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From One Pattern into Another: Analysis of Turing Patterns in Heterogeneous Domains via WKBJ
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Pattern formation from homogeneity is well-studied, but less is known concerning symmetry-breaking insta-
bilities in heterogeneous media. Itis nontrivial to separate observed spatial patterning due to inherent spatial het-
erogeneity from emergent patterning due to nonlinear instability. We employ WKBJ asymptotics to investigate
Turing instabilities for a spatially heterogeneous reaction-diffusion system, and derive conditions for instability
which are local versions of the classical Turing conditions We nd that the structure of unstable modes differs
substantially from the typical trigonometric functions seen in the spatially homogeneous setting. Modes of dif-
ferent growth rates are localized to different spatial regions. This localization helps explain common amplitude
modulations observed in simulations of Turing systems in heterogeneous settings. We numerically demonstrate
this theory, giving an illustrative example of the emergent instabilities and the striking complexity arising from
spatially heterogeneous reaction-diffusion systems. Our results give insight both into systems driven by exoge-
nous heterogeneity, as well as successive pattern forming processes, noting that most scenarios in biology do
not involve symmetry breaking from homogeneity, but instead consist of sequential evolutions of heterogeneous
states. The instability mechanism reported here precisely captures such evolution, and extends Turing's original
thesis to a far wider and more realistic class of systems.

. INTRODUCTION

Since Alan Turing's celebrated work on morphogenesis [1], reaction-diffusion systems have been a paradigm of patte
formation throughout chemistry and biology [2—7]. The most striking aspect of this theory is the emergence of heterogenei
from homogeneity. However, even Turing himself recognized this as an idealization when he wrote, “Most of an organism, mc
of the time is developing from one pattern into another, rather than from homogeneity into a pattern.” Here, we concern oursel\
with this heterogeneous setting, and determine the generalization of the Turing conditions to a reaction-diffusion system w
explicit spatial dependence. We derive conditions for the instability of a heterogeneous steady state into a Turing-type patte
with both the localization and structure of the pattern depending on the heterogeneity. Under a necessary hypothesis ¢
suf ciently slowly varying heterogeneous base state, our results clearly differentiate between spatial structure due to inhere
spatial heterogeneity, and emergent patterns due to Turing-type instabilities. This then elucidates successive pattern forma
in distinct stages.

This transition from one pattern into another has been noted as key in reconciling seemingly-divergent theories in morphoge
esis[6]. Turing's original theory was that his reaction-diffusion mechanism laid down a prepattern of heterogeneous morphog
concentration, which then drove cellular differentiation and morphogenesis directly (Fig. 1(a)-(c)). This is in contrast to thec
ries of positional information (colloquially “French- ag” models) whereby cellpriori are assigned locations relative to some
developmental coordinate system, and perform different functions based on this positional information [§] (Fig. 1(d)). Spati.
heterogeneity provides a way to reconcile these competing theories by allowing positional information to in uence reactior
diffusion processes, leading to modulated patterns which are ubiquitous in nature| (Fig. 1(d)-(f)). Additionally, heterogenei
permits successive reaction-diffusion patterning in stages, whereby patterning at different scales can arjse (Fig. 1(e)-(g)). T
is in line with work implicating chemical and cellular pre-patterns in developmental biology [9-11], such as in the context o
organising different regions along cell boundaries based on sharp variations in gene exgression [12, 13].

Beyond theories of morphogenesis in developmental biology, models involving reaction-diffusion systems with spatial he
erogeneity have been considered in many contexts. Examples include environmental heterogeneity in collective animal dispe
[15-+19], reaction-diffusion in domains with non-isotropic growth|[20, 21], as well as spatial invasion modellingl[22, 23], and
models with differential diffusion leading to spatial inhomogeneity in plant root initiation[[24, 25]. Spatial heterogeneity has
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FIG. 1: Different interactions of pattern formation mechanisms in development. (a) is a generic schematic of Turing pattern formation frol
homogeneity, with different pattern characteristics shown in (b), and, in (c), a biological example of a developing mouse paw in the presence
altered levels of Hox gene action. Positional information feeding into reaction-diffusion is shown in (d)-(e), consistent with observed structur
characteristics of mouse whisker placodes in (f). Finally, successive reaction-diffusion patterning is shown in (g)-(h), with the examp
of Jaguar spots demonstrating large and small-scale pattern formation ifh@)idea being that the schematic in (g) shows a sinusoidal

prepattern (left peaks) feeding into a wave mode 3 Turing pattern (right peaks). Speci cally, the Turing pattern is only able to appear withi
the peaks of the prepattern. Thus, each peak forms a disjoint intédi@aise paw images from [14] R. Sheth, L. Marcon, M. F. Bastida,

M. Junco, L. Quintana, R. Dahn, M. Kmita, J. Sharpe, M. A. Ros. Hox genes regulate digit patterning by controlling the wavelength of
turing-type mechanism. Science, 338(6113):1476-1480, 2012. Reprinted with permission from AAAS. Mouse whisker placode image us
with permission from Denis Headon. Jaguar picture by Jean Beaufort used under a CCO Public Domain license from http://bit.ly/JaguarPictL

been (numerically) observed to change local instability conditions for pattern formatidn [26, 27], modulate size and waveleng
of patterns([28], and localize (or pin) spike patterns in space [29-31]. We also note that the presence of even simple spa
heterogeneity can induce spatiotemporal behavior, such as changing the stability of patterned states and thereby inducing |
odic movement of spike solutioris [32,33]. Bifurcation structures of reaction-diffusion equations with spatial heterogeneity ha
been considered for some time [34]. There is also a large literature on reaction-diffusion systems with strongly localized he
erogeneitied [35], with [36] recently considering the case of a step-function heterogeneity in the reaction kinetics and deduci
local Turing conditions on each side of the step. While we will also deduce local Turing conditions, we note that this limit i
different from the case of smooth spatial heterogeneity we will consider here.

Many experimental applications of reaction-diffusion systems have exploited an intuitive idea that a patterning instability |
possible depending on the local environment, and, hence, one can thickigfointwise Turing conditions in order to determine
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where patterning will occur [37—41]. This research has also given rise to various multiscale approaches for analysis of mo
coupling between spatial forcing and emergent Turing patterns [42—44]. However, as far as we are aware, no justi cation for tt
localization, or the use of canonical (trigonometric) unstable eigenmodes, has been given in the literature. Several authors h
attempted to deduce Turing conditions in spatially forced reaction-diffusion equations [45-47], but these results are limited
special cases regarding asymptotic assumptions and nonlinear kinetics, and even the case of varying diffusion coef cients is
perfectly understood [48]. We note that Dewel and Borckmans [45] in particular analyse the case of slowly varying heterogene
and employ a WBKJ-like ansatz, as we do below. However, their approach is substantially different from our own as they negle
the nite size of the domain, and do not recover the local Turing conditions that we seek, or the form of unstable modes.

Turing instabilities leading to pattern formation are typically considered to be induced due to the addition of diffusior
(diffusion-driven instability) [5] and due to an increase in the domain-size [49]; below a certain critical domain size, pattern
cannot be formed but above a minimal size, any small spatial perturbation of a reference homogeneous steady state will gr
The classical case focusing on spatially homogeneous systems is a textbook analysis and typically proceeds via a dispersio
lation tying the Laplacian eigenmodes with the perturbation's growth rate [5, 50-52]. However, as we shall show, justifying suc
a relationship between the growth rate and the operator's spectrum is much harder in the case of arbitrary spatial heterogene

A major dif culty in analyzing instabilities in systems with spatial heterogeneity is that there is no simple generalization of
Sturm-Liouville theory to multiple-component systems [49]. One can make use of the scalar theory when the heterogene
appears in the same way in each component and is scaled such that the spatial operator, including diffusion, is identica
each equation. However, more generally, such a theory is dif cult to use and, at best, one nds existence results, or mt
resort to numerical approaches [53, 54]. On the other hand, the WKBJ approximation has been employed in many opti
and semi-classical quantum mechanical situations involving spatial heterogeneity [55-57], and, as we will demonstrate, ha
straightforward generalization to coupled systems.

Here, we use WKBJ methods [58] in order to compute instability criteria for a reaction-diffusion system with explicit spatial
heterogeneity in the kinetics, under the assumption that the heterogeneity is suf ciently smooth and not rapidly varying cor
pared with the diffusive length scales. Our analysis also shows several novel aspects of these instabilities in the presenci
heterogeneity, such as modes supported in different regions of the domain depending on their growth rates. This phenome
invalidates some heuristics commonly employed in homogeneous Turing pattern formation, such as restricting analysis to
mode with the fastest growth rate, which in the heterogeneous case varies across the domain. These structural results
help explain size and wavelength modulation in the presence of heterogeneity observed both in simulations and heterogene
environments in experiment.

We begin by setting up the system and reviewing conditions for a Turing instability in the homogeneous case, and statil
the corresponding conditions in the spatially heterogeneous setting in Section Il. This Section is a roadmap of our results an
intended to state the conditions without detailed derivation. Such a derivation is presented in Section Ill, with the classical rest
in the homogeneous case in S| Section S1. We end this section with a discussion of properties of these solutions, and how t
form implies the instability conditions, with some technical details in S| Section S2. In Section IV we illustrate our results in the
case of the Schnakenberg system, demonstrating both that our conditions for instability correspond to full numerical solutiot
as well as showing various structural properties regarding the emergent unstable modes in line with our analysis. Finally, 1
discuss our results in Section V, highlighting both applications of our method and future directions for extensions. Someol
interested primarily in our results, rather than the technicalities of the WKBJ calculations, can skip Section lll, and instead ju
read Sections Il and 1V-V to understand the implications of our results, as well as how to apply them to different systems.

Il. HOMOGENEOUS AND INHOMOGENEOUS INSTABILITY CONDITIONS

Here, we state instability conditions for both homogeneous and heterogeneous two component reaction-diffusion syste
which lead to emergent spatial patterning. In the heterogeneous setting we exploit asymptotically small diffusion coef cient
and so pose the general problem rst. We consider a dimensional two component system in one spatial dimension,

D; O
U= Daimbboct Faim(U;); 1> 0; x2 (OL); Dam= o o
whereD; > D, > 0 are the diffusion coef cients andis the domain length. We prescribe Neumann boundary conditigrrs Q
for x2 f 0;Lg) and the initial conditioru(x; 0) = up(X): We non-dimensionalise length scales with respett time-scales with
respect to a reaction time-scdlg and concentrations with respect to a typical concentration &cébe both components and



diffusion coef cients byD;. Reusingu, t andx to now represent non-dimensional quantities for brevity we have

2. DT __ 10

U= e Duoct F(U); 1> 0; x2 [0l e*= 5 D= g

d=Dy=D; 1, 1)

whereF(u;X) = ( f(u;X);g(u;X)) is now a non-dimensional vector of kinetic functions. Below we assumee0 1: This
asymptotic assumption is not physiologically unreasonable in developmental settings. For kinetic time§caldohinutes,
the shortest that would allow for gene expression [59, 60], a domain lendth ofmm and a diffusion coef cient oD,
1:5 10 8cmPs 1, which is the measured diffusion coef cient of a chemotactic protei-8oli [61], one hae? 9 10 4
ande 0:03. Critically, we note thae is the ratio of two time scales, that of the kinetic interactions and that of diffusion
required to be felt across the whole domain. Hence, a large enough domain size impliespsitafiirrespective of the values
of the diffusion coef cient and kinetics timescale.

Letu (x) denote a steady state, so that

0= e?Du,, + F(u ;x); x2[0;1];

with boundary conditions, = 0. To generalize the notion of a homogeneous steady state, we only consider the possibility tha
u oscillates with spatial derivatives of sc&¢1), or smaller, speci cally excluding spatial oscillations on the scal®(dif=e),
or larger. Hencey is independent oé and we have

0= F(u ;X)+ O(e?); (2

as long as the spatial heterogeneityFipermitsu, = 0 atx= 0;1. If insteadu, 6 0 at either boundary then a boundary layer
with concomitant large derivatives will form, a possibility which we neglect in the subsequent analysis.
Linearising about this steady state wa= u u , assumed small component-wise even relative to the scaleyaflds,

Wi = €2DWyy+ J(X)W; (3)

whereJ(x) is the Jacobian matrix df evaluated ati (x). System (3) inherits homogeneous Neumann boundary conditions
and the initial conditiorw(x;0) = u(x;0) u (x). The fundamental impact of spatial heterogeneity in the kinetics is that the
Jacobian] possesses an explicit spatial dependence (and formally an addifi¢efdl dependence, though we can neglect this
via the asymptotic analysis going forward). The standard derivation in the homogeneous setting proceeds by assuming the ar
w i € tq(x), justi ed by linearity. One then uses eigenvalues of the Laplacian tol fd), wheren is a spectral parameter,
resulting in conditions which imphA (I ) > 0 and, hence, instability.

This approach does not generalize to the heterogeneous setting due to the explicit spatial depeddandesofinstead we
think of varyingl as a parameter and searching for eigenvalues consistent with the form of the solutioA (When 0. We
rst state a reformulation of the classical homogeneous conditions before generalizing to the heterogeneous case. We giv
detailed rederivation in the homogeneous case in S| Section S1, arriving at the following formulation of the Turing conditions:

Instability Criterion 1 (Homogeneous) Let0< e 1, andJ a constant matrix for all 22 [0;1]. If we assume stability to
homogeneous perturbations, i.e.,

tr(J) < 0; deiJ)> 0; (4)
then there exists a non-homogeneous perturbatiaatisfying(3) which grows exponentially in time in the interva2X0; 1] if
tr(D 1J)>0; [tr(D 13)]?> 4de(D ) > O (5)

We nd an analogous result in the spatially heterogeneous setting involving a much more complicated form of unstable mod
explicitly depending on the growth rake so that, to leading order, we have unstable solutions of the fopre tq(x;| ). Ad-
ditionally, for different growth ratek, the instability may be restricted to different subsets of the spatial domain (asymptotically
at leading order). We will denote the largest of these regions, within which we anticipate patterns to be conTgdyhdsh
can consist of multiple disjoint intervals (as in Fig. 1(h)). We denote the interior of this regb}l &onditions for instability in
the heterogeneous case then follow from Criterion 3, and Proposition 8, which are stated and derived in the next section. Th
conditions can be stated as:
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Instability Criterion 2 (Heterogeneous) LetO< e 1, and assume that the quantjty D 1J(x))]?> 4det{D 1J(X)) has only
simple zeros for 2 [0; 1]. If we assume stability to perturbations in the absence of diffusion, i.e.,

tr(J(x)) < 0; defJ(x)) > 0; forallx 2 [0;1]; ©

then there exists a non-homogeneous perturbatiaatisfying(3) (to leading order ine) which grows exponentially in time for
allx2 T if

tr(D 13(x) > 0; [tr(D 1J(x))]? 4de(D J(x)) > 0; forallx2Ty; 7
whereTOi is the largest set for which conditioi{g) hold.

More generally, the conditions of Criterion 2 are exactly a local version of the homogeneous results, so that the same conditic
satis ed on a subset of the full spatial domain imply a pattern forming instability on that subset. Both homogeneous an
heterogeneous conditions hold for suf ciently smallwhich can be thought of as a suf ciently large spatial domain. In this
case, one can neglect the discrete wave mode selection, though we do give discrete dispersion relations in Sl Section S
the homogeneous case, and Criterion 3 for the heterogeneous case. These discrete conditions give concrete ways to dete
precisely which modes become unstable, and their associated growth rates, for a xed value tfie next section we will
describe how to derive Criterion 2 and these results mentioned above, and also further structural details about such instabili
which emerge from the form of unstable modes. One can skip these details on a rst read and see an illustration of the result:
Section IV.

Ill.  DERIVING THE SPATIALLY INHOMOGENEOUS CONDITIONS

We start our analysis of the heterogeneous Turing instability by analysing the stability of the steady state in line with the usu
Turing instability analysis. We seek solutions to Equation (3) in the fe(mt) = € {q(x) (as linearity permits separability n
andx) to nd

0= eZDQXx"' Jy (9a; (8)
with J; = J | |. We then proceed in direct analogy to the scalar WKBJ expansion [57, 58], with

a=exp 12 po: p00= pol+ ep(9+ pi(+ i

Thus, with®denoting the ordinary derivative with respecixio

ij ij 0 jjo jjo
Qux = expjg %p+p° +'; J?p+p

0 el LTpi L g 0 ij 0 4 p™;
e e? e '

and, hence,
0=[ j ®D+Jlp+e 2ij Dp+ij “Dp + O(e?);

where theD(e?) terms fromJ were neglected, as we will not need to consider the second order problem below. At leading orde
in e we have

0=[ j®D+J3lpo=D [ j®+B]po ;
where we de ne the matriB; = D 1J, = D }(J | 1) and at next to leading order
0=[ j ®D+ 3 pi+ 2ij Dpg+ij °Bpo =D [ j ®+BIps+ 2ij D3+ ij %o

We solve the leading order equations by setfifgequal to an eigenvalue & and sepo = Qo(X)p (X) wherep (x) is the



unit magnitude eigenvector §f j @I + B, ] with zero eigenvalue an@o(X) is an undetermined scalar function. Then
[ J®1+Bilpi= 2ij PG+ij %o =i 21 QB+ "o p + 2ij Qop*:

The matrix premultiplyingp; has zero determinant and hence the existence of a solution requires a solvability condition.
Lets' (x) be the zero left eigenvector of unit magnitudg of @I + B, ]. Then we have the solvability conditish(x)[ j @I +
B, ] = 0 by Fredholm's alternative, and thus multiplying 8y(x) we have

2 Q0+ "o s p +2 Qos Tp°= 0 9)
which yields
B % ST
Q 29 sTp
Thus

Qoo Zxs () 7p°(%)

Qo(X) = %exp L S®@P® X (10)

whereQqo is a constant, not necessarily reals a real constant arjdlis given by either the positive or the negative square root
of the eigenvalues @, , anda s an arbitrary real constant before any constraints of considering real solutions and the boundar
conditions are imposed. Hence, for each eigenvall® ¢%), denoted

m & i %

we have a possible mode which, at leading order, can be written as

Zx T 0 1 1ZXq 3 . 1qu B
a zg?ﬁ E?) X e 0%, MEECESsing oM p 0o (D

w(xt)= € texp

whereC, ;§, are arbitrary constants. We note that the reciprocalfobm the trigonometric functions will dominate in spatial
derivatives given our asymptotic assumptions.

In the usual Turing analysis, we assume that the steady state is stable to homogeneous perturbations, which are assoc
with the zero mode. In this case, such a perturbation would correspond to sgtting0, which is equivalent to looking for
solutions with constarjt. Such a perturbation would then satisfy to leading order, from Equation (8),

W = €2DWyy+ JX)W  J(X)W; (12)

asjwy O(1) for this kind of perturbation.This approximation is justi ed through the fact that we are discussing stability
with respect to homogeneous perturbations, thus, conjstamtans thatv varies withx as p(x), which does not scale wité.
Stability of the equilibrium to such perturbations is required foxahd thus, to asymptotic accuracy, we require

tr(J(x)) = fu+ogv< 0; defJd(x)= fugy fvgu> 0; forallx2[0;1]; (13)

a set of two constraints that we shall assume throughout the text below. These conditions generalize the notion of stability aga
homogeneous perturbation in the spatially homogeneous setting, and imply that any unstable mode of the form (11) will lead
emergent spatial patterning that is not strictly dictated by the spatial heterogeneity in the kinetics.

The above expression for the leading order solwiios well de ned with the exception of zeros af (which we will show
can be excluded in Proposition 6 below) and potential singular prir2q0; 1] wheres Tp = 0. These singular points will in
fact determine the subsets of the spatial domain in which a patterning instability will occur. We rst consider propdrties of
andm , independently from the solution structure given by (11), in an arbitrary intéays)  [0; 1], and then discuss how to
choose such an interval so that solutions can be de ned. After this, we discuss how solutions behave near these singular pc
in order to de ne solutions globally in space. Note, in particular, that we will restrict attention to the open irfitetyalas we
will eventually choose these boundaries to (possibly) be singular points.



A. Local Turing Conditions

Motivated by the form of solution (11), we now consider the quantiti@adm in their own right, and deduce properties that
these quantities must have to make sense of such a solution. If the WKBJ solution, (11), is de ned everywhere on the dom:
x 2 [0;1], Neumann boundary conditions at the domain edges entail, at leading osJéhat the integral

Z.q

m (Xdx (14)

is a multiple ofpe=2 and, without lossa = §, = 0 so that only cosine solutions remain. Furthermore, given the choice of a
suf ciently small e, the above constraint can be ensured simply by imposing

Z4q

m (x)dx2 RnfOg: (15)

However, we are not guaranteed that the WKBJ solution, (11), is de ned everywhere on the ddn@rl]. In general,
the region of validity for the WKBJ solution will be restricted to one or more intervals of the fei) wherea andb are
constants satisfying 0 a< b 1. The pathological case of a region of validity that is restricted to a point is neglected, as
this requires mathematical precision in the parameter values. As discussed in Section 11l B, when the WKBJ solutions &
not valid everywhere, homogeneous Dirichlet boundary conditions will be required (i.e. whenesatisfya> 0 orb< 1).
Given suf ciently smalle, as discussed immediately above, then we may accommodate both cases of homogeneous bound
conditions, Neumann or Dirichlet, by requiring (i) without loss a restriction of the WKBJ solution to either a sine or a cosine by
setting eitheC, = 0 or§, = 0 to guarantee the boundary conditiorxat a and (ii)

Zpq

m (X)dx2 Rnf0g; (16)

forO a<b 1sothattheintegral in (16) can be guaranteed to be a multiple of @ither pe=2 for a suitable, suf ciently
small, choice ok to guarantee the homogeneous boundary conditiarrab.

From the fundamental constraint (16), we can deduce propertiesofim that are necessary for a solution to exist within
an arbitrary region of validity(a; b), with A(l ) > 0, therefore resulting in a perturbation that grows in amplitude. An analogous
derivation in the spatially homogeneous setting is given in Sl Section S1, and is the motivation for what follows. Critically
we assume that conditions (13) hold for every proposition below. We remark that here we derive implications directly from th
fundamental constraint (16) that will let us make sense of solutions of the form given in (11), but do not agstonethat
such solutions must be valid.

We rst de ne permissiblegrowth rates and eigenvalues which satisfy (16).

De nition 1 A permissible pai(l ;m (X)) is such that the value df entailsm (x) satis es constrain{(16) for all x in some
interval (a; b).

We will also refer tol as permissible, om (x) as permissible, ifl ;m (X)) is permissible, as de ned above, and implicitly
assume this is over an internv@; b).

Proposition 2 The functionm () is permissible if and only ify (X) is real and non-negative for all & (a;b), though not
identically zero. Additionally, without loss of generality we can consider the integ(dlG)to be positive.

Proof. If m (x) is real, non-negative and not identically zeroX@ (a; b) itis immediate that it is permissible. For the converse,
we consider a permissiblg (x). Note that the square root in condition (16) is, without loss of generality, the positive square
root. In other words, we work in the complex plane such that any argument, denbtddw, is in the rangg 2 [0;2p) and the
positive square root is such that if, for examme?2 2 [0; p), then

g1 = du2.

q
Hence, any imaginary contribution to the integrandm (x), in condition (16) is non-negative as the argument of the square
root in the complex plane is in the ranff&p). So any imaginary contribution to the integrand cannot be cancelled from a
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aontribution in any other region of the integration domain. Thus, the integrand cannot have an imaginary contribution ar
m (X) must be real for alk2 (a;b). Hencem (X) is real and non-negative for adl2 (a;b). Finally, the need for the integral
to not be identically zero implies thaj (x) cannot be identically zerom

Proposition 3 If | is both permissible and complex (iZ&(| ) 6 0), thenA(l ) < 0:
Proof. From the de nition ofm (x), we have
de{f m (x)D+J (¥)]=0;

and, so,

q
2 = w(m®D J) [r(m (WD I Adefm (YD J=[fu+gy m (X)(L1+ d)]

q
(futgv m L+ d)? 4d(m (x)? (dfutg)m ()+( fugv 9ufv); 17)

with the spatial dependence f () such that the growth raté,, does not have a dependencexolsivenl is permissible, so
thatm (x) is permissible, we have thaf (x) is real and non-negative for adl2 (a;b). In addition, t{J) = f,+ gy < O for allx
by Equation (13) implying that, + g, m (X)(1+ d) < 0 and, thus, if a permissible is complex it has a negative real past.

Proposition 4 GivenA(l ) 0, the pair(l ;M (X)) is permissible if and only if
tr(B)>0; [tr(B)]*> 4de(B,) O; (18)
forallx 2 (a;b).

Proof. If (I ;m (X)) is permissible, withA(I ) 0, thenl is real by Proposition 3. From permissibility and Proposition 2 we
also havem (x) is real, non-negative and not identically zero fone® (a;b). From de¢ m (x)D+ J; (x)) = 0, we have

q
m K = % tr(B)  [tr(B)]* 4de(B) : (19)

Asm (x) andl are strictly real, this enforces
[tr(By )]? 4de(B) O

for all x 2 (a;b). We also have déB, ) = def{D 1J;)= de{D 1) detJ; )= deiJ, )=d > 0 for all x2 (a;b), using Equation
(13) and that is real and non-negative. Hence, for both the positive and negative square root in Equation (19), the fact th.
m (x) cannot be negative enforce¢Br) 0 for allx2 (a;b). The possibility that (B, ) = 0 is excluded as them (X) is not
real, since déB, ) > O:

Conversely, assuming conditions (18), we can see by Equation (19ntfa} > 0 for all x2 (a;b), and, hence, condition
(16) is satised. m

We note that conditions (18) cannot be satis ed in the ahse 1, as then (B, ) = tr(J) 2 < tr(J) < 0, so for any
permissibld with A(I ) > 0, we must havel < 1. As the conditions in (18) do not depend on the positive or negative branch
of m , we immediately have that this proposition implies both roots are permissible once one of them is. We also need ftl
following Proposition, which shows that if these conditions hold for 0, then they hold fot = 0.

Proposition 5 If the conditiong18) hold for some real permissible withl > 0for all x 2 (a;b), then they hold for all real
[ withl | Oforallx2 (ab).

Proof. First, we realise that{B, ) = tr(Bg) | (1+ 1=d), and the last term is strictly negative so that fro(B{r ) > 0 we have
tr(B;)>0forall0O | | . Nextwe considerthe second condition of (18), which can be written as

2
P(I ):: 1 } [ 2 2(d 1)(dfu gV)I + fu+

Qv 2 4fu9v fvau
d d? d d

0; (20)



where the quadratiB(l ) admits two zeros, which we can compute as

i :gv dfy 2p dfyou.
1 d '

We can see that these roots are both real by signing each term. F&ma @ while t(B, )= tr(D 1J, )> Oforl > Owe
have thatf, + g, < 0 while f,+ g,=d > 0 andd < 1. Hencef, < 0; g, > O andf, g,==d< 0.

Due to the positive coef cient di2 in P(l ), we can see that this function must have a negative minimum, so that it is positive
to the left ofl and to the right of * (and negative between these roots)l If | thenP(l ) is decreasing im and, so,
P(1)>0OforallO | | , meaning that we would be done. Hence, we now assumé thatl * to derive a contradiction.

By linearity we have G tr(B; ) tr(Bj.). We then compute,

(2d+2° ARG+ 2d(h ) _

tr(Bp)Z (1 d)d s

which can be seen as the denominator is strictly positive and the numerator has only negative terms. Therefore we must
| | ,sothat(l) Oforalll <| . m

Next we show a relationship between the positive and negative eigenvalBes afid how they depend dn. We will need
to assume thdtr(B, )] 4de(B, ) > 0 for all x2 (a;b). If this term becomes zero (and henge(x) = nf (X)), then there is a
degeneracy in the associated eigenvectors, which will lead to an internal boundary-layer behaviour discussed in the next sect
and hence the determination of the boundary poamg&ndb.

Proposition 6 Given(l ;m (X)) is permissibleA(l) 0, and[tr(B, )]> 4de(B;) > O for all x 2 (a;b), we then have the
ordering0< my (X) < m (x) < nf' X) < ng (x) for all x 2 (a;b). Furthermore, at the edges of the domair; &, or x= b, we
still have the orderind< my (x) M (X) (¥ my(x).

Proof. Using{ to denote differentiation with respectltq we have thaf tr(B, )= tr(D )= (1+ 1=d) andy, de(B, )=
tr(J)=d=(2 f, gv)=d. Then, by Equation (19\m (x)2  tr(B, )m (X)+ de(B, ) = 0, so, upon taking the derivative
and rearranging we have,

dir(D Hym () + tr(J;) _ dtr(D Hm )+ tr(3))
d2m (0 w(B))  d [w(B )2 4de(B,)

(21)

im =

We can then see that each term in the numerator is always negative for both roots, whereas the denominator will change s
Hence, we hav§j m (x) > 0 and"] rq* (X) < 0, so that the ordering follows by continuity. Finally, we note that the possibility
of my 0 is excluded using Equation (19) along with Proposition 2 at#o)r> 0, the latter of which is true by virtue of
Proposition 5.

For the second part, all of the ordering can be deduced as a limit of the above argument (with the new potential equal
m =ny if [tr(Bo)]? 4de(Bg) = 0 by Equation (19)) except the de nite inequality > 0: To rule outny, = 0, we consider
| = 0:If [tr(Bg)]? 4de(Bg) > 0 at the boundary point as well, the above proof holds. Hence we need now only consider
the case witHtr(Bg)]?> 4de(Bg) = 0: Now suppose, for contradiction, thag = 0. By (19) we have {Bg) = 0 and hence
detBg) = def(J)=d = 0O; but we have dé€g) > 0 throughout, and hence the contradictien.

Propositions 5 and 6 together give a range of permissible vallesofl associated eigenvalugs, as soon as the conditions
(18) are satis ed for some positide > 0. Finally, we show that for a permissidlewith A(l ) 0 A{-)>-0, and the same
assumption as above, we can sensibly de ne the left and right eigenvectamdp which are not orthogonal.

Proposition 7 Given(l ;m (X)) is permissible and\(1) 0, then[tr(B, )]> 4de(B,) > 0 for all x 2 (a;b) if and only if
s'p 6 Oforall x 2 (a;b), wheres andp are the left and right unit eigenvectorsfofm | + B, ].

Proof. We will demonstrate both implications via contraposition. We rst assumedhat= 0 at some poink 2 (a;b). By
elaborating possibilities on a case by case basis for a general atrix with zero determinant, we note the left and right
eigenvectors of zero eigenvalue can only be perpendicular if the matrix is proportional to one of the following:

00 1 1 1 1
00 1 1 1 1
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In all three cases, we have that the trace is zero. Theref¢gremtrl + B )= 2m + tr(B, ) = 0: However, by Equation
(19), this implies thaftr(B, )] 4de(B, ) = 0, contradicting the assumption that this quantity remains positive.

For the converse, we assume tfiaiB, )]> 4de(B, ) = 0 at some poink 2 (a;b) (noting that if this term were negative,
then, by Proposition 4, would not be permissible and we would have an immediate contradiction). By using Equation (19)
again we see that(tr m I + B ) = O; so this matrix then has repeated zero eigenvalues. Any red Bnatrix with zero
determinant and trace can be written as either,

|

C1 Co ] 00 )
¢ o % o0
forrealcs; cp, withc, 6 0. The rst of these has one left and one right eigenvector, given by c1=cp;1) andp =( c=¢C1;1),
which are orthogonal. The second of these would infply g, = 0, and, along with the assumption that(@gt> 0, we would
havef,gy > 0, so these terms must have the same sign. But noting (lx&tr0 and t(B, ) > 0, by assumption on the stability
of the zero mode, permissibility &f, and Proposition 4, we havig + g, < 0 andf,+ g,.=d | =d > 0, thus, we see that they
must have opposite signs, demonstrating that this case is not possible. TherdiofB; }|> 4de(B; ) = 0 at some point
x 2 (a;b) for permissibld , thens'p = 0 at this point.m

Given Propositions 4, 6 and 7, which all follow from the de nition of permissible growth rates, we can now consider where
solutions of the form given in Equation (11) for permissible 0 are valid. We will assume throughout thi@(B, )]> 4det(B, )
only has simple zeros, noting that non-simple zeros would require mathematical ne tuning of parametergir{Bh#a
4de(B,) 0, we have by the rst part of Proposition 6 that the reciproca[rqf]1=4 with permissiblel 0 is nonsingular
and thus Equation (11) with permissiblle 0 might only possess a singularity at points where left and right eigenvectors are
orthogonal, that is'p = 0. Then, for a region with (B, ) > 0, and[tr(B, )]2 4de(B,;) 0 we have that is permissible
by Proposition 4 and that the reciprocal[of ]¥* is nonsingular, even at the domain edges by the additional use of the second
part of Proposition 6. We de ne the closure of the maximal open set where the associated WKBJ solutionlfas than-
singular byT, . By the above reasoning and Proposition 7 each boundary of this region must either be a domain boundary,
where[tr(B, )]> 4de(B; )= 0ass'p 6 0 on the interior ofT, . Whenever the latter case occufg,6 [0;1] and we have to
determine what happens to the WKBJ solution on approaching the point eheré 0 and beyond.

B. Behaviour Near Singular Points

If T} =[0;1], for a given permissible 0, then we can taka= §, = 0in (11) to nd a non-trivial solution that satis es
the homogeneous Neumann boundary conditions. If instead a proper subset of the whole intery@j 1] then we assume
for simplicity thatT, is a single contiguous interval, implying tHat(B, )]° 4de(B, ) has at most two zeros far2 [0; 1], and
note that generalizing beyond a single interval is straightforward. At a zdgtq(Bf )]> 4de(B, ), by (19) we have the double
eigenvaluesy = rq* , of B; and we recap that by Propositon 7 we halie = 0 at such a point, denoted, and thus anticipate
a singularity in the solution given by Equation (11). In Sl Section S2, we explicitly show thgtfor> x the integral

“ys (M PR
P SH PR

will blow up ax & x , with analogous behaviour when approaching such a singular point from the left. However, in this SI
section, we also show that this integral will scale such that by imposing effective Dirichlet conditions at the singular point, w
can retain a bounded solution. In this way we can construct leading order solutions which are bounded and dg ned on

With the previously stated assumption that any zerfr(B, )]> 4de(B, ) is simple, so thajtr(B, )]> 4de(B, ) monoton-
ically passes through zero at such a singular point and by Proposition (7) we thus hdugBnal? 4de(B,; ) < 0 outside
of T; . By Proposition (4), this implies that this value lofis not permissible outside of this interval, and hence if any WKBJ
solutions exist, they cannot simultaneously satisfy homogeneous Dirichlet or Neumann conditions at boundaries on both the
and right. However, the scaling of the integral (22) requires a solution which is zero at the singular point, while a zero derivati
is always required at a domain boundary. Thus the only WKBJ solution outsifle agsociated with the growth rateis the
zero solution. We can then extend the nontrivial WKBJ solution de ned oty the zero solution to obtain a leading order
solution across the whole domain for a mode with xed growth tate

We can now match these different sets of boundary conditions depending on the number of singular points appearing in
domain. These will then lead to different wave number selection conditions. We note in particular that in matching Neumar

(22)
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boundaries, we only differentiate the trigonometric functions in (11), as only terms involving these derivatives will be retaine
to leading order. We then have the following leading order solutions (modes) associated with each eiggnafiig =
D 1J, (x), depending on the number of singular points:

no singular points, s®, =[0;1] and the solution is

VA VA VA
e *s(@Q'P°X) - G 124 ~ S
w (xt)= € texp 0 S@P @ X i ()((’)]Hcos . M (x)dx p (X); ;M (X)dx= n pe; (23a)
one singular poink (I ) > 0, so without loss of generalityx ;1) = T, , with solution
ZlS()_()TpO()Z) _ _ 14 x4 _ Z419 _ 1
w (xt)= €lexp L S®D ()_()dx [ (S)‘i)]lzlsm . m (X)dx p (X); ) m (X)dx= n + 5 pe;

(23b)
forx2 T, , and zero otherwise;
two singular pointx (I ); x (I ) 2 (0;1) delimiting theT, set, i.e.T; =(x ; x ), with solution
Zy Tho 14x 9 Zx 1Ha
w (xt)= €lex s (9 p()_()dx_ S sin = X)dx X); X)dx= n pe; (23c
(x1) p S®@TP O [m (o . m (X p()x(l) m (X pe; (23c)

forx2 T, , and zero otherwise;

whereC, ; §, are arbitrary real constants. We remark that the mode selection constraint is de nélil paed so will depend
onl through both the eigenvalueg and any singularities, as highlighted in the integral bounds. In this way, the latter two
solutions given by Equations (23b)-(23c) are continuously extended by zero outsige afid equal to zero at the singular
points.

We remark that these WKBJ solutions applied to systems without heterogeneity in the reaction kinetics collapse in bo
components to functions of the form

e '(Cocognpx) + Sosin(npx)):

However, the meaning of (denoted a® ) in the heterogeneous case does not correspond to the spatial frequency of a giver
mode, as we will see in an example. We can now describe some additional structural features of th§ spaddsow they
change for different growth ratés In particular, the set; is monotonic in in the following sense.

Proposition 8 If T|,6 0and0 |1 IpthenT,, T .. If T, 6[0;1], and0 [I;< I, then we have the stricter inclusion
T, T,

2

Proof. The rstpartofthisforO 1|3 | follows from Proposition 5. We then need to show thaik | », thenT,, 6 T;,. We
note that at least one of the boundarie3ofa(l ) and/orb(l ), are zeros (in the spatial variableof tr(B, (x))? 4de(B, (X)).
At such a boundary we compute the derivative with respekt tading

T (tr(By (X)? 4de(B, (X)) = 2tr(B))tr(D )+ 4tr(J; )de(D )< 0; (24)

which follows by signing each term. As(B; (x))2 4de(B, (x)) > 0 fora(l ) < x< b(l ), we have that ifa(l 1) > 0 then
a(l 1) < a(l 2) and ifb(l 1) < 1 thenb(l 1) > b(l 2), so the strict inclusioif;, T |, follows. m

Hence, the onset of instability (the boundaryTe) is given by zeros oftr(Bg)]?> 4de(Bg) = 0, for which t(Bg) > 0.
More generally, the onset of instability with a growth rate 0 is given by the location of zeros sfp = 0, i.e. zeros of
[tr(B, )]> 4de(B, )= 0 while t{B; > 0). Therefore this boundary shifts with, while monotonicity of the Turing space
with respect td holds. Hence, the suf cient condition for (the onset of) instability can be identi ed Withwhich is a good
approximation of where we will nd Turing patterns, as it corresponds to the region of support of a mode with positive value o
| for suf ciently small e. This also justi es considering the fundamental constraint (16) in this regime, which does not depend
one.

In summary, we have the following conditions for instability:



12

Instability Criterion 3 ( | -Dependent Heterogeneous Casd)et | > 0, 0 < e 1, and assume that the quantity
[tr(D 1J(x))]? 4de(D 1J(X)) has no more than two simple zeros fo2 %0; 1], and is positive between these two zeros. If
we assume stability to perturbations in the absence of diffusion, i.e.,

tr(J(X)) < O; det(J(x)) > O; forall x 2 [0;1]; (25)

then there exists a non-homogeneous perturbaticsatisfying(3) (to leading order ine) which grows as '¢ in the interval
x2 (a(l );b(1)) if

tr(By () > O; [tr(By (x))]*> 4de(By (x)) > 0; forallx2 (a(l );b(l )); (26)

and if there exists an integer r> 0 such that
ZpHAa
a(l)

m (X)dx=n +g pe; (27)

where gl ) = max(0;min(fx: [tr(B, (x))]? 4de(B, (X)) = 0g)), b(l ) = min(1;max(fx: [tr(B, (X))]? 4de(B, (X)) = 0g))
and K= Oif eitheral )= Oand il )= L;orif0< a(l ) < b(l ) < 1; otherwise K= 1.

Proof. We assume without loss of generality tha(l );b(l )) has one of the forms given in (23). By Proposition 3 we
have no loss in specialising to strictly rdal Assuming conditions (26) are satis ed, Propositions 2 and 4 imply ithats
permissible, real, and positive. From this and Proposition 9, we have that the functions given by (23) are real and bounded
all x2 (a(l );b(l )). To leading order ire, such solutions satisfy (3), alongside the zero solution. By the scaling arguments
in Sl Section S2, we can see that the solutions given by (23) meet this zero solution at any internal boundary (i.e. any ze
of [tr(D 1J(x))]? 4de(D 1J(x)) in the interval(0;1)). So to leading order, such a piecewise solution satis es (3) and the
Neumann boundary conditionsfad; 1. m

Analogous criteria for the other possibilities fr, depending on the sign pattern[tfD 1J(x))]2 4de(D 1J(x)) across
the domain, are readily determined. Further we note that the integeptay an analogous role to the wave numhen the
homogeneous setting, but that they will not correspond to spatial frequency, and the two roots will have quantitatively differe
properties, so must be considered as distinct. For suf ciently sejalhese conditions predict that a pattern will form in
the interval(a;b), and intervals for which no value of exists will return to the heterogeneous steady statafter a small
perturbation (up to leading order &). We will con rm this numerically in Section IV. Additionally, the fact that unstable
modes do not share the same support is shown explicitly in Proposition 8, and employed to explain some properties of patte
in heterogeneous domains.

We remark that (27) depends on a givemoth in the integrand and the bounds of the integral, but in principle for a given
andn , one can use this condition to nd at most two values$ dghdicating an instability, one for each eigenvalue. Hence, any
instability will permit a discrete number of unstable modes, each with a possibly different support, and the growth rate of ar
instability will, thus, depend locally on the permissible growth rates. We give further structural details regardindl in Si
Section S3.

Further, it should be noted that Criterion 3 can be generalized to obtain Criterion 2 by relaxing the restriction to a sing|
interval, and considering a suitable choice of arbitrarily smallThe use of the interior ofg in this limit for Criterion 2 is
further supported by Proposition 8, and noting that instabilities need not grow on the ediie®pthe WKBJ solutions at
leading order (in particular this is the case when the homogeneous Dirichlet boundary conditions are imposed to retain bount
solutions there).

However, although linked, it should be clearly stated that Criterion 2 and 3 are different. Namely Criterion 2 summarises tt
conditions yielding instability for a large enough domain size (small en@)ghence, this condition epitomises the necessary
but not suf cient conditions for instability. Criterion 3, on the other hand, provides much more detailed information about the
instability, not only the suf cient but also the necessary conditions for linear instability. In addition Criterion 3 yields an estimate
of the unstable mode and its rate of growth.
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IV. ILLUSTRATIVE EXAMPLE. THE SCHNAKENBERG MODEL

To illustrate our results, we consider the Schnakenberg model with spatially heterogeneous sources. Let

u
u= 1 ;
uz

so thatu; is the nominal inhibitor ands is the nominal activator. The kinetics are

b(x) udu

F(u;) = udup  aux+ z(X)

with a; b(x); z(x) > 0. As is typical, and to simplify the system, we assumfg)+ z(x) = 1. Hence, accurate 1©0(e?), the

steady state is given by
0 a?b(x) 1
u = 1 ;
a
with Jacobian
0 1 1
2z 2ab (x)
J= % § ;
1
22 a(2b(x 1
so that
_ 1, _ 1. 1y~ & 1.
tr(J)=a(2b(x) 1) 22 dei(J) = 3 tr(D *J) = g (2b(x) 1) 22 (28)
2,6 34 2
(D 2] 4de(d )= 22X D7 +(a4:f(x) 2)da”+ d”,

We note that the steady stateusfis linearly proportional td (x), and hence this heterogeneity must satisfy the no- ux boundary
conditions at the endpoint of the interval to prevent the formation of boundary layers. To satisfy the Turing conditions (26) fc

(29a)

I = 0 we require
4a%b(x)?> 4@®+addb(x)+a® 2add+d’*> 0

Lot (29b)

b(x) < 33

N

1
b(¥ >3 1+ 5

Thus, inequalities (29b) requitk< 1, as standard. Condition (29a) forde&) to lie outside of the roots of this quadratic, i.e.,

r_ r_
1 d d 1 d d
—; or b(x) < > 1+§ 3:

b > - 1+ — 4+ ;
) 2 as as
The second of these inequalities cannot be reconciled with the rst inequality of (29b). We then have the conditions on tt

parameters for a Turing instability are tleat> 0, 0< d < 1, and for allx 2 T,
1
33

NI
Q

This is accompanied by ensuring an unstable mode satis es condition (27), analogous to the a posteriori selection of a we
number for the spatially homogeneous Turing instability. These conditions, which really are just local versions of the standa
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FIG. 2: Plots ofu; from simulations of the Schnakenberg system using1,d = 1=40= 0:025, andb = 3=5+[1 coqpx)]=25 with varying

e. The blue solid curve is from the numerical simulation whereas the black dashed curve is the stationajp3tate (x) (note that the blue
regionis due to the highly oscillatory nature of the solution). The red dash-dotted curve is the boun@iataf 0:7774 (i.e. the singular
pointx ). The insets show a zoomed-in region near the boundafy;dhese insets are over different regions in (a) and (b), though Figs. (c)
and (d) share the samexis for their insets.

Turing conditions, can be modi ed to determine if any valué of 0 permits an unstable mode.

A. Direct Numerical Solutions

We simulated system (1) with the Schnakenberg kinetics. Initial data were taken as normally distributed spatial perturbatio
tou . Speci cally, we set;(0) = u;, (1+ xi(x)) wherei = 1;2 andxj(x) N (0;10 3) independently for eack andi. While
such heterogeneous reaction-diffusion systems are standard problems for numerical simulation software, we carefully chec
different implementations of our simulations in order to be sure we resolved boundary layers and solution structure in t
spatial domain. The commercial nite-element solver Comsol version 5.4 was used to solve the equations aliémgdts, a
relative tolerance of 1¢*, and a nal time oft = 10° by which time a steady state had been reached up to numerical tolerances.
Simulations were also carried out using a standard three-point stencil in Matlab and the stiffost@t&s using 16 grid
points with relative and absolute tolerances of 40and the same solutions were found. WKBJ modes were reconstructed in
Mathematica and these were checked in Matlab and Maple.

We demonstrate our results using the following parameter choices, unless otherwise stated.aWe 1alle= 1=40= 0:025,
and consideb = 3=5+[1 cogcpx)]=25, wherec= 1 orc= 2. For these parameters, we have a Turing instabilityg? 06<
b(x) < 1, soforc= 1we havely (0:77741) and forc= 2 we havely (0:38860:6114. We plot simulations foc= 1in
Fig. 2, and varye. We observe that patterned solutions form approximately in the region predicted by the aig)yesisl that
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FIG. 3: Plots ofu; as in Fig. 2, but withh = 3=5+[1 cog2px)]=25 to demonstrate an internally contairiegd
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FIG. 4: Plots ofu; from simulations of the Schnakenberg system uaing1,d = 1=40= 0:025, andb = 3=5+[1 coqpx)]=25 with varying

e at a timest; = 800 in (a) and; = 700 in (b). The initial perturbation is taken &x) N (0;10 ©) in both cases. The blue solid curve
is given byuy(tf) u,; from the full numerical simulation, and the black dashed curve is givenilifit) from simulations of the linearised
system. The red dash-dotted curve is the boundaffyaftx 0:7774, though the region shown in (b) is entirely witfin

they localize to this region asis decreased with highly oscillatory boundary regions at 0:7774. We note that Figs. 2(b)-(d)
have the same qualitative structure in terms of the amplitudes of patterns, though the internal oscillations become increasin
ner as e is decreased. The insets show the increasing localization of the boundaiy dscreased, as well as the structure of
the decaying boundary layer of the mode with the largest support. We also show the same kind of localizatio fiofFig. 3

where the spike solutions are con ned to an internal region by varying the heterogeneity. Larger valuas wokll as other

kinds of heterogeneity, were also considered with results consistent with the analytical predictions.

In Fig. 4 we show short time solutions to the nonlinear and linearised system in order to understand the structure of growi
modes due to the instability. As anticipated, for suf ciently small perturbations and time intervals, the linear and nonlinea
simulations are almost identical (using the same realization of the initial perturbations). We observe that the instability grov
fastest furthest to the right, suggesting that there is not a single largest growth aatess the domain, as anticipated in the
analysis. Rather, what we have plotted are a superposition of modes with distinct growth rates and supports. Finally, for sma
e, these results suggest that larger values d@fvhich are more localized) become permissible, which is consistent with the
structures anticipated. We now explore these modes in more detail.
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FIG. 5: Evaluating (27) reveals the possible discrete madesn both branches of WKBJ solutions, which are plotted using asterisks in

(a). In (b), we plot the position of singular poimts(l ) demarcating the boundary @f =[x ;1] as a function of the growth rate, and
corresponding to a shrinkinf which vanishes wher = 1.
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FIG. 6: We plot the rst component of modes given by (23b), associatedwyitborresponding to parameters as in Fig. 2(a). We plot modes
for the positive brancir]+ (solid lines), withn* = 1;5;13;19 in red, green, purple, and blue respectively, as well as the modes corresponding
to the negative branchy (dashed lines), witm = 1;5;11,15 in red, green, purple, and blue respectively. The smaller two mode numbers
are shown in (a), and the larger two in (b). We remark that the smallest and largest valuesoofespond to the maximal and minimal mode

numbers along each branch, and the other two mode numbers for each branch are chosen to have similat vallogs tfe shrinkage of
the support of each mode with increasmaand in particular the difference in the axes for each plot.

B. Structure of Unstable Modes

We construct the unstable modes given by (23b) for the example shown in Fig. 2(a) wi€h01, and discuss their prop-
erties. First, we numerically determine the discrete plausible mode numb&N andl from the constraint (27). TheR, ,
p ;s ;m andw all follow from their de nitions. This example is indicative of the general features of linearly unstable modes
in heterogeneous reaction-diffusion systems; the restriction to an example with modes of the form given by (23b) is just fi
clarity of presentation, and our qualitative observations generalize. Speci cally, unstable r&giaisch are composed of
many disjoint intervals will in general have a wide variety of unstable modes across the domain, but the analysis in any su
complicated setting will essentially reduce to the structures found here.

In this particular example there are 19 unstable WKBJ eigenmodes on the branch corresponﬂiramdnlS on the branch
corresponding tay , all of which follow from computing from (27) as shown in Fig. 5(a). Note that the right-most value of
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n (here shown as a continuous interpolation) correspontis#d), i.e. the boundary ofy , and that indeed the rst unstable
WKBJ mode (on the negative branch in this particular example) appears near this boundary as predicted due to the small va
of e. We depict four of these modes from each branch in Fig. 6, noting that they each have a support which increases with
We also see in Fig. 5(a) how the growth rate is related to the discrete valngaraf how the support of a corresponding mode
changes with its growth rate in Fig. 5(b). Fig. 5 directly evidences the predictions from Propositions 8 and the results in SI
Section S3, as we see the support of distinct modes decrease with incteabBinglly we remark that the vectpr in Equation

(11) (computed numerically) is negative in its rst component, and positive in its second (as expected for a cross-kinetic syste
like Schnakenberg), and both components are essentially constant in space, varying by less than 1% of their magnitude ac
the domain.

V. DISCUSSION

We have analyzed two-component heterogeneous reaction-diffusion systems in order to justify tHeasd ofing condi-
tions which are commonly employed in the literature, and given a deeper insight into how heterogeneity changes the structure
patterned states. Using a WKBJ ansatz, we have showiottaltconditions are valid, provided that the heterogeneity is slowly
varying. Additionally, we demonstrated that these unstable modes are supported in distinct regions of the domain with differe
growth rates, and that this leads to the commonly-observed amplitude variations reported in the lit€hégusein contrast to
the homogeneous case, where the pattern would normally envelop the whole space (see Fijeridiustrated our analytical
predictions using a simple model in Section IV. Much more complicated heterogeneities and reaction-diffusion systems, su
as those explored in [28] were also used to verify the analytical predictions in more complicated cases, suchlgsswigen
longer a single interval. Nevertheless, the instability criteria work well for suitably smsalth that the heterogeneity does not
vary faster thait©(1=e). While we can enumerate the unstable modes and compute their growth rates, we remark that there is
obvious generalization of wavelength or frequency in this setting; unstable modes, and fully developed patterns, tend to exh
large varying oscillations throughout a heterogeneous region of space.

Alongside generalizing the classical Turing conditions to the case of spatially heterogeneous systems, our analysis sugg
several further questions to pursue. We have assumed that the local steady state is stable in the absence of diffusion throug
the domain, but it may be possible that diffusion could in &abilizethe solution of a heterogeneous reaction-diffusion system
which is locally unstable (in the absence of diffusion) in only part of its domain, leading to a patterned state. Additionally, it i
known that rapidly varying heterogeneities can substantially impact the ability of a reaction-diffusion system to admit pattern
and the qualitative features that such patterns exhibit [36, 41], and this remains to be explored within the present framewo
Finally, while the results in SI Section S3 allow us to conjecture about the envelope of solutions via the growth rate of distin
unstable modes, these remarks have not been rigorously justi ed. Demonstrating properties of these envelopes mathematic
would require extending the framework of weakly nonlinear analysis [3, 62—65] to the heterogeneous setting, and is beyond |
scope of this paper.

In addition to these mathematical extensions, one could apply these results directly to biological patterning situations, st
as successive patterning due to reaction-diffusion mechanisms on different timescales, or to the combination of theories
positional information and reaction-diffusion (see Fig. 1). Originally, the well-known Gierer-Meinhardt model developed in
[66] contained a spatial heterogeneity representing a precursor pattern from a previous pattern forming event. Such a situa
could be directly captured by considering distinct reaction-diffusion processes occurring at different time points in developmet
or on different temporal and spatial scales. Alternatively, one can posit a positional information framework as the originatic
of spatial structure, such as in delineating different patterning elds from one another, and let reaction-diffusion theory produc
additional periodic patterning within this heterogeneous domain, as suggested in [6]. hence this paper presents a rst step tow
theoretically understanding the evolution of one pattern into another, but much more work must be done linking to experimen
studies to justify such a theory of morphogenesis.

While the WKBJ-based approach we have employed is potentially extendable to multi-species or multi-dimensional systen
the calculations become increasingly complicated. Real chemical and biological systems are composed of many different che
ical species, and few developmental phenomena are faithfully captured by a single spatial dimension. Additionally, we reme
that our analysis presented in Sl Section S2 only shows that continuous modes can be de ned across singularities at leading
der, though fully resolving the boundary-layer structure across these singularities is beyond our present scope. Nevertheless
results we have presented here will remain valid even with such re nements. We also anticipate that these results are indica
of Turing instabilities in heterogeneous systems in higher dimensions, or with three or more species. Speci cally, spatial regio
which satisfy local Turing conditions should admit patterned solutions (distinct from the ambient heterogeneity) if these regiot
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are suf ciently large, and the spatial heterogeneity is suf ciently smooth. Preliminary numerical investigations in two and thres
dimensions suggest this is true, and a valuable extension given the biological motivations for the theory. The framework pi
sented here is a rst step in understanding how one patterned state arises from another, and in elucidating the more nuanced
that reaction and diffusion play in development and analogous systems with heterogeneous instabilities. As Turing said, thot
under different circumstances [67], “We can only see a short distance ahead, but we can see plenty there that needs to be dc
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Supplementary Information
S1. REDERIVATION OF TURING INSTABILITY WITH SPATIAL HOMOGENEITY.

The standard derivation of the Turing conditions in the homogeneous setting with Neumann boundary conditions conside
the separable Fourier solution

w L exp(l t) cogkx); (S.1)

with wave numbelk, and nds the associated growth rate, The conditions for a Turing instability then arise from the
requirement that:

(i) there is stability whetk = 0, indicating a stable steady state without diffusion,
(i) arange otk 6 0 generates an instability, at least providkagp is a non-zero integer within this range.

In the heterogeneous case, the conditions associated with stability in the absence of diffusion are derived analogously to
homogeneous case. However, for instability, the Fourier solutions do not decouple and we seek an alternative approach. |
ceeding, we rstly summarise the calculation of the homogeneous Turing conditions, where the fundamental equation arisi
from the substitution of (S.1) into (3) is given by

defe®k®D J+11]= defe’k®D J;]1= 0; (S.2)
where we denotd, = J | I. This condition is equivalent to
de{ D 1J, + %3] = O

Hence, givere and the wave numbés, we can determine the growth rdte For a perturbation to grow we require values®f
andl such that

Rel )>0; for k= n?p?> 0; (S.3)

with n a non-zero integer, subject to Equation (S.2). Instead of following the normal approach where vketovagsure
A(l) > 0, we can instead varly to deduce conditions under which requirik§to be real and positive implies the normal
Turing conditions. The relationship betwelerandk? is computed from the dispersion relation (S.2).

Non-real growth rates. Permissible values d are real and positive, or else we could not sati€fy n’p? for an integer
né 0. Thus, we can exclude cases whef&? is not strictly real. We also neglect cases wher¢l Be< 0 as we are only
interested in instability. However we have

tr(e’k’D J)=[fy+ gy ek(1+d)] <O (S.4)

for permissiblek?, given that the homogeneous steady state is stable, so(that tf,+ gy < 0. We also have from (S.2) that
satis es,

q
| = tr(e®k®D J)  [tr(ek2D J)]2 4defe2k2D JJ: (S.5)

Hence, ifl is non-real, its real part is negative as follows from (S.4)-(S.5). Thus, without loss of generality, we can conside
reall , as complex growth solutions with permitted wave numbers, if they exist, are stable.
Real growth rates. Recalling the notatioBg = D 1J, the transition to instability occurs whén= 0, whence

q
! wBo)  [(Bo)? 4detBo) ; (S.6)

e2k2 -

NI

where the two roote?k? are the eigenvalues &,. Therefore, to generate an inhomogeneous instability consistent with the
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stability of the zero mode (conditions (4)) we require

q
tr(Bo) [tr(Bo)]2 4de(Bg) > O: (S.7)

There are two roots fae?k? andthese are the eigenvaluesRy. If both are negative, there is no permissible valu&?pfind
thus there is no instability. If the smaller eigenvalue is negative and the larger is positive, then from the shape and behaviour
Re(l ) as a function 0&82k?, one must have Re) = | > 0fore?k? = 0. However, this possibility will be excluded as we require
the mode associated wik= 0 to be stable. Thus we require that inequality (S.7) holds in order to generate an inhomogeneou
instability consistent with the stability of the zero mode. In analogy to the standard derivation of the Turing condition, the
requirement that=p is a non-zero integer is only consideregosteriori From the conditions for the stability of the zero mode,
(4), we have that dél) > 0, and hence déb 1J) > 0. The remaining conditions for an inhomogeneous instability are then

tr(D J)>0; [tr(D Y)]®> 4de(D 1) > 0; (S.8)

which are equivalent to the standard Turing conditions (5) given in Criterion (1).

S2. SINGULARITIES OF WKBJ MODES

Here we show properties of the solution near internal singular points in detail, denoting such a poinfkany singular
point, wheres'p = 0, the expression fa@y, (10), becomes ill-de ned, and hence we examine the structure of the solution near
such a singular point.

With J, denotingJ; (x ) and similarlyB, = B (x ), we focus on the case wheifdr) < 0, de{J ) > O, tr(B, ) > O which is
the case of interest as this will be the boundar¥,ofsee Proposition 4). Further, the zerdtofB, )]> 4de(B, ) is generically
a simple one ax = x , as a non-simple zero would require mathematical ne-tuning in the model and parameter choices fol
smooth kinetic functions. Then for xed6 x withs'p 6 0in(x ;y), the integral

Zys RO
x S()Tp (X

has a singularity which scales witkjk  x j™* asx! x .

exp

Proposition 9 Letl be a non-negative real growth rate. We assunié ) < 0, detJ ) > 0, andtr(B, ) > O with J, denoting
J; (x ). Additionally, we assume that the zero[w{B, )]> 4de(B,)) is a simple one at x x . Then with xed y6 x the
integral

£vs (R P°R)
x S(X) p (¥

has a singularity which scales wittjx x j%™asx! x.

exp

Proof. By (19) we have

m ()= (B, );

which is a double root at= x , so we have,
0 fu | f !
u m v [ 1
[M)+D1=@ g, g I A} (1 m) T m 2
d a M

fugu= O: (S.9)

o

With sign choices that are without loss of generality, we compute

1 f . 2 1=2
p(x):RT, f, |Vm ; Ro= f2+jf, | rr”2 :
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with

1 . . Qu 2 . 2 2
s(¥=5 o=dfy I m ; Re= = +ijfu | mj
Rs d
We will needR, O(1) nearx= x , and so must show th&,(x ) 6 0. We proceed by contradiction and assume Ryat 0 at
x=x.Thenf, | m =0= f,. Sothereforef,>1 > 0, but we have déd ) = f,gy> Oand t(J )= f,+ gy < O, which
cannot be simultaneously satis ed, and hence we must Rg\& 0 atx = x . An analogous proof also shows tH&{6 0 at
X=X,
Lettingx= x + X withjXj 1, and de ning

a = % [tr(B, ]2 4de(B; )

X=X
we have from equation (19) that near x

tr(By) j a Xj'?+0O(X) aX>0 _ P 1 jaXj*¥?+0(X) aX>0

tr(B,) ija; Xj*2+O(X) a;X<0 *5 ; (S.10)

1
m &= 3 5 ja Xj12+ O(X) a X< 0

wheremO = tr(B, ) is constant irX. We do not consider the degenerate casa of 0 as this corresponds to a non-simple root
ofde{[ m (x)1+D 1J,]) atx= x . From this expansion, we have (denoting derivatives with respetas® fx)

8 9
2 A L 60) ax>02
(P)= 5. X i ' : (5.11)

. >
— + O(1 X< 0
O~ (1) a

Specialising in the rst instance to the cageX > 0, and on notingf, = f, + O(jXj); fy = f, + O(X]) nearx= x , while
Rp=Ro(x) O(1); Ry= Rs(x) O(1), the contraction o$ (x) andp (x) yields

. 11 2
s(¥) p (X = RoRs dfvgu"'(fu I m) ) .
1 ~ |
= f, | ja; Xj*2+ O(jXj
s(x) p(x) RR(1+ 00X ™) (fy P iay Xj (iXj)
1 s .
RTRs(f“ I nf)jay Xj2+ O(X)); asX! O
Further, on differentiating (x), one nds
0
0 o(1
1 f R f 1
Ox)= — v _P v = _— 1=2 A _P :
PR W m R I om Car s A TERTOM g0

Contracting withs (X) yields

s () P’ =

f, | nf Z21:2+0(1) Eozs(x)p(x)z 1 f, | nf a7'1=2+o(1);

1
AR,Rs ARLRs

on noting that

1=2
o &7 i spm® OjXi*2; asx! o
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Hence

SM P - L ik (S.12)

s P 4X]
and the above calculations hold for arbitrary 6 0 and thus equation (S.12) also holds &rX < 0: In turn, we have for
X=X+ X,X>0,

Qx +X) o DX XS () P

Qo(1) 1 s p

and the same scaling holds f8r< O: =

On approaching such a singular point solutions and their derivatives become unbounded and the asymptotic assumption:s
inherent in the WKBJ approximation (that the diffusion term is subleading), breaks down. In contrast, the second derivative
such solutions near  x will scale with I5jx  x j%*, and hence the transport term is no longer asymptotically small when
ix xj €®° Hence boundary layers are present aroundHowever, the interior boundary layer problem is not tractable
analytically, and thus we only consider the outer WKBJ solutions. Nonetheless, we require boundedness of the outer solutic
on approaching the boundary layer, otherwise such solutions will be arbitrarily large for suf cientlyesmalturn the outer
regionisvalid foix xj e*® e%® where the WKBJ solution scales withjx x j*™* 1=e1®! ¥ ase! 0. Solution
boundedness requires the expression in (11) to take the form of a sin function near the singubar, poithta cos function is
used at a zero- ux boundary.

z Z,

1 1 _ 1

X = - 4 - -
dx = exp Y ax 4K X) @) & x)= dx O X

S3. RELATIONSHIP BETWEEN n AND | AND THE SUPPORT OF NON-TRIVIAL WKBJ MODES
Here we show that decreases witn* in the positive branch of WKBJ solutions, and outline how the negative branch
behaves.
Proposition 10 The value of the non-negative growth ratelecreases with*nfor the positive branch of WKBJ solutions.

Proof. We proceed by differentiating the fundamental constraint (16) with respectto nd
2 3

q— qa—— Zp)
1 )4pX) m(b(t)) &) m (& )+ wdﬁ =p
a) 2 m (¥

e> 0 (S.13)

By Proposition 8 we have thaf{l ) 0 andb¥l ) 0, which implies that the rst two terms of (S.13) are together negative
and we must only check the sign of the third term. For the positive branch, this term is negative by the proof of Proposition 5,
)i nf' < 0, hence, for this branch we must hav¥n*) < 0. m

Any non-trivial WKBJ solution has a support (in space) demarcated by singular po{htén )) =: x (I ) or the domain
boundaries. Therefore the support of thie-th mode also decreases (or remains the same) as increased, due to the
monotonicity ofT; . We can conclude th& (,+) shrinks with increasing®, and that the largest permissibie will correspond
to the smallest value df and the largest spatial support, whereas the smaifestill have the smallest support, but largest
growth rate.

For the negative branah , the calculation in the proof of Proposition 10 reveals that a competition between two terms of
different signs takes place, and the overall picture is more complicated. First, note that if there is no singular point within tf
domain[0; 1] for a range of , then the rst two boundary terms of (S.13) vanish and the last term was shown to be positive via
the proof in Proposition 5 fom . Hence, in this scenarid, would increase with increasing . In the case when there is an
internal singular point, we know that decreases with increasihg Additionally, near the maximal permissillle the support
of the fastest growing mode is very small and becomes a strict subfgtlpf Further, for such maximal admissille both
n = 1lasm (x) is a continuous function ih and inx 2 [a; b] including the boundaries, while we know th&at is monotonic in
| . Hence, the left hand side of equation (27) is arbitrarily small and as a resultl for the largest admissible. Therefore,
close to this maximal valué, has to decrease with . Finally, as all the terms determining the sigrl &n ) have a xed sign,
we know that there is at most one extremunt ¢fi ), which then completes the picture for the negative branch.

In Fig. S1 we show the support of each discrete mode alongside its corresponding growth rate for both solution branch
We highlight regions corresponding to the four modes of each branch given in Fig. 6. We note in particular that the faste
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@) (b)

FIG. S1: The “structure” of a patterned state linear analysis showing the intervals where a given WKBJ solution from the positive branc
((a), solid lines) and from the negative branch ((b), dashed lines) will dominate. The discreteness of the steps is highlighted together with
value of growth raté . For each mode we plot an opaque rectangle with the horizontal side being the support of the mode,i.e. the interv:
(x (I (n ));1), while the vertical side is the value of the growth rate for a given niode ). Note that the highlighted rectangles in colors
correspond to the modes depicted in Fig 6. Hence, there are subintervals where many modes exist. The envelope ofl thalaegetsten

forms then the topmost black line at the boundary, which we conjecture to have a relation to the amplitude envelope of emerging patterr
solutions.

growing mode in any given spatial region is the mode which is highest in any given region in Fig. S1, and hence this chang
as each subsequent mode becomes permissible (i.e. moving left to right each new mode has a largel yalderafe we
conjecture that if all modes are approximately excited by the same amount, then the envelope of unstable modes should s
with the fastest growing mode locally, which is qualitatively observed in Fig. 4. Additionally, in the homogeneous setting, clos
to a supercritical bifurcation any patterned state should have an amplitude which scalegaitéd to a power, and hence this
provides an intuition for the nal small-amplitude patterns observed in Figs. 2-3, as again the envelope of the oscillations shot
scale withl . However, we do not formally deduce a relationship between the envelope of the nal patterned stateamith
instead leave this as future work.
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