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Pattern formation from homogeneity is well-studied, but less is known concerning symmetry-breaking insta-
bilities in heterogeneous media. It is nontrivial to separate observed spatial patterning due to inherent spatial het-
erogeneity from emergent patterning due to nonlinear instability. We employ WKBJ asymptotics to investigate
Turing instabilities for a spatially heterogeneous reaction-diffusion system, and derive conditions for instability
which are local versions of the classical Turing conditions We �nd that the structure of unstable modes differs
substantially from the typical trigonometric functions seen in the spatially homogeneous setting. Modes of dif-
ferent growth rates are localized to different spatial regions. This localization helps explain common amplitude
modulations observed in simulations of Turing systems in heterogeneous settings. We numerically demonstrate
this theory, giving an illustrative example of the emergent instabilities and the striking complexity arising from
spatially heterogeneous reaction-diffusion systems. Our results give insight both into systems driven by exoge-
nous heterogeneity, as well as successive pattern forming processes, noting that most scenarios in biology do
not involve symmetry breaking from homogeneity, but instead consist of sequential evolutions of heterogeneous
states. The instability mechanism reported here precisely captures such evolution, and extends Turing's original
thesis to a far wider and more realistic class of systems.

I. INTRODUCTION

Since Alan Turing's celebrated work on morphogenesis [1], reaction-diffusion systems have been a paradigm of pattern
formation throughout chemistry and biology [2–7]. The most striking aspect of this theory is the emergence of heterogeneity
from homogeneity. However, even Turing himself recognized this as an idealization when he wrote, “Most of an organism, most
of the time is developing from one pattern into another, rather than from homogeneity into a pattern.” Here, we concern ourselves
with this heterogeneous setting, and determine the generalization of the Turing conditions to a reaction-diffusion system with
explicit spatial dependence. We derive conditions for the instability of a heterogeneous steady state into a Turing-type pattern,
with both the localization and structure of the pattern depending on the heterogeneity. Under a necessary hypothesis of a
suf�ciently slowly varying heterogeneous base state, our results clearly differentiate between spatial structure due to inherent
spatial heterogeneity, and emergent patterns due to Turing-type instabilities. This then elucidates successive pattern formation
in distinct stages.

This transition from one pattern into another has been noted as key in reconciling seemingly-divergent theories in morphogen-
esis [6]. Turing's original theory was that his reaction-diffusion mechanism laid down a prepattern of heterogeneous morphogen
concentration, which then drove cellular differentiation and morphogenesis directly (Fig. 1(a)-(c)). This is in contrast to theo-
ries of positional information (colloquially “French-�ag” models) whereby cellsa priori are assigned locations relative to some
developmental coordinate system, and perform different functions based on this positional information [8] (Fig. 1(d)). Spatial
heterogeneity provides a way to reconcile these competing theories by allowing positional information to in�uence reaction-
diffusion processes, leading to modulated patterns which are ubiquitous in nature (Fig. 1(d)-(f)). Additionally, heterogeneity
permits successive reaction-diffusion patterning in stages, whereby patterning at different scales can arise (Fig. 1(e)-(g)). This
is in line with work implicating chemical and cellular pre-patterns in developmental biology [9–11], such as in the context of
organising different regions along cell boundaries based on sharp variations in gene expression [12, 13].

Beyond theories of morphogenesis in developmental biology, models involving reaction-diffusion systems with spatial het-
erogeneity have been considered in many contexts. Examples include environmental heterogeneity in collective animal dispersal
[15–19], reaction-diffusion in domains with non-isotropic growth [20, 21], as well as spatial invasion modelling [22, 23], and
models with differential diffusion leading to spatial inhomogeneity in plant root initiation [24, 25]. Spatial heterogeneity has

� krause@maths.ox.ac.uk
† These authors contributed equally to this work.



2

FIG. 1: Different interactions of pattern formation mechanisms in development. (a) is a generic schematic of Turing pattern formation from
homogeneity, with different pattern characteristics shown in (b), and, in (c), a biological example of a developing mouse paw in the presence of
altered levels of Hox gene action. Positional information feeding into reaction-diffusion is shown in (d)-(e), consistent with observed structural
characteristics of mouse whisker placodes in (f). Finally, successive reaction-diffusion patterning is shown in (g)-(h), with the example
of Jaguar spots demonstrating large and small-scale pattern formation in (i).The idea being that the schematic in (g) shows a sinusoidal
prepattern (left peaks) feeding into a wave mode 3 Turing pattern (right peaks). Speci�cally, the Turing pattern is only able to appear within
the peaks of the prepattern. Thus, each peak forms a disjoint interval. Mouse paw images from [14] R. Sheth, L. Marcon, M. F. Bastida,
M. Junco, L. Quintana, R. Dahn, M. Kmita, J. Sharpe, M. A. Ros. Hox genes regulate digit patterning by controlling the wavelength of a
turing-type mechanism. Science, 338(6113):1476–1480, 2012. Reprinted with permission from AAAS. Mouse whisker placode image used
with permission from Denis Headon. Jaguar picture by Jean Beaufort used under a CC0 Public Domain license from http://bit.ly/JaguarPicture.

been (numerically) observed to change local instability conditions for pattern formation [26, 27], modulate size and wavelength
of patterns [28], and localize (or pin) spike patterns in space [29–31]. We also note that the presence of even simple spatial
heterogeneity can induce spatiotemporal behavior, such as changing the stability of patterned states and thereby inducing peri-
odic movement of spike solutions [32, 33]. Bifurcation structures of reaction-diffusion equations with spatial heterogeneity have
been considered for some time [34]. There is also a large literature on reaction-diffusion systems with strongly localized het-
erogeneities [35], with [36] recently considering the case of a step-function heterogeneity in the reaction kinetics and deducing
local Turing conditions on each side of the step. While we will also deduce local Turing conditions, we note that this limit is
different from the case of smooth spatial heterogeneity we will consider here.

Many experimental applications of reaction-diffusion systems have exploited an intuitive idea that a patterning instability is
possible depending on the local environment, and, hence, one can think oflocal pointwise Turing conditions in order to determine
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where patterning will occur [37–41]. This research has also given rise to various multiscale approaches for analysis of mode
coupling between spatial forcing and emergent Turing patterns [42–44]. However, as far as we are aware, no justi�cation for this
localization, or the use of canonical (trigonometric) unstable eigenmodes, has been given in the literature. Several authors have
attempted to deduce Turing conditions in spatially forced reaction-diffusion equations [45–47], but these results are limited to
special cases regarding asymptotic assumptions and nonlinear kinetics, and even the case of varying diffusion coef�cients is not
perfectly understood [48]. We note that Dewel and Borckmans [45] in particular analyse the case of slowly varying heterogeneity
and employ a WBKJ-like ansatz, as we do below. However, their approach is substantially different from our own as they neglect
the �nite size of the domain, and do not recover the local Turing conditions that we seek, or the form of unstable modes.

Turing instabilities leading to pattern formation are typically considered to be induced due to the addition of diffusion
(diffusion-driven instability) [5] and due to an increase in the domain-size [49]; below a certain critical domain size, patterns
cannot be formed but above a minimal size, any small spatial perturbation of a reference homogeneous steady state will grow.
The classical case focusing on spatially homogeneous systems is a textbook analysis and typically proceeds via a dispersion re-
lation tying the Laplacian eigenmodes with the perturbation's growth rate [5, 50–52]. However, as we shall show, justifying such
a relationship between the growth rate and the operator's spectrum is much harder in the case of arbitrary spatial heterogeneity.

A major dif�culty in analyzing instabilities in systems with spatial heterogeneity is that there is no simple generalization of
Sturm–Liouville theory to multiple-component systems [49]. One can make use of the scalar theory when the heterogeneity
appears in the same way in each component and is scaled such that the spatial operator, including diffusion, is identical in
each equation. However, more generally, such a theory is dif�cult to use and, at best, one �nds existence results, or must
resort to numerical approaches [53, 54]. On the other hand, the WKBJ approximation has been employed in many optical
and semi-classical quantum mechanical situations involving spatial heterogeneity [55–57], and, as we will demonstrate, has a
straightforward generalization to coupled systems.

Here, we use WKBJ methods [58] in order to compute instability criteria for a reaction-diffusion system with explicit spatial
heterogeneity in the kinetics, under the assumption that the heterogeneity is suf�ciently smooth and not rapidly varying com-
pared with the diffusive length scales. Our analysis also shows several novel aspects of these instabilities in the presence of
heterogeneity, such as modes supported in different regions of the domain depending on their growth rates. This phenomenon
invalidates some heuristics commonly employed in homogeneous Turing pattern formation, such as restricting analysis to the
mode with the fastest growth rate, which in the heterogeneous case varies across the domain. These structural results can
help explain size and wavelength modulation in the presence of heterogeneity observed both in simulations and heterogeneous
environments in experiment.

We begin by setting up the system and reviewing conditions for a Turing instability in the homogeneous case, and stating
the corresponding conditions in the spatially heterogeneous setting in Section II. This Section is a roadmap of our results and is
intended to state the conditions without detailed derivation. Such a derivation is presented in Section III, with the classical results
in the homogeneous case in SI Section S1. We end this section with a discussion of properties of these solutions, and how their
form implies the instability conditions, with some technical details in SI Section S2. In Section IV we illustrate our results in the
case of the Schnakenberg system, demonstrating both that our conditions for instability correspond to full numerical solutions,
as well as showing various structural properties regarding the emergent unstable modes in line with our analysis. Finally, we
discuss our results in Section V, highlighting both applications of our method and future directions for extensions. Someone
interested primarily in our results, rather than the technicalities of the WKBJ calculations, can skip Section III, and instead just
read Sections II and IV-V to understand the implications of our results, as well as how to apply them to different systems.

II. HOMOGENEOUS AND INHOMOGENEOUS INSTABILITY CONDITIONS

Here, we state instability conditions for both homogeneous and heterogeneous two component reaction-diffusion systems
which lead to emergent spatial patterning. In the heterogeneous setting we exploit asymptotically small diffusion coef�cients,
and so pose the general problem �rst. We consider a dimensional two component system in one spatial dimension,

ut = Ddimuxx+ Fdim(u;x); t > 0; x 2 (0;L); Ddim =
�

D1 0
0 D2

�
;

whereD1 > D2 > 0 are the diffusion coef�cients andL is the domain length. We prescribe Neumann boundary conditions (ux = 0
for x 2 f 0;Lg) and the initial conditionu(x;0) = u0(x): We non-dimensionalise length scales with respect toL, time-scales with
respect to a reaction time-scaleT, and concentrations with respect to a typical concentration scaleU for both components and
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diffusion coef�cients byD1. Reusingu, t andx to now represent non-dimensional quantities for brevity we have

ut = e2Duxx+ F(u;x); t > 0; x 2 [0;1]; e2 =
D1T
L2 ; D =

�
1 0
0 d

�
; d = D2=D1 � 1; (1)

whereF(u;x) = ( f (u;x);g(u;x)) is now a non-dimensional vector of kinetic functions. Below we assume 0< e � 1: This
asymptotic assumption is not physiologically unreasonable in developmental settings. For kinetic timescales ofT � 10 minutes,
the shortest that would allow for gene expression [59, 60], a domain length ofL � 1mm and a diffusion coef�cient ofD1 �
1:5� 10� 8cm2s� 1, which is the measured diffusion coef�cient of a chemotactic protein inE-Coli [61], one hase2 � 9� 10� 4

ande � 0:03. Critically, we note thate is the ratio of two time scales, that of the kinetic interactions and that of diffusion
required to be felt across the whole domain. Hence, a large enough domain size implies smallepsilonirrespective of the values
of the diffusion coef�cient and kinetics timescale.

Let u� (x) denote a steady state, so that

0 = e2Du�
xx+ F(u� ;x); x 2 [0;1];

with boundary conditionsu�
x = 0. To generalize the notion of a homogeneous steady state, we only consider the possibility that

u� oscillates with spatial derivatives of scaleO(1), or smaller, speci�cally excluding spatial oscillations on the scale ofO(1=e),
or larger. Hence,u� is independent ofe and we have

0 = F(u� ;x)+ O(e2); (2)

as long as the spatial heterogeneity inF permitsu�
x = 0 atx = 0;1. If insteadu�

x 6= 0 at either boundary then a boundary layer
with concomitant large derivatives will form, a possibility which we neglect in the subsequent analysis.

Linearising about this steady state viaw = u � u� , assumed small component-wise even relative to the scale ofe, yields,

wt = e2Dwxx+ J(x)w; (3)

whereJ(x) is the Jacobian matrix ofF evaluated atu� (x). System (3) inherits homogeneous Neumann boundary conditions
and the initial conditionw(x;0) = u(x;0) � u� (x). The fundamental impact of spatial heterogeneity in the kinetics is that the
JacobianJ possesses an explicit spatial dependence (and formally an additionalO(e2) dependence, though we can neglect this
via the asymptotic analysis going forward). The standard derivation in the homogeneous setting proceeds by assuming the ansatz
w µ el tq(x), justi�ed by linearity. One then uses eigenvalues of the Laplacian to �ndl (n), wheren is a spectral parameter,
resulting in conditions which implyÂ(l ) > 0 and, hence, instability.

This approach does not generalize to the heterogeneous setting due to the explicit spatial dependence ofJ, and so instead we
think of varyingl as a parameter and searching for eigenvalues consistent with the form of the solution whenÂ(l ) > 0. We
�rst state a reformulation of the classical homogeneous conditions before generalizing to the heterogeneous case. We give a
detailed rederivation in the homogeneous case in SI Section S1, arriving at the following formulation of the Turing conditions:

Instability Criterion 1 (Homogeneous) Let 0 < e � 1, and J a constant matrix for all x2 [0;1]. If we assume stability to
homogeneous perturbations, i.e.,

tr(J) < 0; det(J) > 0; (4)

then there exists a non-homogeneous perturbationw satisfying(3) which grows exponentially in time in the interval x2 [0;1] if

tr(D� 1J) > 0; [tr(D� 1J)]2 � 4det(D� 1J) > 0: (5)

We �nd an analogous result in the spatially heterogeneous setting involving a much more complicated form of unstable modes
explicitly depending on the growth ratel , so that, to leading order, we have unstable solutions of the formw µ el tq(x; l ). Ad-
ditionally, for different growth ratesl , the instability may be restricted to different subsets of the spatial domain (asymptotically
at leading order). We will denote the largest of these regions, within which we anticipate patterns to be con�ned, asT0, which
can consist of multiple disjoint intervals (as in Fig. 1(h)). We denote the interior of this region asT i

0 . Conditions for instability in
the heterogeneous case then follow from Criterion 3, and Proposition 8, which are stated and derived in the next section. These
conditions can be stated as:
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Instability Criterion 2 (Heterogeneous) Let0 < e � 1, and assume that the quantity[tr(D� 1J(x))]2 � 4det(D� 1J(x)) has only
simple zeros for x2 [0;1]. If we assume stability to perturbations in the absence of diffusion, i.e.,

tr(J(x)) < 0; det(J(x)) > 0; for all x 2 [0;1]; (6)

then there exists a non-homogeneous perturbationw satisfying(3) (to leading order ine) which grows exponentially in time for
all x 2 T i

0 if

tr(D� 1J(x)) > 0; [tr(D� 1J(x))]2 � 4det(D� 1J(x)) > 0; for all x 2 T i
0 ; (7)

whereT i
0 is the largest set for which conditions(7) hold.

More generally, the conditions of Criterion 2 are exactly a local version of the homogeneous results, so that the same conditions
satis�ed on a subset of the full spatial domain imply a pattern forming instability on that subset. Both homogeneous and
heterogeneous conditions hold for suf�ciently smalle, which can be thought of as a suf�ciently large spatial domain. In this
case, one can neglect the discrete wave mode selection, though we do give discrete dispersion relations in SI Section S1 for
the homogeneous case, and Criterion 3 for the heterogeneous case. These discrete conditions give concrete ways to determine
precisely which modes become unstable, and their associated growth rates, for a �xed value ofe. In the next section we will
describe how to derive Criterion 2 and these results mentioned above, and also further structural details about such instabilities
which emerge from the form of unstable modes. One can skip these details on a �rst read and see an illustration of the results in
Section IV.

III. DERIVING THE SPATIALLY INHOMOGENEOUS CONDITIONS

We start our analysis of the heterogeneous Turing instability by analysing the stability of the steady state in line with the usual
Turing instability analysis. We seek solutions to Equation (3) in the formw(x;t) = el tq(x) (as linearity permits separability int
andx) to �nd

0 = e2Dqxx+ Jl (x)q; (8)

with Jl = J � l I . We then proceed in direct analogy to the scalar WKBJ expansion [57, 58], with

q = exp
�

ij (x)
e

�
p(x); p(x) = p0(x)+ ep1(x)+ e2p1(x)+ : : : :

Thus, with0denoting the ordinary derivative with respect tox,

qxx = exp
�

ij
e

� ��
ij 0

e
p+ p0

� 0

+
ij 0

e

�
ij 0

e
p+ p0

��
= exp

�
ij
e

� �
�

j 02

e2 p+
1
e

�
2ij 0p0+ ij 00p

�
+ p00

�
;

and, hence,

0 = [ � j 02D+ Jl ]p+ e
�
2ij 0Dp0+ ij 00Dp

�
+ O(e2);

where theO(e2) terms fromJ were neglected, as we will not need to consider the second order problem below. At leading order
in e we have

0 = [ � j 02D+ Jl ]p0 = D
�

[� j 02I + Bl ]p0
	

;

where we de�ne the matrixBl = D� 1Jl = D� 1(J � l I ) and at next to leading order

0 = [ � j 02D+ Jl ]p1 +
�
2ij 0Dp0

0 + ij 00Dp0
�

= D
�

[� j 02I + Bl ]p1 +
�
2ij 0p0

0 + ij 00p0
�	

:

We solve the leading order equations by settingj 02 equal to an eigenvalue ofBl and setp0 = Q0(x)p� (x) wherep� (x) is the



6

unit magnitude eigenvector of[� j 02I + Bl ] with zero eigenvalue andQ0(x) is an undetermined scalar function. Then

� [� j 02I + Bl ]p1 =
�
2ij 0p0

0 + ij 00p0
�

= i
�
2j 0Q0

0 + j 00Q0
�
p� + 2ij 0Q0p0

� :

The matrix premultiplyingp1 has zero determinant and hence the existence of a solution requires a solvability condition.
Let sT

� (x) be the zero left eigenvector of unit magnitude of[� j 02I + Bl ]. Then we have the solvability conditionsT
� (x)[� j 02I +

Bl ] = 0 by Fredholm's alternative, and thus multiplying bysT
� (x) we have

�
2j 0Q0

0 + j 00Q0
�
s�

Tp� + 2j 0Q0s�
Tp0

� = 0; (9)

which yields

Q0
0

Q0
= �

j 00

2j 0 �
s�

Tp0
�

s�
Tp�

:

Thus

Q0(x) =
Q00p

j 0
exp

�
�

Z x

a

s� (x̄)Tp0
� (x̄)

s� (x̄)Tp� (x̄)
dx̄

�
; (10)

whereQ00 is a constant, not necessarily real,a is a real constant andj 0 is given by either the positive or the negative square root
of the eigenvalues ofBl , anda is an arbitrary real constant before any constraints of considering real solutions and the boundary
conditions are imposed. Hence, for each eigenvalue ofBl (x), denoted

m�
l (x) � j 02(x);

we have a possible mode which, at leading order, can be written as

w(x;t) = el t exp
�
�

Z x

a

s� (x̄)Tp0
� (x̄)

s� (x̄)Tp� (x̄)
dx̄

�
1

[m�
l ]1=4(x)

�
C�

0 cos
�

1
e

Z x

a

q
m�

l (x̄)dx̄
�

+ S�
0 sin

�
1
e

Z x

a

q
m�

l (x̄)dx̄
� �

p� (x); (11)

whereC�
0 ;S�

0 are arbitrary constants. We note that the reciprocal ofe from the trigonometric functions will dominate in spatial
derivatives given our asymptotic assumptions.

In the usual Turing analysis, we assume that the steady state is stable to homogeneous perturbations, which are associated
with the zero mode. In this case, such a perturbation would correspond to settingm�

l = 0, which is equivalent to looking for
solutions with constantj . Such a perturbation would then satisfy to leading order, from Equation (8),

wt = e2Dwxx+ J(x)w � J(x)w; (12)

asjwxxj � O(1) for this kind of perturbation.This approximation is justi�ed through the fact that we are discussing stability
with respect to homogeneous perturbations, thus, constantj means thatw varies withx as p(x), which does not scale withe.
Stability of the equilibrium to such perturbations is required for allx and thus, to asymptotic accuracy, we require

tr(J(x)) = fu + gv < 0; det(J(x)) = fugv � fvgu > 0; for all x 2 [0;1]; (13)

a set of two constraints that we shall assume throughout the text below. These conditions generalize the notion of stability against
homogeneous perturbation in the spatially homogeneous setting, and imply that any unstable mode of the form (11) will lead to
emergent spatial patterning that is not strictly dictated by the spatial heterogeneity in the kinetics.

The above expression for the leading order solutionw is well de�ned with the exception of zeros ofm�
l (which we will show

can be excluded in Proposition 6 below) and potential singular pointsx� 2 [0;1] wheres�
Tp� = 0. These singular points will in

fact determine the subsets of the spatial domain in which a patterning instability will occur. We �rst consider properties ofl
andm�

l , independently from the solution structure given by (11), in an arbitrary interval(a;b) � [0;1], and then discuss how to
choose such an interval so that solutions can be de�ned. After this, we discuss how solutions behave near these singular points
in order to de�ne solutions globally in space. Note, in particular, that we will restrict attention to the open interval(a;b), as we
will eventually choose these boundaries to (possibly) be singular points.
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A. Local Turing Conditions

Motivated by the form of solution (11), we now consider the quantitiesl andm�
l in their own right, and deduce properties that

these quantities must have to make sense of such a solution. If the WKBJ solution, (11), is de�ned everywhere on the domain
x 2 [0;1], Neumann boundary conditions at the domain edges entail, at leading order ine, that the integral

Z 1

0

q
m�

l (x̄)dx̄ (14)

is a multiple ofpe=2 and, without loss,a = S�
0 = 0 so that only cosine solutions remain. Furthermore, given the choice of a

suf�ciently small e, the above constraint can be ensured simply by imposing

Z 1

0

q
m�

l (x̄)dx̄ 2 R n f 0g: (15)

However, we are not guaranteed that the WKBJ solution, (11), is de�ned everywhere on the domainx 2 [0;1]. In general,
the region of validity for the WKBJ solution will be restricted to one or more intervals of the form(a;b) wherea andb are
constants satisfying 0� a < b � 1. The pathological case of a region of validity that is restricted to a point is neglected, as
this requires mathematical precision in the parameter values. As discussed in Section III B, when the WKBJ solutions are
not valid everywhere, homogeneous Dirichlet boundary conditions will be required (i.e. whenevera;b satisfya > 0 or b < 1).
Given suf�ciently smalle, as discussed immediately above, then we may accommodate both cases of homogeneous boundary
conditions, Neumann or Dirichlet, by requiring (i) without loss a restriction of the WKBJ solution to either a sine or a cosine by
setting eitherC�

0 = 0 orS�
0 = 0 to guarantee the boundary condition atx = a and (ii)

Z b

a

q
m�

l (x̄)dx̄ 2 R n f 0g; (16)

for 0 � a < b � 1 so that the integral in (16) can be guaranteed to be a multiple of eitherpe or pe=2 for a suitable, suf�ciently
small, choice ofe to guarantee the homogeneous boundary condition atx = b.

From the fundamental constraint (16), we can deduce properties ofl andm�
l that are necessary for a solution to exist within

an arbitrary region of validity,(a;b), with Â(l ) > 0, therefore resulting in a perturbation that grows in amplitude. An analogous
derivation in the spatially homogeneous setting is given in SI Section S1, and is the motivation for what follows. Critically,
we assume that conditions (13) hold for every proposition below. We remark that here we derive implications directly from the
fundamental constraint (16) that will let us make sense of solutions of the form given in (11), but do not assumea priori that
such solutions must be valid.

We �rst de�ne permissiblegrowth rates and eigenvalues which satisfy (16).

De�nition 1 A permissible pair(l ;m�
l (x)) is such that the value ofl entailsm�

l (x) satis�es constraint(16) for all x in some
interval (a;b).

We will also refer tol as permissible, orm�
l (x) as permissible, if(l ;m�

l (x)) is permissible, as de�ned above, and implicitly
assume this is over an interval(a;b).

Proposition 2 The functionm�
l (x) is permissible if and only ifm�

l (x) is real and non-negative for all x2 (a;b), though not
identically zero. Additionally, without loss of generality we can consider the integral in(16) to be positive.

Proof. If m�
l (x) is real, non-negative and not identically zero forx 2 (a;b) it is immediate that it is permissible. For the converse,

we consider a permissiblem�
l (x). Note that the square root in condition (16) is, without loss of generality, the positive square

root. In other words, we work in the complex plane such that any argument, denotedq below, is in the rangeq 2 [0;2p) and the
positive square root is such that if, for example,q=2 2 [0;p), then

�
eiq

� 1=2
= eiq=2:

Hence, any imaginary contribution to the integrand,
q

m�
l (x), in condition (16) is non-negative as the argument of the square

root in the complex plane is in the range[0;p). So any imaginary contribution to the integrand cannot be cancelled from a
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contribution in any other region of the integration domain. Thus, the integrand cannot have an imaginary contribution andq
m�

l (x) must be real for allx 2 (a;b). Hence,m�
l (x) is real and non-negative for allx 2 (a;b). Finally, the need for the integral

to not be identically zero implies thatm�
l (x) cannot be identically zero.

Proposition 3 If l is both permissible and complex (i.e.Á(l ) 6= 0), thenÂ(l ) < 0:

Proof. From the de�nition ofm�
l (x), we have

det[� m�
l (x)D+ Jl (x)] = 0;

and, so,

2l = � tr(m�
l (x)D � J) �

q
[tr(m�

l (x)D � J)]2 � 4det[m�
l (x)D � J] = [ fu + gv � m�

l (x)(1+ d)]

�
q

( fu + gv � m�
l (x)(1+ d))2 � 4(d(m�

l (x))2 � (d fu + gv)m�
l (x)+ ( fugv � gu fv)) ; (17)

with the spatial dependence ofm�
l (x) such that the growth rate,l , does not have a dependence onx. Givenl is permissible, so

thatm�
l (x) is permissible, we have thatm�

l (x) is real and non-negative for allx 2 (a;b). In addition, tr(J) = fu + gv < 0 for all x
by Equation (13) implying thatfu + gv � m�

l (x)(1+ d) < 0 and, thus, if a permissiblel is complex it has a negative real part.

Proposition 4 GivenÂ(l ) � 0, the pair(l ;m�
l (x)) is permissible if and only if

tr(Bl ) > 0; [tr(Bl )]2 � 4det(Bl ) � 0; (18)

for all x 2 (a;b).

Proof. If (l ;m�
l (x)) is permissible, withÂ(l ) � 0, thenl is real by Proposition 3. From permissibility and Proposition 2 we

also havem�
l (x) is real, non-negative and not identically zero for allx 2 (a;b). From det(� m�

l (x)D+ Jl (x)) = 0, we have

m�
l (x) =

1
2

�
tr(Bl ) �

q
[tr(Bl )]2 � 4det(Bl )

�
: (19)

As m�
l (x) andl are strictly real, this enforces

[tr(Bl )]2 � 4det(Bl ) � 0;

for all x 2 (a;b). We also have det(Bl ) = det(D� 1Jl ) = det(D� 1) det(Jl ) = det(Jl )=d > 0 for all x 2 (a;b), using Equation
(13) and thatl is real and non-negative. Hence, for both the positive and negative square root in Equation (19), the fact that
m�

l (x) cannot be negative enforces tr(Bl ) � 0 for all x 2 (a;b). The possibility that tr(Bl ) = 0 is excluded as thenm�
l (x) is not

real, since det(Bl ) > 0:
Conversely, assuming conditions (18), we can see by Equation (19) thatm�

l (x) > 0 for all x 2 (a;b), and, hence, condition
(16) is satis�ed.

We note that conditions (18) cannot be satis�ed in the cased = 1, as then tr(Bl ) = tr(J) � 2l < tr(J) < 0, so for any
permissiblel with Â(l ) > 0, we must haved < 1. As the conditions in (18) do not depend on the positive or negative branch
of m�

l , we immediately have that this proposition implies both roots are permissible once one of them is. We also need the
following Proposition, which shows that if these conditions hold forl > 0, then they hold forl = 0.

Proposition 5 If the conditions(18) hold for some real permissiblel � with l � > 0 for all x 2 (a;b), then they hold for all real
l with l � � l � 0 for all x 2 (a;b).

Proof. First, we realise that tr(Bl ) = tr(B0) � l (1+ 1=d), and the last term is strictly negative so that from tr(Bl � ) > 0 we have
tr(Bl ) > 0 for all 0 � l � l � . Next we consider the second condition of (18), which can be written as

P(l ) :=
�

1�
1
d

� 2

l 2 �
2(d � 1)(d fu � gv)

d2 l +
�

fu +
gv

d

� 2
� 4

fugv � fvgu

d
� 0; (20)
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where the quadraticP(l ) admits two zeros, which we can compute as

l̃ � =
gv � d fu � 2

p
� d fvgu

1� d
:

We can see that these roots are both real by signing each term. From tr(J) < 0 while tr(Bl � ) = tr(D� 1Jl � ) > 0 for l � > 0 we
have thatfu + gv < 0 while fu + gv=d > 0 andd < 1. Hencefu < 0; gv > 0 andfu � gv=d < 0.

Due to the positive coef�cient ofl 2 in P(l ), we can see that this function must have a negative minimum, so that it is positive
to the left ofl̃ � and to the right of̃l + (and negative between these roots). Ifl � � l̃ � , thenP(l ) is decreasing inl and, so,
P(l ) > 0 for all 0 � l � l � , meaning that we would be done. Hence, we now assume thatl � � l̃ + to derive a contradiction.
By linearity we have 0< tr(Bl � ) � tr(Bl̃ + ). We then compute,

tr(Bl̃ + ) =
� (2d+ 2)

p
� d fvgu + 2d( fu � gv)
(1� d)d

< 0;

which can be seen as the denominator is strictly positive and the numerator has only negative terms. Therefore we must have
l � � l̃ � , so thatP(l ) � 0 for all l < l � .

Next we show a relationship between the positive and negative eigenvalues ofBl , and how they depend onl . We will need
to assume that[tr(Bl )]2 � 4det(Bl ) > 0 for all x 2 (a;b). If this term becomes zero (and hencem�

l (x) = m+
l (x)), then there is a

degeneracy in the associated eigenvectors, which will lead to an internal boundary-layer behaviour discussed in the next section,
and hence the determination of the boundary points,a andb.

Proposition 6 Given(l ;m�
l (x)) is permissible,Â (l ) � 0, and [tr(Bl )]2 � 4det(Bl ) > 0 for all x 2 (a;b), we then have the

ordering0 < m�
0 (x) < m�

l (x) < m+
l (x) < m+

0 (x) for all x 2 (a;b). Furthermore, at the edges of the domain, x= a, or x= b, we
still have the ordering0 < m�

0 (x) � m�
l (x) � m+

l (x) � m+
0 (x).

Proof. Using¶l to denote differentiation with respect tol , we have that¶l tr(Bl ) = � tr(D� 1) = � (1+ 1=d) and¶l det(Bl ) =
� tr(Jl )=d = ( 2l � fu � gv)=d. Then, by Equation (19),(m�

l (x))2 � tr(Bl )m�
l (x) + det(Bl ) = 0, so, upon taking the derivative

and rearranging we have,

¶l m�
l (x) =

� dtr(D� 1)m�
l (x)+ tr(Jl )

d(2m�
l (x) � tr(Bl ))

=
� dtr(D� 1)m�

l (x)+ tr(Jl )

� d
p

[tr(Bl )]2 � 4det(Bl )
: (21)

We can then see that each term in the numerator is always negative for both roots, whereas the denominator will change sign.
Hence, we have¶l m�

l (x) > 0 and¶l m+
l (x) < 0, so that the ordering follows by continuity. Finally, we note that the possibility

of m�
0 � 0 is excluded using Equation (19) along with Proposition 2 and tr(B0) > 0, the latter of which is true by virtue of

Proposition 5.
For the second part, all of the ordering can be deduced as a limit of the above argument (with the new potential equality

m�
l = m+

l if [tr(B0)]2 � 4det(B0) = 0 by Equation (19)) except the de�nite inequalitym�
0 > 0: To rule outm�

0 = 0, we consider
l = 0: If [tr(B0)]2 � 4det(B0) > 0 at the boundary point as well, the above proof holds. Hence we need now only consider
the case with[tr(B0)]2 � 4det(B0) = 0: Now suppose, for contradiction, thatm�

0 = 0. By (19) we have tr(B0) = 0 and hence
det(B0) = det(J)=d = 0; but we have det(J) > 0 throughout, and hence the contradiction.

Propositions 5 and 6 together give a range of permissible values ofl and associated eigenvaluesm�
l , as soon as the conditions

(18) are satis�ed for some positivel � > 0. Finally, we show that for a permissiblel with Â(l ) � 0 Â(l ) > 0, and the same
assumption as above, we can sensibly de�ne the left and right eigenvectorss� andp� which are not orthogonal.

Proposition 7 Given(l ;m�
l (x)) is permissible andÂ(l ) � 0, then[tr(Bl )]2 � 4det(Bl ) > 0 for all x 2 (a;b) if and only if

sT
� p� 6= 0 for all x 2 (a;b), wheres� andp� are the left and right unit eigenvectors of[� m�

l I + Bl ].

Proof. We will demonstrate both implications via contraposition. We �rst assume thatsT
� p� = 0 at some pointx� 2 (a;b). By

elaborating possibilities on a case by case basis for a general 2� 2 matrix with zero determinant, we note the left and right
eigenvectors of zero eigenvalue can only be perpendicular if the matrix is proportional to one of the following:

�
0 0
0 0

�
;

�
1 1

� 1 � 1

�
;

�
1 � 1
1 � 1

�
:
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In all three cases, we have that the trace is zero. Therefore, tr(� m�
l I + Bl ) = � 2m�

l + tr(Bl ) = 0: However, by Equation
(19), this implies that[tr(Bl )]2 � 4det(Bl ) = 0, contradicting the assumption that this quantity remains positive.

For the converse, we assume that[tr(Bl )]2 � 4det(Bl ) = 0 at some pointx� 2 (a;b) (noting that if this term were negative,
then, by Proposition 4,l would not be permissible and we would have an immediate contradiction). By using Equation (19)
again we see that tr(� m�

l I + Bl ) = 0; so this matrix then has repeated zero eigenvalues. Any real 2� 2 matrix with zero
determinant and trace can be written as either,

 
c1 c2

� c2
1

c2
� c1

!

; or
�

0 0
0 0

�
;

for realc1;c2, with c2 6= 0. The �rst of these has one left and one right eigenvector, given bys� = ( c1=c2;1) andp� = ( � c2=c1;1),
which are orthogonal. The second of these would implyfv = gu = 0, and, along with the assumption that det(J) > 0, we would
have fugv > 0, so these terms must have the same sign. But noting that tr(J) < 0 and tr(Bl ) > 0, by assumption on the stability
of the zero mode, permissibility ofl , and Proposition 4, we havefu + gv < 0 and fu + gv=d � l =d > 0, thus, we see that they
must have opposite signs, demonstrating that this case is not possible. Therefore, if[tr(Bl )]2 � 4det(Bl ) = 0 at some point
x� 2 (a;b) for permissiblel , thensT

� p� = 0 at this point.
Given Propositions 4, 6 and 7, which all follow from the de�nition of permissible growth rates, we can now consider where

solutions of the form given in Equation (11) for permissiblel � 0 are valid. We will assume throughout that[tr(Bl )]2 � 4det(Bl )
only has simple zeros, noting that non-simple zeros would require mathematical �ne tuning of parameters. When[tr(Bl )]2 �
4det(Bl ) � 0, we have by the �rst part of Proposition 6 that the reciprocal of[m�

l ]1=4 with permissiblel � 0 is nonsingular
and thus Equation (11) with permissiblel � 0 might only possess a singularity at points where left and right eigenvectors are
orthogonal, that issT

� p� = 0. Then, for a region with tr(Bl ) > 0, and[tr(Bl )]2 � 4det(Bl ) � 0 we have thatl is permissible
by Proposition 4 and that the reciprocal of[m�

l ]1=4 is nonsingular, even at the domain edges by the additional use of the second
part of Proposition 6. We de�ne the closure of the maximal open set where the associated WKBJ solution for thisl is non-
singular byTl . By the above reasoning and Proposition 7 each boundary of this region must either be a domain boundary, or
where[tr(Bl )]2 � 4det(Bl ) = 0 assT

� p� 6= 0 on the interior ofTl . Whenever the latter case occurs,Tl 6= [ 0;1] and we have to
determine what happens to the WKBJ solution on approaching the point wheresT

� p� 6= 0 and beyond.

B. Behaviour Near Singular Points

If Tl = [ 0;1], for a given permissiblel � 0, then we can takea = S�
0 = 0 in (11) to �nd a non-trivial solution that satis�es

the homogeneous Neumann boundary conditions. If insteadTl is a proper subset of the whole interval[0;1] then we assume
for simplicity thatTl is a single contiguous interval, implying that[tr(Bl )]2 � 4det(Bl ) has at most two zeros forx 2 [0;1], and
note that generalizing beyond a single interval is straightforward. At a zero of[tr(Bl )]2 � 4det(Bl ), by (19) we have the double
eigenvalues,m�

l = m+
l , of Bl and we recap that by Propositon 7 we havesT

� p� = 0 at such a point, denotedx� , and thus anticipate
a singularity in the solution given by Equation (11). In SI Section S2, we explicitly show that fory > x > x� the integral

exp
� Z y

x

s� (x̄) � p0
� (x̄)

s� (x̄) � p� (x̄)
dx̄

�
; (22)

will blow up asx & x� , with analogous behaviour when approaching such a singular point from the left. However, in this SI
section, we also show that this integral will scale such that by imposing effective Dirichlet conditions at the singular point, we
can retain a bounded solution. In this way we can construct leading order solutions which are bounded and de�ned onTl .

With the previously stated assumption that any zero of[tr(Bl )]2 � 4det(Bl ) is simple, so that[tr(Bl )]2 � 4det(Bl ) monoton-
ically passes through zero at such a singular point and by Proposition (7) we thus have that[tr(Bl )]2 � 4det(Bl ) < 0 outside
of Tl . By Proposition (4), this implies that this value ofl is not permissible outside of this interval, and hence if any WKBJ
solutions exist, they cannot simultaneously satisfy homogeneous Dirichlet or Neumann conditions at boundaries on both the left
and right. However, the scaling of the integral (22) requires a solution which is zero at the singular point, while a zero derivative
is always required at a domain boundary. Thus the only WKBJ solution outside ofTl associated with the growth ratel is the
zero solution. We can then extend the nontrivial WKBJ solution de�ned onTl by the zero solution to obtain a leading order
solution across the whole domain for a mode with �xed growth ratel .

We can now match these different sets of boundary conditions depending on the number of singular points appearing in the
domain. These will then lead to different wave number selection conditions. We note in particular that in matching Neumann
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boundaries, we only differentiate the trigonometric functions in (11), as only terms involving these derivatives will be retained
to leading order. We then have the following leading order solutions (modes) associated with each eigenvaluem�

l of Bl =
D� 1Jl (x), depending on the number of singular points:

� no singular points, soTl = [ 0;1] and the solution is

w� (x;t) = el t exp
�
�

Z x

0

s� (x̄)Tp0
� (x̄)

s� (x̄)Tp� (x̄)
dx̄

�
C�

0

[m�
l (x)]1=4

cos
�

1
e

Z x

0

q
m�

l (x̄)dx̄
�

p� (x);
Z 1

0

q
m�

l (x̄)dx̄ = n� pe; (23a)

� one singular pointx� (l ) > 0, so without loss of generality,(x� ;1) = Tl , with solution

w� (x;t) = el t exp
� Z 1

x

s� (x̄)Tp0
� (x̄)

s� (x̄)Tp� (x̄)
dx̄

�
S�

0

[m�
l (x)]1=4

sin
�

1
e

Z x

x�

q
m�

l (x̄)dx̄
�

p� (x);
Z 1

x�

q
m�

l (x̄)dx̄ =
�

n� +
1
2

�
pe;

(23b)
for x 2 Tl , and zero otherwise;

� two singular pointsx� (l ); x�� (l ) 2 (0;1) delimiting theTl set, i.e.Tl = ( x� ; x�� ), with solution

w� (x;t) = el t exp
� Z x��

x

s� (x̄)Tp0
� (x̄)

s� (x̄)Tp� (x̄)
dx̄

�
S�

0

[m�
l (x)]1=4

sin
�

1
e

Z x��

x

q
m�

l (x̄)dx̄
�

p� (x);
Z x�� (l )

x� (l )

q
m�

l (x̄)dx̄ = n� pe; (23c)

for x 2 Tl , and zero otherwise;

whereC�
0 ; S�

0 are arbitrary real constants. We remark that the mode selection constraint is de�ned overTl , and so will depend
on l through both the eigenvaluesm�

l and any singularities, as highlighted in the integral bounds. In this way, the latter two
solutions given by Equations (23b)-(23c) are continuously extended by zero outside ofTl , and equal to zero at the singular
points.

We remark that these WKBJ solutions applied to systems without heterogeneity in the reaction kinetics collapse in both
components to functions of the form

el t (C0cos(npx)+ S0sin(npx)) :

However, the meaning ofn (denoted asn� ) in the heterogeneous case does not correspond to the spatial frequency of a given
mode, as we will see in an example. We can now describe some additional structural features of the spacesTl and how they
change for different growth ratesl . In particular, the setTl is monotonic inl in the following sense.

Proposition 8 If Tl 2
6= /0 and0 � l 1 � l 2 thenTl 2

� T l 1
. If Tl 1

6= [ 0;1], and0 � l 1 < l 2, then we have the stricter inclusion
Tl 2

� T l 1
.

Proof. The �rst part of this for 0� l 1 � l 2 follows from Proposition 5. We then need to show that ifl 1 < l 2, thenTl 1
6� Tl 2

. We
note that at least one of the boundaries ofTl , a(l ) and/orb(l ), are zeros (in the spatial variablex) of tr(Bl (x))2 � 4det(Bl (x)) .
At such a boundary we compute the derivative with respect tol , �nding

¶l
�
(tr(Bl (x))2 � 4det(Bl (x))

�
= � 2tr(Bl )tr(D� 1) + 4tr(Jl ) det(D� 1) < 0; (24)

which follows by signing each term. As tr(Bl (x))2 � 4det(Bl (x)) > 0 for a(l ) < x < b(l ), we have that ifa(l 1) > 0 then
a(l 1) < a(l 2) and if b(l 1) < 1 thenb(l 1) > b(l 2), so the strict inclusionTl 2

� T l 1
follows.

Hence, the onset of instability (the boundary ofT0) is given by zeros of[tr(B0)]2 � 4det(B0) = 0, for which tr(B0) > 0.
More generally, the onset of instability with a growth ratel � 0 is given by the location of zeros ofsT

� p� = 0, i.e. zeros of
[tr(Bl )]2 � 4det(Bl ) = 0 while tr(Bl > 0). Therefore this boundary shifts withl , while monotonicity of the Turing space
with respect tol holds. Hence, the suf�cient condition for (the onset of) instability can be identi�ed withT0, which is a good
approximation of where we will �nd Turing patterns, as it corresponds to the region of support of a mode with positive value of
l for suf�ciently small e. This also justi�es considering the fundamental constraint (16) in this regime, which does not depend
one.

In summary, we have the following conditions for instability:
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Instability Criterion 3 ( l -Dependent Heterogeneous Case)Let l > 0, 0 < e � 1, and assume that the quantity
[tr(D� 1J(x))]2 � 4det(D� 1J(x)) has no more than two simple zeros for x2 [0;1], and is positive between these two zeros. If
we assume stability to perturbations in the absence of diffusion, i.e.,

tr(J(x)) < 0; det(J(x)) > 0; for all x 2 [0;1]; (25)

then there exists a non-homogeneous perturbationw satisfying(3) (to leading order ine) which grows as el t in the interval
x 2 (a(l );b(l )) if

tr(Bl (x)) > 0; [tr(Bl (x))]2 � 4det(Bl (x)) > 0; for all x 2 (a(l );b(l )) ; (26)

and if there exists an integer n� > 0 such that

Z b(l )

a(l )

q
m�

l (x̄)dx̄ =
�

n� +
K
2

�
pe; (27)

where a(l ) = max(0;min(f x : [tr(Bl (x))]2 � 4det(Bl (x)) = 0g)) , b(l ) = min(1;max(f x : [tr(Bl (x))]2 � 4det(Bl (x)) = 0g))
and K= 0 if either a(l ) = 0 and b(l ) = 1; or if 0 < a(l ) < b(l ) < 1; otherwise K= 1.

Proof. We assume without loss of generality that(a(l );b(l )) has one of the forms given in (23). By Proposition 3 we
have no loss in specialising to strictly reall . Assuming conditions (26) are satis�ed, Propositions 2 and 4 imply thatm�

l is
permissible, real, and positive. From this and Proposition 9, we have that the functions given by (23) are real and bounded for
all x 2 (a(l );b(l )) . To leading order ine, such solutions satisfy (3), alongside the zero solution. By the scaling arguments
in SI Section S2, we can see that the solutions given by (23) meet this zero solution at any internal boundary (i.e. any zero
of [tr(D� 1J(x))]2 � 4det(D� 1J(x)) in the interval(0;1)). So to leading order, such a piecewise solution satis�es (3) and the
Neumann boundary conditions atf 0;1g.

Analogous criteria for the other possibilities forTl , depending on the sign pattern of[tr(D� 1J(x))]2 � 4det(D� 1J(x)) across
the domain, are readily determined. Further we note that the integersn� play an analogous role to the wave numbern in the
homogeneous setting, but that they will not correspond to spatial frequency, and the two roots will have quantitatively different
properties, so must be considered as distinct. For suf�ciently smalle, these conditions predict that a pattern will form in
the interval(a;b), and intervals for which no value ofl exists will return to the heterogeneous steady stateu� after a small
perturbation (up to leading order ine). We will con�rm this numerically in Section IV. Additionally, the fact that unstable
modes do not share the same support is shown explicitly in Proposition 8, and employed to explain some properties of patterns
in heterogeneous domains.

We remark that (27) depends on a givenl both in the integrand and the bounds of the integral, but in principle for a givene
andn� , one can use this condition to �nd at most two values ofl indicating an instability, one for each eigenvalue. Hence, any
instability will permit a discrete number of unstable modes, each with a possibly different support, and the growth rate of any
instability will, thus, depend locally on the permissible growth rates. We give further structural details regardingn� andl in SI
Section S3.

Further, it should be noted that Criterion 3 can be generalized to obtain Criterion 2 by relaxing the restriction to a single
interval, and considering a suitable choice of arbitrarily smalle. The use of the interior ofT0 in this limit for Criterion 2 is
further supported by Proposition 8, and noting that instabilities need not grow on the edges ofT0 for the WKBJ solutions at
leading order (in particular this is the case when the homogeneous Dirichlet boundary conditions are imposed to retain bounded
solutions there).

However, although linked, it should be clearly stated that Criterion 2 and 3 are different. Namely Criterion 2 summarises the
conditions yielding instability for a large enough domain size (small enoughe); hence, this condition epitomises the necessary
but not suf�cient conditions for instability. Criterion 3, on the other hand, provides much more detailed information about the
instability, not only the suf�cient but also the necessary conditions for linear instability. In addition Criterion 3 yields an estimate
of the unstable mode and its rate of growth.
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IV. ILLUSTRATIVE EXAMPLE. THE SCHNAKENBERG MODEL

To illustrate our results, we consider the Schnakenberg model with spatially heterogeneous sources. Let

u =
�

u1

u2

�
;

so thatu1 is the nominal inhibitor andu2 is the nominal activator. The kinetics are

F(u;x) =
�

b(x) � u2
2u1

u2
2u1 � a u2 + z(x)

�
;

with a ; b(x); z (x) > 0. As is typical, and to simplify the system, we assumeb(x) + z(x) = 1. Hence, accurate toO(e2), the
steady state is given by

u� =

0

B
@

a 2b(x)

1
a

1

C
A ;

with Jacobian

J =

0

B
B
B
@

�
1

a 2 � 2ab (x)

1
a 2 a (2b(x) � 1)

1

C
C
C
A

;

so that

tr(J) = a (2b(x) � 1) �
1

a 2 ; det(J) =
1
a

; tr(D� 1J) =
a
d

(2b(x) � 1) �
1

a 2 ; (28)

[tr(D� 1J)]2 � 4det(D� 1J) =
(2b(x) � 1)2a 6 + ( � 4b(x) � 2)da 3 + d2

a 4d2 :

We note that the steady state ofu1 is linearly proportional tob(x), and hence this heterogeneity must satisfy the no-�ux boundary
conditions at the endpoint of the interval to prevent the formation of boundary layers. To satisfy the Turing conditions (26) for
l = 0 we require

4a 6b(x)2 � 4(a 6 + a 3d)b(x)+ a 6 � 2a 3d+ d2 > 0; (29a)

b(x) >
1
2

�
1+

d
a 3

�
; b (x) <

1
2

�
1+

1
a 3

�
: (29b)

Thus, inequalities (29b) required < 1, as standard. Condition (29a) forcesb(x) to lie outside of the roots of this quadratic, i.e.,

b (x) >
1
2

�
1+

d
a 3

�
+

r
d

a 3 ; or b(x) <
1
2

�
1+

d
a 3

�
�

r
d

a 3 :

The second of these inequalities cannot be reconciled with the �rst inequality of (29b). We then have the conditions on the
parameters for a Turing instability are thata > 0, 0< d < 1, and for allx 2 T0,

1
2

�
1+

d
a 3

�
+

r
d

a 3 < b(x) <
1
2

�
1+

1
a 3

�
:

This is accompanied by ensuring an unstable mode satis�es condition (27), analogous to the a posteriori selection of a wave
number for the spatially homogeneous Turing instability. These conditions, which really are just local versions of the standard
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FIG. 2: Plots ofu1 from simulations of the Schnakenberg system usinga = 1,d = 1=40= 0:025, andb = 3=5+[ 1� cos(px)]=25 with varying
e. The blue solid curve is from the numerical simulation whereas the black dashed curve is the stationary stateu�

1(x) = b(x) (note that the blue
regionis due to the highly oscillatory nature of the solution). The red dash-dotted curve is the boundary ofT0 at x � 0:7774 (i.e. the singular
point x� ). The insets show a zoomed-in region near the boundary ofT0; these insets are over different regions in (a) and (b), though Figs. (c)
and (d) share the samex axis for their insets.

Turing conditions, can be modi�ed to determine if any value ofl > 0 permits an unstable mode.

A. Direct Numerical Solutions

We simulated system (1) with the Schnakenberg kinetics. Initial data were taken as normally distributed spatial perturbations
to u� . Speci�cally, we setui(0) = u�

i (1+ xi(x)) wherei = 1;2 andxi(x) � N (0;10� 3) independently for eachx andi. While
such heterogeneous reaction-diffusion systems are standard problems for numerical simulation software, we carefully checked
different implementations of our simulations in order to be sure we resolved boundary layers and solution structure in the
spatial domain. The commercial �nite-element solver Comsol version 5.4 was used to solve the equations with 105 elements, a
relative tolerance of 10� 4, and a �nal time oft = 106 by which time a steady state had been reached up to numerical tolerances.
Simulations were also carried out using a standard three-point stencil in Matlab and the stiff solverode15s, using 104 grid
points with relative and absolute tolerances of 10� 9, and the same solutions were found. WKBJ modes were reconstructed in
Mathematica and these were checked in Matlab and Maple.

We demonstrate our results using the following parameter choices, unless otherwise stated. We takea = 1, d = 1=40= 0:025,
and considerb = 3=5+ [ 1� cos(cpx)]=25, wherec = 1 orc = 2. For these parameters, we have a Turing instability if 0:6706<
b(x) < 1, so forc = 1 we haveT0 � (0:7774;1) and forc = 2 we haveT0 � (0:3886;0:6114). We plot simulations forc = 1 in
Fig. 2, and varye. We observe that patterned solutions form approximately in the region predicted by the analysis,T0, and that
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FIG. 3: Plots ofu1 as in Fig. 2, but withb = 3=5+ [ 1� cos(2px)]=25 to demonstrate an internally containedT0.
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FIG. 4: Plots ofu1 from simulations of the Schnakenberg system usinga = 1,d = 1=40= 0:025, andb = 3=5+[ 1� cos(px)]=25 with varying
e at a timest f = 800 in (a) andt f = 700 in (b). The initial perturbation is taken asxi(x) � N (0;10� 6) in both cases. The blue solid curve
is given byu1(t f ) � u�

1 from the full numerical simulation, and the black dashed curve is given byw1(t f ) from simulations of the linearised
system. The red dash-dotted curve is the boundary ofT0 at x � 0:7774, though the region shown in (b) is entirely withinT0.

they localize to this region ase is decreased with highly oscillatory boundary regions atx� � 0:7774. We note that Figs. 2(b)-(d)
have the same qualitative structure in terms of the amplitudes of patterns, though the internal oscillations become increasingly
�ner as e is decreased. The insets show the increasing localization of the boundary ase is decreased, as well as the structure of
the decaying boundary layer of the mode with the largest support. We also show the same kind of localization forc = 2 in Fig. 3
where the spike solutions are con�ned to an internal region by varying the heterogeneity. Larger values ofc, as well as other
kinds of heterogeneity, were also considered with results consistent with the analytical predictions.

In Fig. 4 we show short time solutions to the nonlinear and linearised system in order to understand the structure of growing
modes due to the instability. As anticipated, for suf�ciently small perturbations and time intervals, the linear and nonlinear
simulations are almost identical (using the same realization of the initial perturbations). We observe that the instability grows
fastest furthest to the right, suggesting that there is not a single largest growth ratel across the domain, as anticipated in the
analysis. Rather, what we have plotted are a superposition of modes with distinct growth rates and supports. Finally, for smaller
e, these results suggest that larger values ofl (which are more localized) become permissible, which is consistent with the
structures anticipated. We now explore these modes in more detail.
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FIG. 5: Evaluating (27) reveals the possible discrete modesn� on both branches of WKBJ solutions, which are plotted using asterisks in
(a). In (b), we plot the position of singular pointsx� (l ) demarcating the boundary ofTl = [ x� ;1] as a function of the growth ratel , and
corresponding to a shrinkingTl which vanishes whenx� = 1.
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FIG. 6: We plot the �rst component of modes given by (23b), associated withu1, corresponding to parameters as in Fig. 2(a). We plot modes
for the positive branchm+

l (solid lines), withn+ = 1;5;13;19 in red, green, purple, and blue respectively, as well as the modes corresponding
to the negative branchm�

l (dashed lines), withn� = 1;5;11;15 in red, green, purple, and blue respectively. The smaller two mode numbers
are shown in (a), and the larger two in (b). We remark that the smallest and largest values ofn� correspond to the maximal and minimal mode
numbers along each branch, and the other two mode numbers for each branch are chosen to have similar values ofl . Note the shrinkage of
the support of each mode with increasingn, and in particular the difference in the axes for each plot.

B. Structure of Unstable Modes

We construct the unstable modes given by (23b) for the example shown in Fig. 2(a) withe = 0:01, and discuss their prop-
erties. First, we numerically determine the discrete plausible mode numbersn� 2 N andl from the constraint (27). ThenBl ,
p� ;s� ;ml andw all follow from their de�nitions. This example is indicative of the general features of linearly unstable modes
in heterogeneous reaction-diffusion systems; the restriction to an example with modes of the form given by (23b) is just for
clarity of presentation, and our qualitative observations generalize. Speci�cally, unstable regionsTl which are composed of
many disjoint intervals will in general have a wide variety of unstable modes across the domain, but the analysis in any such
complicated setting will essentially reduce to the structures found here.

In this particular example there are 19 unstable WKBJ eigenmodes on the branch corresponding tom+
l and 15 on the branch

corresponding tom�
l , all of which follow from computingl from (27) as shown in Fig. 5(a). Note that the right-most value of
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n� (here shown as a continuous interpolation) corresponds tol = 0, i.e. the boundary ofT0 , and that indeed the �rst unstable
WKBJ mode (on the negative branch in this particular example) appears near this boundary as predicted due to the small values
of e. We depict four of these modes from each branch in Fig. 6, noting that they each have a support which increases withn.
We also see in Fig. 5(a) how the growth rate is related to the discrete values ofn, and how the support of a corresponding mode
changes with its growth ratel in Fig. 5(b). Fig. 5 directly evidences the predictions from Propositions 8 and the results in SI
Section S3, as we see the support of distinct modes decrease with increasingl . Finally we remark that the vectorp� in Equation
(11) (computed numerically) is negative in its �rst component, and positive in its second (as expected for a cross-kinetic system
like Schnakenberg), and both components are essentially constant in space, varying by less than 1% of their magnitude across
the domain.

V. DISCUSSION

We have analyzed two-component heterogeneous reaction-diffusion systems in order to justify the use oflocal Turing condi-
tions which are commonly employed in the literature, and given a deeper insight into how heterogeneity changes the structure of
patterned states. Using a WKBJ ansatz, we have shown thatlocal conditions are valid, provided that the heterogeneity is slowly
varying. Additionally, we demonstrated that these unstable modes are supported in distinct regions of the domain with different
growth rates, and that this leads to the commonly-observed amplitude variations reported in the literature.This is in contrast to
the homogeneous case, where the pattern would normally envelop the whole space (see Figure 1). We illustrated our analytical
predictions using a simple model in Section IV. Much more complicated heterogeneities and reaction-diffusion systems, such
as those explored in [28] were also used to verify the analytical predictions in more complicated cases, such as whenT0 is no
longer a single interval. Nevertheless, the instability criteria work well for suitably smalle such that the heterogeneity does not
vary faster thanO(1=e). While we can enumerate the unstable modes and compute their growth rates, we remark that there is no
obvious generalization of wavelength or frequency in this setting; unstable modes, and fully developed patterns, tend to exhibit
large varying oscillations throughout a heterogeneous region of space.

Alongside generalizing the classical Turing conditions to the case of spatially heterogeneous systems, our analysis suggests
several further questions to pursue. We have assumed that the local steady state is stable in the absence of diffusion throughout
the domain, but it may be possible that diffusion could in factstabilizethe solution of a heterogeneous reaction-diffusion system
which is locally unstable (in the absence of diffusion) in only part of its domain, leading to a patterned state. Additionally, it is
known that rapidly varying heterogeneities can substantially impact the ability of a reaction-diffusion system to admit patterns,
and the qualitative features that such patterns exhibit [36, 41], and this remains to be explored within the present framework.
Finally, while the results in SI Section S3 allow us to conjecture about the envelope of solutions via the growth rate of distinct
unstable modes, these remarks have not been rigorously justi�ed. Demonstrating properties of these envelopes mathematically
would require extending the framework of weakly nonlinear analysis [3, 62–65] to the heterogeneous setting, and is beyond the
scope of this paper.

In addition to these mathematical extensions, one could apply these results directly to biological patterning situations, such
as successive patterning due to reaction-diffusion mechanisms on different timescales, or to the combination of theories of
positional information and reaction-diffusion (see Fig. 1). Originally, the well-known Gierer-Meinhardt model developed in
[66] contained a spatial heterogeneity representing a precursor pattern from a previous pattern forming event. Such a situation
could be directly captured by considering distinct reaction-diffusion processes occurring at different time points in development,
or on different temporal and spatial scales. Alternatively, one can posit a positional information framework as the origination
of spatial structure, such as in delineating different patterning �elds from one another, and let reaction-diffusion theory produce
additional periodic patterning within this heterogeneous domain, as suggested in [6]. hence this paper presents a �rst step toward
theoretically understanding the evolution of one pattern into another, but much more work must be done linking to experimental
studies to justify such a theory of morphogenesis.

While the WKBJ-based approach we have employed is potentially extendable to multi-species or multi-dimensional systems,
the calculations become increasingly complicated. Real chemical and biological systems are composed of many different chem-
ical species, and few developmental phenomena are faithfully captured by a single spatial dimension. Additionally, we remark
that our analysis presented in SI Section S2 only shows that continuous modes can be de�ned across singularities at leading or-
der, though fully resolving the boundary-layer structure across these singularities is beyond our present scope. Nevertheless, the
results we have presented here will remain valid even with such re�nements. We also anticipate that these results are indicative
of Turing instabilities in heterogeneous systems in higher dimensions, or with three or more species. Speci�cally, spatial regions
which satisfy local Turing conditions should admit patterned solutions (distinct from the ambient heterogeneity) if these regions
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are suf�ciently large, and the spatial heterogeneity is suf�ciently smooth. Preliminary numerical investigations in two and three
dimensions suggest this is true, and a valuable extension given the biological motivations for the theory. The framework pre-
sented here is a �rst step in understanding how one patterned state arises from another, and in elucidating the more nuanced roles
that reaction and diffusion play in development and analogous systems with heterogeneous instabilities. As Turing said, though
under different circumstances [67], “We can only see a short distance ahead, but we can see plenty there that needs to be done.”
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Supplementary Information

S1. REDERIVATION OF TURING INSTABILITY WITH SPATIAL HOMOGENEITY.

The standard derivation of the Turing conditions in the homogeneous setting with Neumann boundary conditions considers
the separable Fourier solution

w µ exp(l t) cos(kx); (S.1)

with wave numberk, and �nds the associated growth rate,l . The conditions for a Turing instability then arise from the
requirement that:

(i) there is stability whenk = 0, indicating a stable steady state without diffusion,

(ii) a range ofk 6= 0 generates an instability, at least providingk=p is a non-zero integer within this range.

In the heterogeneous case, the conditions associated with stability in the absence of diffusion are derived analogously to the
homogeneous case. However, for instability, the Fourier solutions do not decouple and we seek an alternative approach. Pro-
ceeding, we �rstly summarise the calculation of the homogeneous Turing conditions, where the fundamental equation arising
from the substitution of (S.1) into (3) is given by

det[e2k2D� J+ l I ] = det[e2k2D� Jl ] = 0; (S.2)

where we denoteJl = J � l I . This condition is equivalent to

det[� D� 1Jl + e2k2I ] = 0:

Hence, givene and the wave numberk, we can determine the growth ratel . For a perturbation to grow we require values ofk2

andl such that

Re(l ) > 0; for k2 = n2p2 > 0; (S.3)

with n a non-zero integer, subject to Equation (S.2). Instead of following the normal approach where we varyk to ensure
Â(l ) > 0, we can instead varyl to deduce conditions under which requiringk2 to be real and positive implies the normal
Turing conditions. The relationship betweenl andk2 is computed from the dispersion relation (S.2).

Non-real growth rates. Permissible values ofk2 are real and positive, or else we could not satisfyk2 = n2p2 for an integer
n 6= 0. Thus, we can exclude cases wheree2k2 is not strictly real. We also neglect cases where Re(l ) < 0 as we are only
interested in instability. However we have

� tr(e2k2D� J) = [ fu + gv � e2k2(1+ d)] < 0; (S.4)

for permissiblek2, given that the homogeneous steady state is stable, so that tr(J) = fu + gv < 0. We also have from (S.2) thatl
satis�es,

l = � tr(e2k2D� J) �
q

[tr(e2k2D� J)]2 � 4det[e2k2D� J]: (S.5)

Hence, ifl is non-real, its real part is negative as follows from (S.4)-(S.5). Thus, without loss of generality, we can consider
reall , as complex growth solutions with permitted wave numbers, if they exist, are stable.

Real growth rates.Recalling the notationB0 = D� 1J, the transition to instability occurs whenl = 0, whence

e2k2 =
1
2

�
tr(B0) �

q
[tr(B0)]2 � 4det(B0)

�
; (S.6)

where the two rootse2k2 are the eigenvalues ofB0. Therefore, to generate an inhomogeneous instability consistent with the
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stability of the zero mode (conditions (4)) we require

tr(B0) �
q

[tr(B0)]2 � 4det(B0) > 0: (S.7)

There are two roots fore2k2 andthese are the eigenvalues ofB0. If both are negative, there is no permissible value ofk2, and
thus there is no instability. If the smaller eigenvalue is negative and the larger is positive, then from the shape and behaviour of
Re(l ) as a function ofe2k2, one must have Re(l ) = l > 0 for e2k2 = 0. However, this possibility will be excluded as we require
the mode associated withk = 0 to be stable. Thus we require that inequality (S.7) holds in order to generate an inhomogeneous
instability consistent with the stability of the zero mode. In analogy to the standard derivation of the Turing condition, the
requirement thatk=p is a non-zero integer is only considereda posteriori. From the conditions for the stability of the zero mode,
(4), we have that det(J) > 0, and hence det(D� 1J) > 0. The remaining conditions for an inhomogeneous instability are then

tr(D� 1J) > 0; [tr(D� 1J)]2 � 4det(D� 1J) > 0; (S.8)

which are equivalent to the standard Turing conditions (5) given in Criterion (1).

S2. SINGULARITIES OF WKBJ MODES

Here we show properties of the solution near internal singular points in detail, denoting such a point asx� . At any singular
point, wheresT

� p� = 0, the expression forQ0, (10), becomes ill-de�ned, and hence we examine the structure of the solution near
such a singular point.

With J�
l denotingJl (x� ) and similarlyB�

l = Bl (x� ), we focus on the case when tr(J� ) < 0, det(J� ) > 0, tr(B�
l ) > 0 which is

the case of interest as this will be the boundary ofTl (see Proposition 4). Further, the zero of[tr(Bl )]2 � 4det(Bl ) is generically
a simple one atx = x� , as a non-simple zero would require mathematical �ne-tuning in the model and parameter choices for
smooth kinetic functions. Then for �xedy 6= x� with sT

� p� 6= 0 in (x� ;y), the integral

exp
� Z y

x

s� (x̄)Tp0
� (x̄)

s� (x̄)Tp� (x̄)
dx̄

�

has a singularity which scales with 1=jx� x� j1=4 asx ! x� .

Proposition 9 Let l be a non-negative real growth rate. We assumetr(J� ) < 0, det(J� ) > 0, andtr(B�
l ) > 0 with J�

l denoting
Jl (x� ). Additionally, we assume that the zero of[tr(Bl )]2 � 4det(Bl )) is a simple one at x= x� . Then with �xed y6= x� the
integral

exp
� Z y

x

s� (x̄) � p0
� (x̄)

s� (x̄) � p� (x̄)
dx̄

�

has a singularity which scales with1=jx� x� j1=4 as x! x� .

Proof. By (19) we have

m�
l (x� ) =

1
2

tr(B�
l );

which is a double root atx = x� , so we have,

[� m�
l (x� )I + D� 1Jl ] =

0

@
fu � l � m�

l fv
gu

d
gv � l

d
� m�

l

1

A ; ( fu � l � m�
l )

�
gv � l

d
� m�

l

�
�

1
d

fvgu = 0: (S.9)

With sign choices that are without loss of generality, we compute

p� (x) =
1

Rp

�
� fv

fu � l � m�
l

�
; Rp =

�
f 2
v + j fu � l � m�

l j2
� 1=2

;
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with

s� (x) =
1
Rs

�
� gu=d; fu � l � m�

l

�
; Rs =

� � gu

d

� 2
+ j fu � l � m�

l j2
� 1=2

:

We will needRp � O(1) nearx = x� , and so must show thatRp(x� ) 6= 0. We proceed by contradiction and assume thatRp = 0 at
x = x� . Then fu � l � m�

l = 0 = fv. So thereforefu > l > 0, but we have det(J� ) = fugv > 0 and tr(J� ) = fu + gv < 0, which
cannot be simultaneously satis�ed, and hence we must haveRp 6= 0 at x = x� . An analogous proof also shows thatRs 6= 0 at
x = x� .

Lettingx = x� + X with jXj � 1, and de�ning

a l =
¶
¶x

�
[tr(Bl )]2 � 4det(Bl )

�
�
�
�
�
x= x�

;

we have from equation (19) that nearx = x�

m�
l (x) :=

1
2

� �
tr(B�

l ) � j a l Xj1=2 + O(X)
�

a l X > 0�
tr(B�

l ) � ija l Xj1=2 + O(X)
�

a l X < 0

�
:= m0�

l +
1
2

�
�j a l Xj1=2 + O(X) a l X > 0
� ija l Xj1=2 + O(X) a l X < 0

�
; (S.10)

wherem0�
l = tr(B�

l ) is constant inX. We do not consider the degenerate case ofa l = 0 as this corresponds to a non-simple root
of det([� m�

l (x)I + D� 1Jl ]) at x = x� . From this expansion, we have (denoting derivatives with respect toX as0� ¶X)

(m0�
l )(x) =

1
4

8
><

>:

�
�
�
�
a l

X

�
�
�
1=2

+ O(1) a l X > 0

� i
�
�
�
a l

X

�
�
�
1=2

+ O(1) a l X < 0

9
>=

>;
: (S.11)

Specialising in the �rst instance to the casea l X > 0, and on notingfu = f �
u + O(jXj); fv = f �

v + O(jXj) nearx = x� , while
R�

p = Rp(x� ) � O(1); R�
s = Rs(x� ) � O(1), the contraction ofs� (x) andp� (x) yields

s� (x) � p� (x) =
1

RpRs

�
1
d

fvgu + ( fu � l � ml )2
�

= s� (x� ) � p� (x� ) �
1

R�
pR�

s(1+ O(jXj1=2))

h
( f �

u � l � m0�
l )ja l Xj1=2 + O(jXj)

i

= �
1

R�
pR�

s
( f �

u � l � m0�
l )ja l Xj1=2 + O(jXj); asX ! 0:

Further, on differentiatingp� (x), one �nds

p0
� (x) =

1
Rp

�
� fv

fu � l � ml

� 0

�
R0

p

R2
p

�
� fv

fu � l � ml

�
=

1
4R�

p

0

@
O(1)

�
�
�
�
a l

X

�
�
�
1=2

1

A + O(1) �
R0

p

Rp
p� (x):

Contracting withs� (x) yields

s� (x) � p0
� (x) = �

1
4R�

pR�
s

�
f �
u � l � m0�

l

� �
�
�
a l

X

�
�
�
1=2

+ O(1) �
R0

p

Rp
s� (x) � p� (x) = �

1
4R�

pR�
s

�
f �
u � l � m0�

l

� �
�
�
a l

X

�
�
�
1=2

+ O(1);

on noting that

R0
p � O

� �
�
�
a l

X

�
�
�
1=2

�
; s� (x) � p� (x) � O

�
jXj1=2

�
; asX ! 0:
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Hence

s� (x) � p0
� (x)

s� (x) � p� (x)
=

1
4jXj

�
1+ O(jX1=2j)

�
; (S.12)

and the above calculations hold for arbitrarya l 6= 0 and thus equation (S.12) also holds fora l X < 0: In turn, we have for
x = x� + X, X > 0,

Q0(x� + X)
Q0(1)

µ exp
�
�

Z x � + X

1

s� (x̄) � p0
� (x̄)

s� (x̄) � p� (x̄)
dx̄

�
= exp

� Z 1

x � + X

1
4(x̄� x� )

+ O
�

1
(x̄� x� )1=2

�
dx̄

�
� O

�
1

jXj1=4

�
;

and the same scaling holds forX < 0:
On approaching such a singular pointx� , solutions and their derivatives become unbounded and the asymptotic assumptions

inherent in the WKBJ approximation (that the diffusion term is subleading), breaks down. In contrast, the second derivative of
such solutions nearx � x� will scale with 1=jx � x� j9=4, and hence the transport term is no longer asymptotically small when
jx � x� j � e8=9. Hence boundary layers are present aroundx� . However, the interior boundary layer problem is not tractable
analytically, and thus we only consider the outer WKBJ solutions. Nonetheless, we require boundedness of the outer solutions
on approaching the boundary layer, otherwise such solutions will be arbitrarily large for suf�ciently smalle. In turn the outer
region is valid forjx� x� j � e4=9 � e8=9, where the WKBJ solution scales with 1=jx� x� j1=4 � 1=e1=9 ! ¥ ase ! 0. Solution
boundedness requires the expression in (11) to take the form of a sin function near the singular pointx� , and a cos function is
used at a zero-�ux boundary.

S3. RELATIONSHIP BETWEEN n� AND l AND THE SUPPORT OF NON-TRIVIAL WKBJ MODES

Here we show thatl decreases withn+ in the positive branch of WKBJ solutions, and outline how the negative branch
behaves.

Proposition 10 The value of the non-negative growth ratel decreases with n+ for the positive branch of WKBJ solutions.

Proof. We proceed by differentiating the fundamental constraint (16) with respect ton� to �nd

l 0(n� )

2

4b0(l )
q

m�
l (b(l )) � a0(l )

q
m�

l (a(l )) +
Z b(l )

a(l )

¶l (m�
l )( x̄)

2
q

m�
l (x̄)

dx̄

3

5 = pe > 0: (S.13)

By Proposition 8 we have thata0(l ) � 0 andb0(l ) � 0, which implies that the �rst two terms of (S.13) are together negative
and we must only check the sign of the third term. For the positive branch, this term is negative by the proof of Proposition 5, as
¶l m+

l < 0, hence, for this branch we must havel 0(n+ ) < 0.
Any non-trivial WKBJ solution has a support (in space) demarcated by singular pointsx� (l (n� )) = : x� (l ) or the domain

boundaries. Therefore the support of then+ -th mode also decreases (or remains the same) asn+ is increased, due to the
monotonicity ofTl . We can conclude thatTl (n+) shrinks with increasingn+ , and that the largest permissiblen+ will correspond
to the smallest value ofl and the largest spatial support, whereas the smallestn+ will have the smallest support, but largest
growth rate.

For the negative branchn� , the calculation in the proof of Proposition 10 reveals that a competition between two terms of
different signs takes place, and the overall picture is more complicated. First, note that if there is no singular point within the
domain[0;1] for a range ofl , then the �rst two boundary terms of (S.13) vanish and the last term was shown to be positive via
the proof in Proposition 5 form�

l . Hence, in this scenario,l would increase with increasingn� . In the case when there is an
internal singular point, we know thatTl decreases with increasingl . Additionally, near the maximal permissiblel , the support
of the fastest growing mode is very small and becomes a strict subset of[0;1]. Further, for such maximal admissiblel , both
n� = 1 asm�

l (x) is a continuous function inl and inx 2 [a;b] including the boundaries, while we know thatTl is monotonic in
l . Hence, the left hand side of equation (27) is arbitrarily small and as a resultn� = 1 for the largest admissiblel . Therefore,
close to this maximal value,l has to decrease withn� . Finally, as all the terms determining the sign ofl 0(n� ) have a �xed sign,
we know that there is at most one extremum ofl (n� ), which then completes the picture for the negative branch.

In Fig. S1 we show the support of each discrete mode alongside its corresponding growth rate for both solution branches.
We highlight regions corresponding to the four modes of each branch given in Fig. 6. We note in particular that the fastest
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(a) (b)

FIG. S1: The “structure” of a patterned state linear analysis showing the intervals where a given WKBJ solution from the positive branch
((a), solid lines) and from the negative branch ((b), dashed lines) will dominate. The discreteness of the steps is highlighted together with the
value of growth ratel . For each mode we plot an opaque rectangle with the horizontal side being the support of the mode,i.e. the interval
(x� (l (n� )) ;1), while the vertical side is the value of the growth rate for a given model (n� ). Note that the highlighted rectangles in colors
correspond to the modes depicted in Fig 6. Hence, there are subintervals where many modes exist. The envelope of the largestl values then
forms then the topmost black line at the boundary, which we conjecture to have a relation to the amplitude envelope of emerging patterned
solutions.

growing mode in any given spatial region is the mode which is highest in any given region in Fig. S1, and hence this changes
as each subsequent mode becomes permissible (i.e. moving left to right each new mode has a larger value ofl ). Hence we
conjecture that if all modes are approximately excited by the same amount, then the envelope of unstable modes should scale
with the fastest growing mode locally, which is qualitatively observed in Fig. 4. Additionally, in the homogeneous setting, close
to a supercritical bifurcation any patterned state should have an amplitude which scales withl raised to a power, and hence this
provides an intuition for the �nal small-amplitude patterns observed in Figs. 2-3, as again the envelope of the oscillations should
scale withl . However, we do not formally deduce a relationship between the envelope of the �nal patterned state withl , and
instead leave this as future work.
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