version 8.0.0. All numerics
are inC++ double .

Visualisations of some results, produced in Matlab from the Daets output, can be viewed at
the YouTube channelMulti-body Lagrangian Simulations[13] (Figure3).

Because of the perceived difÞculty of solving DAEs, generalized coordinates are often cho-
sen to eliminate the constraints and give a Lagrangian of the second kind. For instance, a rigid
bodyÕs 3D position can be described by 3 coordinates of the position of its centre of mass and
3 of its angular position relative to this. However the mathematical formulation is often simpler
in cartesian coordinates. One plus of using a code for high-index DAEs such as Daets is that it
handles resulting ÔÞrst kindÕ systems easily. Further, since Daets does not set up a local coordi-
nate system for numerical solution as the DDs method does, it does not suffer the performance
penalty of DD-switching.

Example 4.1 (Spring-Mass-Pendulum)This 2D model is taken from an article on the Acumen
mechanics modelling system by Zhu, Tahaet al. [22].

We have extended their model to a chain of any numbern of rods. Namely, a horizontally
sliding point-massM is connected by a spring of stiffnessk to a Þxed point at the same level.
FromM hangs a chain ofn uniform rods, with frictionless joints between the end of one and the
start of the next. Purely to simplify the code, they all have the same massm and lengthl = 2a.
We assume the setup is constructed so that all components can slide or rotate freely without
colliding.

For n � 2 (possibly even forn= 1), the motion can be chaotic. The Þgure (taken from [22])
shows the casen= 1. As the Þgure indicates, Zhuet al. [22] take q = (x, 	 ) as coordinates,
leading to a Lagrangian of the second kind,L = T Š V where:

T = 1
2(M + m)�x2 + ma�x�	 cos	 + 2

3ma2 �	 2, V = 1
2kx2 + mga(1 Š cos	) . (21)

Here the rotational kinetic energy term23ma2 �	 2 uses the moment of inertiaI = 4
3ma2 of a uniform

rod about its centre of mass.
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For the generaln-rod model we use, instead, cartesian coordinatesq = (x0, x1, . . . , xn; y1, . . . ,
yn). Herer0 = (x0, y0), with y0 constant equal to 0, is the position ofM and the start of rod 1, and
r i = (xi , yi) for i = 1,. . . , n is the position of the joint between the end of rodi and (fori < n) the
start of rodi + 1. We avoid moments of inertia by using the following, where· denotes the dot
product of vectors.

Lemma4.1 If the ends of a uniform rod of mass m have position vectorsr0 andr1, depending
on t, then its kinetic energy at any instant is

KE = 1
6 m(�r0 · �r0 + �r0 · �r1 + �r1 · �r1).

Proof We can parameterize position along the rod asr = (1 Š s)r0 + sr1, for 0 � s � 1. Since
the rod has total massm, an element fromsto s+ dshas massmds. The velocity of this element
is �r = (1 Š s)�r0 + s�r1 so its kinetic energy is

1
2 m(�r · �r ) ds = 1

2 m


(1 Š s)2 �r0 · �r0 + 2(1 Š s)s �r0 · �r1 + s2 �r1 · �r1

�
ds.

Integrating this from 0 to 1 gives the result. �

The potential energy of the rods comes from considering the mass of rodi to be at its centre of
mass at height12(yiŠ1 + yi); there is a contribution of12kx2

0 from the spring and none from mass
M. This leads to the LagrangianL = T Š V , and constraintsCi , where

T =
1
2

M �x2
0 +

1
6

m
n�

i= 1

( �r iŠ1 · �r iŠ1 + �r iŠ1 · �r i + �r i · �r i)

=
1
2

M �x2
0 +

1
6

m
n�

i= 1



( �x2

iŠ1 + �y2
iŠ1) + (�xiŠ1�xi + �yiŠ1�yi) + (�x2

i + �yi2)
�

V =
1
2

kx2
0 + mg

n�

i= 1

1
2

(yiŠ1 + yi) =
1
2

kx2
0 + mg

�
1
2

yn +
nŠ1�

i= 1

yi

�

,

0 = Ci = (xi Š xiŠ1)2 + (yi Š yiŠ1)2 Š � 2, (i = 1,. . . , n).

The code in Figure4, which replaces lines 7Ð9 in thefcn of Figure2, implements the above
formulas. Heren, the numbern of rods, is read in as one of the physical parameters.SIZEOFC
also equalsn. The arraysq andqp holdingq and �q have length 2n+ 1.

Listing line 1 usesC syntax1 to split q into a scalar holdingx0, and two size-n arrays holding
x1, . . . , xn, andy1, . . . , yn; similarly qp. The variableKEsumaccumulates�x2

0 + �x2
n + �y2

n + �x0�x1 +
� nŠ1

i= 1 [2( �x2
i + �y2

i ) + �xi �xi+ 1 + �yi �yi+ 1], which is equivalent to the sum inT, and similarlyPEsum.
In the computation ofL, the temporary dependent variablesKEsum, PEsum, KE, andPE, are

local in the block between lines 3 and 4;FADBAD++requires that in the reverse mode either all
intermediate dependent variables are differentiated or go out of scope, which is the case here.

In our tests, the physical parameters of the original model in [22] were used, namely assuming
SI units,g = 9.8 m sŠ2, l = 2a = 2 m,M = 5 Kg, m = 2 Kg, k = 10 Kg sŠ2.

The chosen initial conditions (ICs) are that the system is at rest with massM at x0= 4, and
the rods stretched horizontally to the left. (Thus the spring is pushing against the row of rods;
animations show it Ôfolds upÕ rods 1 and 2 as they start to fall.)

To conÞrm that we are modelling the same system as in [22], the equations of motion derived
from the Lagrangian (21) given in [22] were coded in Matlab and integrated byode45 . The
results were compared with those of the Daets version for the casen= 1. The latter was coded
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Figure 4. Code for spring-mass-multi-pendulum system.

Figure 5. Spring-mass-pendulum withn= 1. It shows, for thex coordinate of the sliding mass and thex and y
coordinates of the pendulum, the difference between the solution by our model and that by (19), over 0� t � 40.

Table 1. Time (seconds) to integrate tot = 100 for various numbersn of rods, and tolerancestol .

tol n = 1 2 4 6 8 10 12 14 16 18 20

1eŠ 04 3.6eŠ 02 1.2eŠ 01 3.5eŠ 017.3eŠ 011.3 2.1 3.1 4.2 5.6 7.2 8.8
1eŠ 06 4.5eŠ 02 1.5eŠ 01 3.8eŠ 019.3eŠ 011.8 2.8 4.3 5.5 7.9 9.9 12.0
1eŠ 08 5.8eŠ 02 2.3eŠ 01 6.3eŠ 011.3 2.4 3.7 5.6 7.7 10.0 13.3 16.5
1eŠ 10 8.0eŠ 02 2.7eŠ 01 7.5eŠ 011.7 3.1 4.8 7.7 10.9 13.8 17.4 22.3
1eŠ 12 1.1eŠ 01 4.3eŠ 01 1.1 2.4 4.5 6.9 10.1 14.0 18.2 23.6 30.2

to outputq and �q at each of its time pointsti . These data were mapped to theti chosen by the
Matlab version by Hermite cubic interpolation between adjacentti of Daets. Figure5 shows
that overt = [0, 40], the differences (ode45 solution at tolerance 10Š12) Š ( Daets solution at
tolerance 10Š8) are of order 10Š6. This gives conÞdence that the programs are solving the same
physical model.
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Table 2. Number of nodes in the computational graph of the spring-mass-pendulum example, without and with CSE.

n 1 2 4 6 8 10 12 14 16 18 20

without CSE 154 348 964 1884 3108 4636 6468 8604 11044 13788 16836
with CSE 120 211 415 649 915 1213 1543 1905 2299 2725 3183
% reduction 24.1 42.9 62.1 71.5 76.9 80.5 83.0 84.9 86.3 87.5 88.4

For timing tests, the system was integrated by Daets over 0� t � 100 for various numbersn
of rods and (mixed relative-absolute) tolerancestol . Casen= 1 is the model in [22]. The Taylor
series degree was set to 15, which works well for these problems at this range of accuracies.
Table1 shows the times taken.

Daets has a Ômaximum step sizeÕ feature but this was not used so it chooses the step sizes
h freely. For the ÔhardestÕ problemn= 20 at tolerance 10Š12, they ranged fromh= 0.00061 to
h= 0.09. For the ÔeasiestÕ,n= 1 at tolerance 10Š4, they ranged fromh= 0.09 toh= 0.83.

In Table2, we report the number of nodes in the CGs for the above number of rods: without
CSE, with CSE, and the percentage of reduction in the number of nodes. Here it varies from
24.1% forn= 1 to 88.4% forn= 20.

Example 4.2 (Controlled simple pendulum)We show one can solve a prescribed-trajectory con-
trol problem for a Lagrangian-described system. Namely, for the simple pendulum we introduce
a horizontal external force on the bob, modelled as a system inputu = u(t) such that the equation
ẍ + � x = 0 becomes

ẍ + � x Š u = 0. (22)

The aim is to Þndu(t) (plus suitable consistent ICs) so that thex position performs simple har-
monic motionx(t) = asin(
 t) exactly, where the constantsa and
 are a given amplitude and
frequency, respectively.

Comparing the pendulum as initial-value problem in Figure2 and as control problem in
Figure6 shows the implementation changes little. One passesa and
 as extra parameters that
becomea andw. After thesetupEquations line, the Þrst equationf[0] is modiÞed in line
12, and a new fourth equationf[3] is at line 13 (in which thex at line 7 in Figure2 cannot be
used as it has the wrong type,B instead ofT).

But the revision has changed the DAEÕs mathematical nature greatly. Now with 4 variables
and equations, it is shown below with its signature matrix� (ablank meansŠ� , and the unique
transversal is marked by� ).

0 = A = x�� + x� Š u
0 = B = y�� + y� Š g
0 = C = x2 + y2 Š � 2

0 = D = x Š asin(
 t)

� =

x y � u ci�

�
�

�

�
�

A 2 0 0� 0
B 2 0� 0
C 0 0� 2
D 0� 2
dj 2 2 0 0

(23)

While (20) has 2 degrees of freedom, (23) has noneÑspecifying the desiredx(t) determines the
system inputu(t), as well asy and� , uniquely.

With the physical parametersg= 9.8 and� = 10, the problem was solved by Daets with 

equal to the pendulumÕs natural frequency

�
g/ l of small oscillations, and for variousa; and

again with
 changed by 20%, for the samea values. Some examples of resultinguÕs are plotted
over several cycles in Figure7. As expected,u is very small when
 is the natural frequency and
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Figure 6. Thefcn for the controlled pendulum problem: new lines 12 and 13 are inserted.

Figure 7. Solution by Daets of system inputu(t) for controlled pendulum withg = 9.8, l = 10. Required response
x = asin(
 t). For 
 equal to natural angular frequency (left column) and 20% larger (right column), and threea values.

a is small. It becomes large asa approaches� , or as the frequency moves away from the natural
one. Daets took less than 0.1 seconds for each of the runs.

Example 4.3 (DETEST Non-stiff Problem C5)This problem from the non-stiff part of the
DETEST testing package for ODE solvers [2], and originally2 from Zonneveld [23], is titled
ÔFive Body Problem: Motion of Þve outer planets about the SunÕ. It is a order 2 ODE of size 15
(so size 30 when reduced to order 1), the variables being the positions of Jupiter, Saturn, Uranus,
Neptune and Pluto relative to the Sun, inx,y,z coordinates such that the ecliptic plane, in which
the orbits approximately lie, is not close to any of the three axes.
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Figure 8. LogÐlog plot of divergence vs time. The planet model was integrated at two tolerances1e-13 and1e-15 .
The norm of the difference between these solutions is plotted at 10n TU, n = 1,. . . , 8, showing no sign of chaotic
behaviour for this set of ICs.

To set up the Lagrangian formulation,q comprising the 5 relative positions(� 1(t), . . . , � 5(t))
(each� being a 3-vector) is converted to 6 positions(r0(t), . . . , r5(t)) of Sun and planets relative
to their common centre of mass, which may be considered to be at rest in a Newtonian absolute
frame. Namely letm0 be the mass of the Sun andm1, . . . ,m5 the masses of the planets and
subtract

r c =
m00 + (m1� 1 + · · · + m5� 5)

m0 + (m1 + · · · + m5)

from each component of(0, � 1, . . . , � 5) to get(r0, . . . , r5). Then

T =
1
2

5�

i= 0

mi | �r i |2, V = Š
5�

i= 0

5�

j= i+ 1

Gmimj

|r i Š r j |
, L = T Š V, (24)

whereG is the gravitational constant. The code, shown in the appendix, was made particularly
compact using aC++ 3-vector class from [3].

In the DETEST model the time unit (TU) is 100 days. Distance is measured in astronomical
units (AU), where 1 AU is the mean radius of the earthÕs orbit. The task is to integrate from given
initial values up tot = 20 TU; at tolerance 10Š13 we get agreement with DETESTÕs reference
solution to around 12 decimal places.

To see how fast the solution is, the problem was integrated tot = 200,000 TU (about 55,000
earth years), with Taylor degree 20, at tolerances 10Š13 and 10Š14. The two sets of results agree
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to Þve decimal places, and some Daets integration statistics are

Integration of Sun and 5 planets tot = 200, 000 TU
tol CPU secs no. of steps smallest step largest step

1e-13 24.6 40855 2.66 8.32
1e-14 27.5 45619 2.39 7.65

The number of CG nodes is 1002 without CSE and 880 with CSE, or 13.9% reduction.
It is known that Pluto is locked in a, currently stable, 3:2 resonance with Neptune. This was

easy to verify over short periods from our results. For the subtleties of solar system behaviour,
see [6] and references therein. This article cites evidence that over very long times the system
switches between regular and chaotic behaviour in an irregular way that depends critically on
ICs. Hence numerical results showing linear (regular) divergence of neighbouring solutions up
to some large timeTÑrather than exponential (chaotic) divergence Ñ are no evidence that such
behaviour will continue up to, say, time 2T.

What about the given ICs? We integrated the problem at two tolerances1e-13 and1e-15 ,
recording the solutions at successive powers of 10 up to 108 TU (
 4.2 hours CPU time for
each to reach 108) and computing the relative error in the 2-norm at these times. The results, see
Figure8, show non-chaotic behaviour up to that point.

5. Conclusions and further work

For two signiÞcant applications to do with DAEs, we have shown that differentiation of expres-
sions, commonly done symbolically with the help of a computer algebra system, can be done
efÞciently and simply by AD.

First, for the Dummy Derivatives index reduction method a theoretical scheme is given that
applies in principle to preparing a DAE for solution by any standard DAE or ODE initial value
code. DD-switching, which moves from one mode (local coordinate system) to another, is at the
housekeeping level just a change of the size-dof setSof indices(j, l) that deÞne the state vector.

The scheme reduces order and index together, so one need not pre-reduce to Þrst-order form.
Finally, following this paperÕs theme, differentiating DAE componentsfi selectively (some more
than others) does not need symbolic algebra; it can be done by standard AD methods of treating
them as truncated power series.

We have proof-of-concept implementations in Matlab andC++. It remains to be seen whether
the scheme can be made efÞcient as a practical tool. For DAEs from industrial applications that
may need to switch among very many modes, it may (as in the more general case of hybrid
systems) be worth keeping a run time data base of modes used, if this can speed up re-entry to a
mode that has been met before.

Second, we have shown that for a DAE, all or part of whose equationsfi = 0 derive from the
LagrangianL of a mechanical system, producing thefi from L can be done by pure AD without
symbolic algebra. The theory was illustrated by simulation examples: a constrained mechani-
cal system, a forced pendulum as a prescribed-path control problem, and an ODE of planetary
motion.

The method of directly solving from a Lagrangian by overlaying one AD type on another
might be used with other DAE solvers and AD tools. However our infrastructure, of Daets with
FADBAD++and the Lagrangian facility has several advantages:

€ For any SA-friendly DAE, the user leaves both conversion ofL to equations of motion, and
index/order reduction of the resulting DAE, to be done by Daets automatically.
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€ It avoids large symbolic expressions that a computer algebra system typically generates when
converting to a form suitable for integration by a standard ODE/DAE solver.

€ Constrained ÔÞrst kindÕ Lagrangians in cartesian coordinates are often simpler to formulate
than unconstrained Ôsecond kindÕ ones in other coordinates. For a high-index DAE solver
such as Daets, possible obstacles posed by index reduction and DD-switching are absent,
and constrained systems are as easy to solve as unconstrained, which makes ÔÞrst kindÕ forms
more attractive.

€ It can be programmed in a way that is intuitive and close to the mathematics, which using
cartesian coordinates is itself more readable and accessible.

€ It gives remarkably fast code in the cases we have tried (which can be seen from the Daets
statistics of the animations at [13]).

Current work is exploring our Lagrangian approach on a variety of research and engineer-
ing problems, and in particular rigid-body mechanics simulations and control problems. We are
particularly interested in hybrid systems, because of their importance in industrial engineering.
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Appendix. Extract from code for planetary problem

This is thefcn() code for 3D motion ofn+ 1 gravitating bodies, where body 0 is the Sun and thex,y,zpositions of the
other bodies are relative to it. It was specialized to the problem in Example 4.3 by providing suitable input to the main
program, not shown. Note this function is not restricted to 5 bodies: their number and masses are passed as parameters.

1 template <typename T>
2 void fcn( T t, const T * z, T * f, void * pp ) {
3 const double * param = ( double * )pp;
4 const int nMASS = param[0],
5 n = nMASS-1;
6 const double G = param[1];
7 const double * m = param + 2,
8 * mplanet = m+1; // the masses EXCLUDING the Sun
9 const double Mtotal = (m + nMASS)[0]; // total mass, calculated in main program

10
11 typedef Vector3D< B<T> > vec3;
12 vector< B<T> > q(3 * n), qp(3 * n); // independent variables
13 B<T> L; // for storing Lagrangian
14 // { ... } ensures all intermediate variables go out of scope
15 {
16 init_q_qp(z,q,qp); // setup q, qp
17
18 // Convert to a vector of 3D vectors.
19 vector< vec3 > Q(n), Qp(n);
20 for ( int imass=0; imass<n; imass++) {
21 Q[imass] = vec3( q [3 * imass], q[3 * imass+1], q [3 * imass+2] );
22 Qp[imass] = vec3( qp[3 * imass], qp[3 * imass+1], qp[3 * imass+2] );
23 }
24
25 vector< vec3 > R(nMASS), Rp(nMASS);
26 R[0] = Rp[0] = vec3(0,0,0);
27 for ( int imass=0; imass<n; imass++) {
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28 R [0] -= mplanet[imass] * Q [imass]; Rp[0] -= mplanet[imass] * Qp[imass];
29 }
30 R [0] /= Mtotal; Rp[0] /= Mtotal;
31
32 // then set r_1, ..., r_n and their derivatives:
33 for ( int imass=1; imass<nMASS; imass++) {
34 R [imass ] = Q [imass-1]+R [0]; Rp[imass] = Qp[imass-1]+Rp[0];
35 }
36
37 // Compute KE and PE in terms of r and rp arrays
38 B<T> KE = 0;
39 for ( int imass=0; imass<nMASS; imass++)
40 KE += m[imass] * Rp[imass] * Rp[imass];
41 KE * = 0.5;
42
43 // Potential Energy (sum of all mass-to-mass PEs, -> -oo as bodies
44 // become close)
45 B<T> PE = 0;
46 for ( int imass=0; imass<nMASS; imass++)
47 for ( int jmass=imass+1; jmass<nMASS; jmass++)
48 PE -= m[imass] * m[jmass] / norm(R[imass]-R[jmass]);
49 PE = G* PE; // bring in gravitational constant
50
51 L = KE-PE;
52 }
53 vector<B<T> > C; // dummy constraint variable
54 setupEquations(L,z,q,qp,C,f);
55 }
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