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ABSTRACT
We present complicated dust structures within multiple regions of the candidate su-
pernova remnant (SNR) the `Tornado' (G357.7� 0.1) using observations withSpitzer
and Herschel. We use Point Process Mapping,ppmap, to investigate the distribution
of dust in the Tornado at a resolution of 800compared to the native telescope beams
of 5� 3600. We �nd complex dust structures at multiple temperatures withi n both the
head and the tail of the Tornado, ranging from 15 to 60 K. Cool dust in the head forms
a shell, with some overlap with the radio emission, which envelopes warm dust at the
X-ray peak. Akin to the terrestrial sandy whirlwinds known as `Dust Devils', we �nd
a large mass dust contained within the Tornado.We derive a total dust mass for the
Tornado head of 16.7M � , assuming a dust absorption coe�cient of k300=0.56m2kg� 1,
which can be explained by interstellar material swept up by a SNR expanding in a
dense region. The X-ray, infra-red, and radio emission from the Tornadohead indicate
that this is a SNR. The origin of the tail is more unclear although we propose that
there is an X-ray binary embedded in the SNR, the outow from which drives into
the SNR shell. This interaction forms the helical tail structure in a similar manner to
that of the SNR W50 and microquasar SS433.

Key words: ISM: supernova remnants { infrared: ISM { submillimetre: ISM { stars

1 INTRODUCTION

Known as `the Tornado', G357.7� 0.1 (MSH 17-39) is an un-
usual SNR candidate at a distance of 11.8 kpc (Frail et al.
1996), comprising a `head', `tail', and `eye' (Fig. 1). The head
appears as a shell- or ring-like feature in the radio (Shaver
et al. 1985), and a `smudge' or di�use clump with a south-
ern peak in the X-ray, with Suzaku(Sawada et al. 2011) and
Chandra (see Fig. 2 of Gaensler et al. 2003) respectively.
A larger extended radio shell/�lamentary structure exists
around the head, with an elongated tail. Finally, a com-
pact and bright radio source seen to the west of the head
at a = 17h40m 05:9s;d = � 30� 5900000(J2000) is the so-called
eye of the Tornado, which is an isolated core embedded in
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a foreground Hii region (Brogan & Goss 2003; Burton et al.
2004), unrelated to the SNR structure.

Its highly unusual structure has led to various origin
theories for the Tornado. From early days, the head of the
Tornado has been attributed to a SNR with its radio power
law index following synchrotron emission, its non-thermal
radio emission, and its strong polarisation (e.g. Milne 1979;
Shaver et al. 1985; Becker & Helfand 1985a), and later X-ray
emission power-law index (Yusef-Zadeh et al. 2003; Gaensler
et al. 2003). These properties led Gaensler et al. (2003)
to propose that the Tornado is a shell or mixed morphol-
ogy SNR, as described byRho & Petre (1998). The radio
head of the Tornado (which is brightest in the south-west
part of the `shell' with a peak in the north-west) can be
attributed to limb brightened emission due to the interac-
tion with a molecular cloud ( Gaensler et al. 2003). Indeed,

c 2017 The Authors



2 H. Chawner et al.

tail

head
eye

twin

Figure 1. 1.4 GHz VLA continuum image of the Tornado ( Bro-
gan & Goss 2003). The tail, head, and eye are indicated, as well
as the X-ray `twin' of the head, detected by Sawada et al. (2011).
Like Gaensler et al. (2003), we de�ne the head as the region from
which both X-ray and radio emission are strongly detected. T he
gold diamond indicates the location of an OH (1720 MHz) maser .

shockedH2 gas detected along the north-western edge of the
head (Lazendic et al. 2004) and the presence of multiple OH
masers (Frail et al. 1996; Hewitt et al. 2008 ) both support
this scenario. Unshocked CO emission is found from a cloud
to the north-west slightly o�set from shocked H2, suggesting
that there is a dense molecular cloud (nH � 104 � 106cm� 3)
which could decelerate the shock wave on this side (Lazen-
dic et al. 2004). However, it is di�cult to explain the shape
of the large �lamentary structures in the tail (Fig. 2) with
a mixed morphology SNR. In this scenario, the X-ray emis-
sion from the head (detected with Chandra) originates from
the SNR interior, i.e. interior to the limb brightened radio
shell (Gaensler et al. 2003). Outside the head region, Shaver
et al. (1985) suggests that the partial helical/cylindrical ra-
dio �laments could be the result of an equatorial supernova
outburst, or the SN exploded at the edge of dense circum-
stellar shell (Gaensler et al. 2003) or a pre-existing spiral
magnetic �eld structure ( Stewart et al. 1994).

Another explanation is that the helical tail is a struc-
ture originating from jets from an X-ray binary, as seen in
the SNR W50 (Shaver et al. 1985; Helfand & Becker 1985;
Stewart et al. 1994). In that system, over the course of 20 kyr
and several episodes of activity, precessing relativistic jets of
the X-ray binary SS443 have shaped the SNR within which
it is found (e.g. Begelman et al. 1980; Goodall et al. 2011).
This has resulted in a huge nebula (208 pc across) which has
a circular radio shell (with a 45 pc radius) from the expand-
ing SNR, and lobes extending to 121.5 and 86.5 pc to the
east and west respectively formed by outows. Radio ob-
servations of the Tornado show some symmetry, with ared
ends and a narrower central region (Caswell et al. 1989),
and Sawada et al. (2011) suggested the presence of an X-ray
`twin' to the head at the far end. This has lead to the the-
ory that the Tornado is an X-ray binary, with a powering
source near to the centre of the radio structure, and bipolar

jets which interact with ISM at either end, forming the head
and its `twin'.

However, a compact object powering the Tornado sys-
tem has not yet been detected (Gaensler et al. 2003), though
Sawada et al. (2011) argued that a central powering source
with an active past may now be in a quiescent state and is
too faint to detect in X-ray emission. Another proposed idea
is that the Tornado is a pulsar wind nebula powered by a
high-velocity pulsar ( Shull et al. 1989), however, the spec-
tral slope required to explain the X-ray emission is too steep
(Gaensler et al. 2003). Currently, the origin of the highly un-
usual shaping observed in the Tornado is still under debate.

SNRs are considered to play an important role in the
dust processes in the ISM, by creating freshly formed ejecta
dust and destroying pre-existing interstellar dust. Indeed,
dust thermal emission is widely detected in SNRs in the
mid- and far-infrared regime ( Dunne et al. 2003; Williams
et al. 2006; Rho et al. 2008; Barlow et al. 2010; Matsuura
et al. 2011; Temim et al. 2012; Gomez et al. 2012; De Looze
et al. 2017; Temim et al. 2017; Rho et al. 2018; Chawner
et al. 2019; De Looze et al. 2019). As SNRs plough through
surrounding interstellar dust clouds, they form a shell-like
structure, whereas ejected material is found in a compact
emission source in the center of the system (Barlow et al.
2010; Indebetouw et al. 2014). Using MIR to FIR images of
the region from the Spitzer Space Telescope(Werner et al.
2004) and the Herschel Space Observatory(Pilbratt et al.
2010), Chawner et al. (2020) reported the discovery of ther-
mal emission from dust in the head and tail of the Tornado
(see Section2). This paper examines the unusual morphol-
ogy of dust emission in the SNR candidate, the Tornado.

2 THE INFRARED VIEW OF THE TORNADO

2.1 Observations

The Herscheldata used to discover dust emission in The Tor-
nado is from the HiGal survey ( Molinari et al. 2010 , 2016)
covering 360� in longitude and j b j� 1 and includes data
from 70 { 500 mm. Data processing is described in detail in
Molinari et al. (2016) and pipeline-reduced and calibration
corrected �ts �les are available to the community via the na-
tive HIPE reduction pipeline. Zero-point calibrations for the
Herschel SPIRE observations were already applied prior to
data acquisition. The Herschel PACS zero-point o�sets were
corrected by comparing the observations to synthetic obser-
vations produced from the Planck foreground maps (Planck
Collaboration 2016), and the 100 mm IRAS IRIS data 1. This
method is similar to that described in e.g. Bernard et al.
(2010); Lombardi et al. (2014); Abreu-Vicente et al. (2016).
Spitzer 24mm data was available via the IRSA archive. The
MIR-submm images of the Tornado are presented in Fig. 2
(and Fig. B1), with the well known features marked with a
magenta circle (the head), arrows (the tail) and a gold cir-
cle (the Hii region, the eye). The tail is brightest in two
prong-like structures east of the head.

1 The zero-point corrections adopted for the G357.7-0.1 regi on
are: 66.1 MJy =sr and 454.1 MJy =sr for 70 mm and 160 mm respec-
tively.
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Figure 2. G357.7� 0.1, The Tornado at FIR, radio, and X-ray - top left: Herschel three colour image made by combining the 70 (blue),
160 (green) and 250 mm (red) images, top middle: Herschel 70 mm image, top right: Spitzer MIPS 24 mm image, bottom left: 1.4 GHz VLA
image, bottom middle: XMM-Newton X-ray image smoothed to 0.5 00pixels (kindly provided by B. Gaensler et al. private commun ication),
and bottom right: Suzaku 1.5 { 3.0 keV X-ray smoothed continuum image. The white conto urs show the radio emission (1.4 GHz VLA)
and the cyan contours show X-ray emission ( XMM-Newton ). We detect dust emission across all Herschel wavebands from the `head' of
the Tornado, within the pink circle. We also detect FIR emiss ion from the `tail' of the Tornado, and from a fainter �lament extending
around the head, as indicated by the arrows. The gold diamond indicates the location of an OH (1720 MHz) maser. (For the sin gle
wavelength panels we use the cubehelix colour scheme, Green (2011).)

Fig. 2 also compares the IR images with other physi-
cal tracers. We make use of the 1.4 GHz VLA radio image
(with spatial resolution of 1400� 1100, Brogan & Goss 2003)
and X-ray data from the EPIC camera on board XMM-
Newton(kindly provided by B. Gaensler et al. private com-
munication), with an energy range 0.15-15 keV and spatial
resolution of 600. As the source was only weakly detected in
the EPIC MOS detector, here we present data from the PN
detector only. We use XMM-Newton rather than Chandra as
we are only interested in the comparison of structures rather
than absolute ux or spectral variations. Furthermore, the
di�use source concentrated at the south of the head previ-
ously detected with Chandra (Gaensler et al. 2003) is very
faint and requires signi�cant smoothing to bring out the sig-
nal; XMM-Newton may ultimately be more sensitive to dif-
fuse emission given its coarse angular resolution compared
to Chandra. X-ray observations from Suzaku(Sawada et al.
2011) suggest faint di�use X-ray emission across the head of
the Tornado, in closer agreement to the structures observed
in the XMM-Newton image (Fig. 2). We note that the distri-

bution of X-rays as seen in the XMM-Newton image suggest
a shell-like X-ray structure with some emission in the south
which may lie interior to the shell (i.e. potentially originat -
ing from ejecta; see also the peak in the smoothedChandra
image of Gaensler et al. 2003).

2.2 Comparison of Tracers

Although this region is confused by dust in the interstellar
medium (ISM) in the FIR, we detect clear emission from
dust at the location of the head and tail of the SNR in all
Herschel wavebands, as shown in Fig.2 and Fig. B1, though
the poorer resolution at 350 and 500mm makes it more dif-
�cult to distinguish the emission from unrelated structure
along the line of sight. At 70 and 160 mm, the shell-like
structure is clearly seen in the head, and correlates spatially
with the radio and overlaps with X-ray. This is also con-
�rmed in the Spitzer 24mm image (Fig. 2). The brightest
peak in the mid- and far-infrared (MIR and FIR) (to the
north and north-west) is opposite to that seen in the radio

MNRAS 000 , 1{ 13 (2017)
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emission, and is located towards the OH (1720 MHz) maser,
where shock-heatedH2 is also bright ( Lazendic et al. 2004).
This dust feature appears con�ned within the radio con-
tours, and is signi�cantly brighter than the ambient dust
seen further north-west where the interacting IS cloud is lo-
cated (as traced by molecular CO emission; Lazendic et al.
2004) so there is no doubt that this is associated with the
emission structures responsible for the radio and X-ray (i.e.
shocked gas). The fainter southern peak in the X-ray emis-
sion correlates with two radio peaks, and the bright X-ray
feature to the west coincides with the brightest 24 mm emis-
sion and fainter radio.

Outside of the head, we detect warm dust in the unre-
lated Hii region. We also detect faint 70 mm emission that
appears to correspond to one of the large radio �laments ex-
tending around the eastern side of the head. Dust emission
from the tail is also seen at 24 { 160mm. Similar to the head,
we see evidence of an anti-correlation between the radio and
FIR in the tail, the FIR correlates with the upper, fainter
of the two radio prongs, indicated by an arrow in Fig. 2.
At longer Herschel wavelengths, we see a bright structure
at the eastern end of the tail which may be associated with
the Tornado, although this is di�cult to distinguish from
interstellar dust due to the level of confusion in this region.
We do not discuss this source further.

3 INVESTIGATING THE DUST STRUCTURES
IN THE TORNADO

In the previous Section, we discussed the presence of dust in
the SNR G357.7-0.1, `the Tornado' (Fig. 2). Here we investi-
gate the dust properties in this source further using the point
process mapping technique,ppmap. This technique produces
maps of di�erential dust column density for a grid of temper-
atures (Marsh et al. 2015, 2017). Observations are taken at
their native resolution, avoiding data loss through degrad-
ing to a common angular scale, and are deconvolved with
circularly average instrument beam pro�les, using the point
spread function information, to achieve maps of dust mass
at a high resolution. Finely sampled colour corrections, de-
rived from the Spitzer MIPS and HerschelPACS and SPIRE
response functions, are applied to the model uxes, as a func-
tion of temperature and wavelength.

The ppmap procedure is described in full in Marsh et al.
(2015, 2017) and its application to investigating the dust
properties in pulsar wind nebulae can be found in Chawner
et al. (2019). In brief, ppmap uses an iterative procedure
based on Bayes' theorem to estimate a density distribution
of mass in the state space(x; y; T; b) where x and y are
spatial co-ordinates, T is the dust temperature and b is the
dust emissivity index (the power law slope that characterises
how the dust opacity varies with wavelength). Throughout
the procedure, ppmap acts in the direction of minimising the
reduced c 2, derived from the sums of squares of deviations
between the observed and model pixel values over each local
region, after dividing by the number of degrees of freedom.
These are estimated by comparing the estimated properties
of each tile with a modi�ed black-body model of the form:

Fl =
MdustBl (T)kl

D2 ; (1)

where Fl is the ux at a given wavelength, Mdust is the
mass of dust,Bn(T) is the Planck function at temperature T,
kl is the dust mass absorption coe�cient, and D is the dis-
tance to the source, which is � 12 kpc in this case. The vari-
ation of kl at di�erent wavelengths depends on the value of
b as kl = kl 0

(l =l 0)� b . We adopt k300= 0:56m2kg� 1 (James
et al. 2002) in the ppmap analysis.

The process is applied to a multi-band map �eld to es-
timate the column density over a range of temperatures.
ppmap provides additional information over the standard
modi�ed blackbody technique used to derive dust masses be-
cause it (i) does not assume a single dust temperature along
the line of sight through each pixel, (ii) uses point spread
function information to create column density maps with-
out needing to smooth data to a common resolution, and
(iii) although it �rst makes the assumption that the dust is
optically thin, it can check this retrospectively. ppmap re-
quires an estimate of the noise levels for each band which
describes the pixel-to-pixel variation. Here, this was derived
from background subtracted Spitzer and Herschel images us-
ing the standard deviation of pixels within apertures placed
in quiet regions (minimal variation in foreground emission)
near the source. This gives noise estimates of 2.18, 5.47,
11.87, 4.10, 1.72, and 0.48 MJy sr� 1 for the 24, 70, 160, 250,
350, and 500mm bands respectively, which are assumed to
be uniform across the entire map.

3.1 Applying ppmap to the Tornado

We initially selected 12 temperature bins centred at tem-
peratures equally spaced in log(T) ranging from 20 to 90 K
(guided by our previous analysis of SNRs in C19), we as-
sumed a �xed value for the dust emissivity index, b = 2,
which is typical for silicate ISM dust ( Planck Collaboration
XXXI 2016 ). If we were to assume a carbonaceous dust with
b of 1.0 to 1.5 the estimated dust temperatures would likely
be higher. As we did not �nd any related dust at the loca-
tion of the head in any temperature bins > 70 K, we re-ran
the grid for temperatures ranging from 15 to 70 K.

In our �rst runs of ppmap, we found that the itera-
tive procedure did not converge to sensible �ts (veri�ed by
checking the ppmap c 2 statistic in each band), even with
hundreds of thousands of iterations. This was due to ppmap
attempting, and failing, to converge to a solution for the
bright point sources, presumably stars with temperatures
much higher than 90 K, in the 24 mm image (and to a lesser
extent in the 70 mm image). To resolve this, we masked the
bright point sources near the Tornado (replacing their pixels
with a local average level in the image) and we arti�cially
increased the noise for the 24mm map by a factor of 10; this
e�ectively stops ppmap from trying to over-�t the 24 mm
band and down-weights the importance of the 24 mm in the
iterative procedure. This may act to slightly reduce any dust
temperatures �t by ppmap, though in practice we found that
it did not a�ect our results.

The Tornado is in a highly confused region due to its lo-
cation close to the Galactic centre (Fig. 2). To determine the
e�ect of any potential contamination from unrelated dust
along the line of sight, we ran our ppmap grid (the original
20 { 90 K run) on the Tornado without any background sub-
traction, and then again, after accounting for background
emission. In the former scenario, the results indicate that

MNRAS 000 , 1{ 13 (2017)
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dust structures exist in the head of the Tornado at tem-
peratures of 20-23 K with a warmer dust component in the
north-western part of the head at 26 K, where the source
is believed to be interacting with a molecular cloud ( Frail
et al. 1996; Lazendic et al. 2004; Hewitt et al. 2008 ). These
cold dust temperatures are very similar to general interstel-
lar dust, and the narrow range of temperatures suggest this
region is contaminated by unrelated background emission.

For ppmap to converge in a reasonable time we must
subtract the background from the maps. First we mask
bright, unrelated sources as above, as well as the Tornado
head and tail, and several high signal-to-noise regions to
avoid overestimating the background. The images are then
convolved with a 100 00FWHM Gaussian pro�le, providing
background maps smoothed to a scale comparable to the
Tornado head. The background maps are subtracted from
the original zero-point calibrated maps (with the two bright
sources masked). Running ppmap with the resulting maps
gives reduced-c 2 values of 0.3, 2.0, 11.0, 9.0, 4.0, and 128.0
for 24, 70, 160, 250, 350, and 500mm2 We �nd that the
overall level of the background-subtracted images is nega-
tive, implying the method of background subtraction used is
too aggressive. To account for this, we took the background-
subtracted maps, estimated the mean negative o�set for the
whole region at each waveband (again masking the Tornado)
and added this back on to the image in an attempt to bring
the maps back to a zero level. Hereafter we call this the
zero mean background-subtracted method. Running these
images through ppmap the resulting dust temperatures and
components are markedly di�erent to the non-background-
subtracted case: dust structures are observed at a wider
range of temperatures (from 20 - 60 K) with the north-
western dust feature peaking at 30 K. The background sub-
traction has resulted in the dust components in the head be-
ing attributed to warmer dust, as expected. Note that these
warmer dust components agree with the dust structures that
peak in the original Herschel maps peaking at 70mm. The
resulting ppmap reducedc 2 values are 0.6, 2.2, 6.9, 11.7, 22.5
and 37.6 suggesting the overall �t is formally better than the
previous case. The high c 2 values for the longer wavebands
are most likely due to underestimating the s value, because
small scale ISM variations cannot be captured by a large
beam, although increasing the noise level constrainsppmap
less, giving more unreliable results across all bands.

The above tests suggest that ppmap is sensitive to
whether the background di�use interstellar level is sub-
tracted from the maps or not, particularly important in this
case due to the high level of confusion in this region. To
try and qualitatively discriminate between the tests, we cre-
ated synthetic MIR-FIR observations based on the ppmap
outputs for the three scenarios above, and compared them
to the original Spitzer and Herschel images. In each case,
the original dust emission features seen in the head of the
Tornado were recovered well in the synthetic ppmap MIR-
FIR images. The zero mean background-subtracted method

2 These are average reduced-c 2 estimated for the entire map at
the end of the ppmap run. As such they can be greatly inuenced
by variations in noise across the map, as well as regions whic h are
not �t well, including edges (which are sampled less frequen tly
throughout the ppmap procedure) and areas which may be opti-
cally thick or have a temperature outside of the given range.

provided the closest match to the original features (see Ap-
pendix A), recovering the complex dust emission structures
observed within the head (see the following Section for more
information). We therefore use the ppmap results based on
this method from now on.

Finally we note that synchrotron emission in SNRs can
be a signi�cant contributor to the FIR ux ( Dunne et al.
2003; De Looze et al. 2017; Chawner et al. 2019). As this
typically varies as a power law with ux Sn µ n� a where a is
the spectral index, we can directly estimate the contribution
of synchrotron emission to our FIR bands. Prior to running
ppmap we subtract the synchrotron contribution which is
estimated by extrapolating from the ux we measure from
the 1.4 GHz VLA image ( Becker & Helfand 1985b; Green
2004), assuming a = � 0:63 for the head (Law et al. 2008).
We �nd that the synchrotron contribution to the SNR head
is in the range of only 0.03 { 2.06 per cent of the total ux for
our MIR{FIR wavebands in the head, as measured on the
original Herschel maps3, where both are measured within
an aperture centred at a = 17h40m 12:4s;d = � 30� 58031:100

with a 7900radius. We can therefore be con�dent that we
are observing the thermal emission from dust with negligible
contribution from synchrotron emission in the head.

However, the spectral index does atten in the tail re-
gion with spectral slope varying from � 0:50 < a < � 0:33
(Law et al. 2008) indicating that the tail electrons are more
energetic than in the head. We therefore caution that there
could be a higher contribution of synchrotron emission in
the tail.

3.2 Results

The grid of dust mass in each temperature bin for the Tor-
nado is shown in Fig. 3 assuming a distance of 12 kpc (Bro-
gan & Goss 2003). Fig. 4 shows a four colour FIR image
created by combining the masses in the temperature slices
at 20, 30, 40, and 61 K, and Fig. 5 shows the total dust mass
distribution across the Tornado head. They reveal dust fea-
tures observed in the Herschel images, but at a resolution of
� 800compared to the native telescope beams of5� 3600.

A temperature gradient is evident in both the head and
tail. Cool, dense dust is found towards the north-eastern
head at the location of a radio �lament which extends from
the head towards the northern extent of the object. The
�laments outside of the head were lost in background sub-
traction, but this suggests that they could also contain cool ,
dense dust. Slightly warmer material (23 { 30 K) forms a
bubble around the edge of the head and around the larger
X-ray peak. In Fig. 5 we �nd that the majority of the dust

3 we note that this calculation may underestimate the syn-
chrotron contribution to the IR uxes since our integrated  ux
for the total SNR (head and tail) derived from the 1.4 GHz radi o
image using an aperture a = 17h 40m 29s;d = � 30� 5800000with a
80 radius, gives 80 and 70 per cent of the ux derived from the
single dish measurements of Green (2004) and Law et al. (2008)
respectively (scaled to the same frequency). This may, in pa rt,
explain the larger c 2 value at 500 mm. However taking the single
dish measurements would produce a maximum synchrotron con-
tribution of 3 per cent. Indeed the biggest source of contami nation
in the MIR-FIR aperture measurements is the background leve l.
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Figure 3. ppmap generated maps of di�erential dust mass split in
di�erent temperature ranges for the Tornado. The correspon ding
dust temperature is indicated in the bottom-left of each pan el.

mass follows this bubble shape, with a relative lack of mate-
rial in the central region. Warm material (35 { 40 K) �lls the
central region, coincident with both the large X-ray peak
and the warmest dust that we observe (53 { 61 K). It seems
that the hot gas which emits the X-ray emission is heating
the central region of the head, where we see warm, low den-
sity material. We �nd a large mass of 26 { 30 K dust towards
the north west where interactions with a molecular cloud
may be heating the dust, as well as at the same location as
the smaller region of bright X-ray emission in the south east.
A �lament of 35 { 46 K material sits along the eastern edge
of the head, with a warm 53 K peak towards the middle,
�lling the radio contours at this location, as seen in Fig. 4.
In the tail we �nd a large mass of cool, 15 { 20 K dust to the
east, as well as slightly warmer, 23 { 30 K material which ex-
tends further north. The temperature increases towards the
west, as 35 { 40 K dust �ll the eastern and central contours
with dense regions at the radio peaks, and 46 K material
is found further west. There is some evidence of warm dust
(40 { 46 K) at the X-ray and radio peak to the east of the tail,
although much of this area is lost to background subtraction
as it is a similar level to the surrounding ISM.

The spectral energy distribution of the head of the Tor-
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Figure 4. ppmap-generated four colour map of dust mass in
the Tornado created using dust temperature slices from Fig. 3.
Colours show dust at 20 K (blue), 30 K (cyan), 40 K (gold), and
61 K (red). Overlaid contours are from the VLA 1.4 GHz (grey)
and XMM-Newton (pink) images. The magenta dashed circle in-
dicates the location of the head of the remnant, and is also th e
aperture used to derive the dust mass. The gold dash-dotted c ircle
is the location of the eye of the Tornado (unrelated H ii region).

Figure 5. The dust mass within the Tornado head integrated
across all temperature slices of Fig. 3, with VLA 1.4 GHz contours
(grey) overlaid.

nado is shown in Fig. 6, broken down into the di�erent tem-
perature components revealed byppmap. We derive the total
dust mass in the head of the Tornado by summing the mass
within the magenta circle shown in Fig. 4 across the tem-
perature grids. This gives a total dust mass for the Tornado
head of 16.7 M� for a dust mass absorption coe�cient at
300 mm of k300 = 0.56m2kg� 1 (James et al. 2002). If we only
sum the contribution from dust structures with T d> 17 K we
obtain a dust mass of 14.8 M� , and 4.0 M� of mass originates
from dust hotter than 30K.
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Figure 6. The total thermal MIR-FIR SED estimated from the
ppmap results of the head of the Tornado, within the magenta
circle in Fig. 4, indicating how the di�erent temperature compo-
nents shown in Fig. 3 contribute to the thermal emission observed
in the source.

Figure 7. Tornado head and tail region at 70 mm. The shapes
indicate regions from which we detect FIR emission and withi n
which we compare the ux ratios in Figs. 9 and 10. These are
the Tornado head (blue circle), north-western head (green d ashed
ellipse, south eastern head (pink dashed ellipse), Tornado tail
(gold dashed ellipse), and the Tornado eye (white dash-dott ed
circle).

4 DUST GRAIN PROPERTIES

In previous investigations both Sawada et al. (2011) and
Gaensler et al. (2003) detected thermal X-ray emission from
the head of the Tornado. This led Gaensler et al. (2003)
to suggest that the head is a mixed-morphology SNR, cen-
trally �lled with thermal X-ray emission from shocked gas.
In Figs. 3 and 4 we �nd that the warmest dust ( � 60 K)
is at the location of the XMM-Newton X-ray peak, thus we
investigate whether the dust in the head is likely to be col-
lisionally heated by hot, shocked gas.

We calculate grain temperatures and corresponding
emissivities for grain sizes between 0.001 { 1mm using DI-
NAMO ( Priestley et al. 2019), a dust heating code which
takes into account temperature uctuations of small grains.
We assume the dust is heated by gas with the proper-

Figure 8. Best-�t dust SEDs for the Tornado head assuming
that dust is collisionally heated by hot gas in the top two pan els,
and radiatively heated in the bottom panel. We use DINAMO
(Priestley et al. 2019 ) to �t to the ux within the head aper-
ture in Fig. 7, assuming the gas properties estimated by ( Sawada
et al. 2011). Although we can �t the SED well to the measured
FIR uxes with a collisional heating model and carbon grains ,
this requires a highly unusual grain size distribution. It i s more
likely that the majority of the dust within the Tornado head i s
radiatively heated, with a small proportion of collisional ly heated
dust.

ties measured by Sawada et al. (2011) (kT = 0:73 keV and
ne = 0:49 cm� 3), and use optical properties for either BE
amorphous carbon (Zubko et al. 1996) or MgSiO 3 grains
(Dorschner et al. 1995). The corresponding opacities at
300 mm (b) are 0.79 m2g� 1 and 0.32 m2g� 1 (1.5 and 1.7)
respectively. The minimum equilibrium grain temperature,
for micron-sized grains of either composition, is � 30 K, so
no set of grain properties result in an emissivity resembling
a 20 { 30 K blackbody, as indicated by PPMAP.

Following the method used in ( Priestley et al. 2020), we
�t the IR SED to background-subtracted uxes within the
blue head aperture in Fig. 7 using a combination of single-
grain SEDs for radii of 0.001, 0.01, 0.1 and 1 mm with the
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number of grains (or equivalently the dust mass) of each size
as the free parameters. If we exclude 1mm grains, we are
unable to �t the FIR uxes. For carbon grains, shown in the
top panel of Fig. 8, even 0.1mm grains have a 24/70 mm ra-
tio which is larger than the observed value, while at longer
wavelengths the discrepancy becomes even more extreme.
Silicate grains have the same issue, to a slightly greater ex-
tent. With 1 mm radius grains included, we are able to re-
produce the SED well at all wavelengths. We include IRAC
uxes (which may have signi�cant non-SN dust contamina-
tion) as upper limits, in order to better constrain the num-
ber of transiently heated small grains, and �nd best-�t dust
masses of 8.1 M� for carbon grains and 17.3 M� for silicates.
The best-�t SEDs are shown in Fig. 8.

In order to �t the FIR uxes, both carbon and sili-
cate grains require the vast majority ( � 99 per cent) of the
dust mass to be in micron-sized grains, while also requiring
0.05 { 0.06 M� of small grains with a � 0.01 mm to repro-
duce the 24 mm emission. The mass of intermediate-sized
grains with radius 0.1 mm is strongly constrained to be be-
low 10� 4 M � , where they have a negligible contribution to
the total SED. This distribution of grain sizes is highly un-
usual, both for the high mass fraction of micron-sized dust
- the Mathis et al. (1977) power law does not extend to
1 mm and even if extended results in only � 30 per cent of
the mass in the largest grains - and the `bimodal' distri-
bution of small and large grains. Additionally, assuming a
gas to dust ratio of 100, a dust mass of � 10 M� implies a
gas mass of� 1000 M� , much larger than that indicated by
the X-ray emission (M gas= 23 M� , Sawada et al. 2011). We
consider it more probable that the assumption of all grains
being heated by the X-ray emitting gas is wrong. The syn-
chrotron radiation generated by the shocked gas will heat
nearby grains, both in the unshocked ISM and in any lo-
cal over-densities which survive the blast wave, potentially
resulting in a population of grains at lower temperatures.

While fully investigating the potential range of spec-
tral shapes and intensities is beyond the scope of this paper,
we can approximate it by scaling the Mathis et al. (1983)
radiation �eld by a constant factor G. Assuming that the ra-
diatively heated dust follows an MRN size distribution, we
are able to �t the SED without the addition of micron-sized
grains for G = 5 for carbon and 10 for silicates. The best-�t
SEDs, shown in Fig. 8, require 9.1 M� and 0.33 M� of radia-
tively and collisionally heated dust respectively for carbon
grains. The size distribution of the collisionally heated dus t
is also reasonable, with the majority of the mass at 0.1 mm
and a negligible fraction of 0.001 mm grains, as would be
expected from an initial size distribution a�ected by sput-
tering ( Dwek et al. 1996). For silicates, the radiatively and
collisionally heated dust masses are 35.7 and 0.76 M� respec-
tively. We note that these dust masses are not authoratative
- di�erences in the assumed grain properties, size distribu-
tion and radiation �eld could cause signi�cant variation in
the best-�t masses. However, it is clear that a moderately-
enhanced radiation �eld in the vicinity of the Tornado, com-
bined with a small mass of dust in the shocked plasma, can
explain the observed IR SED without any additional as-
sumptions. Our G = 6 carbon model has a total cold dust
luminosity of 2.6 � 1037erg s� 1 which can be explained by ra-
diatively heating via synchrotron radiation from the shock
wave given a = � 0:63 (Law et al. 2008). We consider this

explanation much more reasonable than invoking an arbi-
trary, and somewhat unphysical, size distribution for the
dust in the hot plasma. Investigations of the IR-X-ray ux
ratio may give a more detailed description of the processes
within the Tornado head, as shown for other SNRs by Koo
et al. (2016), although possible absorption by dense gas and
molecular material in the vicinity makes this complicated.

In Section 3.2 we estimated that the head of the Tor-
nado contains a large dust mass of 16.7 M� . This is unex-
pected for the mass within a SNR. However, if the Tornado
head is a SNR, it will have swept up a large mass of dust
from the ISM through expansion. Assuming a simple relation
where the swept up mass is equal to4

3pR3r , with a standard
ISM density for cool, dense regions ofr = 10� 21 kg m� 3, this
gives a mass of� 5:26M � . As the ISM in this region is ex-
pected to be relatively dense, the swept up mass will likely be
larger than this; assuming a gas density of 104 cm� 3 (Lazen-
dic et al. 2004) and dust-to-gas ratio of 100, the total swept
up dust mass could be as large as� 250 M� . Therefore, the
dust mass of the Tornado head can be explained by material
which has been swept up by an expanding SNR.

5 THE NATURE OF THE TORNADO

The nature of the Tornado is unclear as it has many confus-
ing characteristics, with suggested candidates including an
X-ray binary, a SNR, and H ii region. In Section 3 we revealed
that the Tornado contains large masses of dust, similar to
the sandy whirlwind `Dust Devils' on Earth. In this section
we explore whether the FIR emission from our own Dust
Devil can give us any insight into its nature. We further ex-
amine the IR, radio, and X-ray emission to determine if it
can shine any light on the di�erent origin scenarios.

5.1 Properties of the Tornado

First we study the emission colours to understand the prop-
erties of the regions from which we detect dust and how they
vary across its features. Within the head, we split our anal-
ysis into two main regions of interest, as indicated by the
green and magenta ellipses in Fig.7 respectively: the north-
west (NW), where we identi�ed warm dust with ppmap and
where the head is thought to be interacting with a molec-
ular cloud ( Frail et al. 1996; Lazendic et al. 2004; Hewitt
et al. 2008), and the south-east (SE), where there is a radio
peak. Our PPMAP analysis in Section 3 gives estimates for
the dust mass within each of these regions as� 3:3M� and
� 2:1M� for the NW and SE respectively.

IR { radio ux ratios have been used in previous stud-
ies to identify SNRs, distinguishing from H ii regions (e.g.
Whiteoak & Green 1996). The thermally dominated emis-
sion from Hii regions, with some free-free emission in the
radio, gives an IR-radio ratio of > 500, in contrast SNRs
are dominated by synchrotron at radio frequencies and have
a considerably smaller IR ux, giving an IR - radio ratio of
6 50 (Haslam & Osborne 1987; Furst et al. 1987; Broadbent
et al. 1989).

In order to examine the dust emission properties of the
various FIR regions of the Tornado, we follow the analysis of
Pinheiro Goncalves et al. (2011) and compare IR and radio
colours, including I70mm=I21cm, I24mm=I21cm, I8mm=I24mm and
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Figure 9. Flux ratio of individual pixels and integrated ux within th e Tornado head, eye, and tail (within the circled regions in F ig. 7),
in comparison with other SNRs and H ii regions. Pixels with very low signal have been removed, where the sign al divided by the subtracted
background is < 0.1. The uxes for the NW and SE head, and the tail are measured from the regions indicated in Fig. 7. The text labels
are centred on the integrated ux for the Tornado head and eye , and previously studied SNRs, estimated by De Looze et al. (Cas A and
Crab; 2017, 2019) and Chawner et al. (G11.2, G21.5, G29.7 and G351.2; 2019, 2020). The grey dashed-dotted lines indicate ratios of 50
and 500, used in previous studies as diagnostics of SNRs and H ii regions. The majority of the Tornado head and tail pixels fal l within
the SNR region, and are clearly di�erent to the pixels within the eye, which sits very close to the H ii region area of the colour space.
All regions of the Tornado are found towards the upper right o f the SNR regions, suggestive of an older remnant. There is a n oticeable
variation in the ux ratio of the NW and SE regions of the head.

I70mm=I24mm, for pixels within the Tornado (Figs. 9 and 10),
where pixels are convolved to the lowest resolution data. For
comparison we include the integrated ux of the head, the
dusty region in the tail (see Fig. 7), the eye, and previously
studied SNRs (in Figs. 9 and 10 the SNR and region names
are centred on the respective ux ratios, unless indicated by
an arrow).

In Fig. 9 we �nd that the IR colours for the majority
of the Tornado head pixels fall within the colour space for a
SNR, and are well distinguished from the pixels within the
`eye' of the Tornado, which is a con�rmed H ii region with an
embedded protostellar source (Burton et al. 2004). This sug-
gests that the Tornado head is part of a SNR, rather than a
Hii region. Several Galactic SNRs from Pinheiro Goncalves
et al. (2011) are observed to have high IR-radio ux ra-
tios, two of which would be classi�ed as H ii regions by this
test ( IIR=Iradio > 500: G21.5� 0.1 and G23.6+ 0.3, IIR=Iradio >
50: G10.5+ 0.0, G14.3+ 0.1, G18.6� 0.2, and G20.4+ 0.1). Of
these sourcesAnderson et al. (2017) suggested that three
were misidenti�ed H ii regions (G20.4, G21.5, and G23.6),
which we have labelled in Figs. 9 and 10.

As shown in Fig. 10, Pinheiro Goncalves et al. (2011)
found di�erent trends for H ii regions and SNRs when com-
paring their IR colours. In this colour space, we �nd that

the Tornado falls more in line with the H ii region trend.
However, SNRs and Hii regions inhabit much of the same
colour space in Figs.9 and 10 and there are other well known
SNRs, including W49B, 3C391, and G349.7� 0.2, which also
lie along the Hii region trend. The variation seen in these
individual SNRs from the main SNR trend could instead be
due to a di�erence in dust properties such as temperature
or emissivity, possible caused by interactions with molecular
clouds.

It is possible to use the IR and IR { radio colours, as
in Figs. 9 and 10, to determine some of the SNR proper-
ties. Older SNRs tend to have higher IR { radio colours (e.g.
Arendt 1989), placing them towards the upper-right of the
SNR colour space in Fig,9. Additionally, Pinheiro Goncalves
et al. (2011) found some correlation between the IR colours
in Fig. 10 and the SNR age, suggesting that older remnants
have higher 70 { 24mm and 8 { 24 mm ux ratios. Thus, both
the FIR { radio and the IR colours suggest that, if it is a
SNR, the Tornado is an older remnant which has likely swept
up a large mass of dust from the ISM. Pinheiro Goncalves
et al. (2011) also suggested that the IR colours could give
some insight into the SNR emission process. They found
tentative evidence that the upper right region of the colour
space in Fig.10 tends to be populated by objects with molec-
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Figure 10. Flux ratio of individual pixels within the head, eye, and tai l of the Tornado (within the circled regions in Fig. 7), in
comparison with other SNRs and H ii region. Pixels with very low signal have been removed, where the sign al divided by the subtracted
background is < 0.1. The uxes for the NW and SE head, and the tail are measured from the regions indicated in Fig. 7. The text labels
are centred on the integrated ux for the Tornado head and eye , and previously studied SNRs, estimated by De Looze et al. (Cas A
and Crab; 2017, 2019) and Chawner et al. (G11.2, G21.5, G29.7 and G351.2; 2019, 2020). We also include ratios for SNRs with known
molecular interactions, atomic �ne-structure emission, a nd PDRs from Pinheiro Goncalves et al. (2011). The purple dashed and the grey
dash-dotted lines indicate SNR and H ii region trends respectively, found by Pinheiro Goncalves et al. (2011). SNRs populate a wider
area in this colour space and several Pinheiro Goncalves et al. (2011) SNR measurements lie along the H ii region trend, including those
highlighted in pink text. The grey dotted lines show the ux r atios expected from a thermal source with b = 2 and the temperature
indicated. The Tornado is found towards the upper right of th is colour space, suggestive of an older remnant. It is also fo und in a region
populated mainly by SNRs with molecular interactions.

ular shock and photodissociation regions (PDRs), although
they admit that this is not a secure correlation given the
small sample and that the 8, 24, and 70 mm bands may con-
tain both dust emission and lines. We �nd that the IR ux
ratios of the NW region of the Tornado Head suggests molec-
ular emission, whereas the SE region is largely undetected
at 8 mm. Given that the head is thought to be interacting
with a molecular cloud in the NW this supports the relation
between the 70 mm { 24 mm and 8 mm { 24 mm ux ratios
and emission type.

In all of the colour plots we �nd that the NW and SE
regions (Fig.7) of the head are distinct and must have dif-
ferent emission processes. Fig.9 shows a higher FIR { radio
ux ratio in the NW region, suggesting an increased amount
of thermal emission in the same area in which we see warm
dust in Fig. 3; this dust may be heated through an interac-
tion on this side.

5.2 What the Devil is it?

Gaensler et al. (2003) found that the X-ray emission from
the head can be well explained by thermal models, rather
than synchrotron emission, with a gas temperature of kT �

0:6keV, arising from the interior of a limb-brightened radio
SNR. Indeed, in Fig. 4 we �nd that the warmest dust is
coincident with X-ray emission in the central region where
hot gas may be heating the dust, as expected for a mixed-
morphology SNR (Rho & Petre 1998; Yusef-Zadeh et al.
2003). Sawada et al. (2011) estimated an X-ray temperature
of 0.73 keV for the head. Using an X-ray temperature of 0.73
keV (T = 8.6 where T is in a unit of 10 6 K) and assuming that
the Tornado nebula is an SNR, we estimate a shock velocity
(V s) and age (t) of the SNR using the radius of only the
head and both the head and tail (1.30 and 5.40). The shock
velocity is 884 km/s based on Vs = ( T6=11:)(0:5) � 1000kms� 1

(Winkler, P. Frank & Clark 1974 ). The age of the SNR (t =
2=5Rs=Vs) is therefore between 2000 and 8000 yr.

The bizarre shape of the tail is more di�cult to explain
with a SNR scenario. Gaensler et al. (2003) suggested the
tail could be explained by a progenitor star moving across
the space whilst losing mass, which then exploded as a SN
at the edge of circumstellar material (CSM; Brighenti &
D'Ercole 1994). A similar scenario has been suggested for the
SNR VRO 42.05.01 (G166.0+ 4.3, Derlopa et al. 2020) which
is much larger than the Tornado but morphologically re-
sembles the Tornado head and surrounding �laments. When
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a progenitor star moves in the relatively higher density in-
terstellar medium (ISM), the stellar motion could cause a
bow shock at the site of interaction between CSM and ISM.
Bow shocks have been detected in the red-supergiantsa Ori
and m Cep (Noriega-Crespo et al. 1997; Martin et al. 2007 ;
Ueta et al. 2008; Cox et al. 2012). In the former, the bow
shock has a wide opening angle, whereas the latter has a
narrow-angle cylinder-type bow shock. The cylinder shape
of the Tornado's tail could therefore be explained by CSM-
ISM interaction. However, the CSM from red-supergiants
does not emit synchrotron emission, so that the radio emis-
sion observed in the Tornado's tail would require additional
energy by the SN-CSM interaction. This requires the SN
explosion itself to be highly elongated with very fast blast
winds towards the east by more than by a factor of 10 to the
west, which is unlikely and not supported by the hydrody-
namic model (Brighenti & D'Ercole 1994 ). Instead of syn-
chrotron, the radio tail emission could be free-free; however,
in that case, there should be some major heating and an ob-
vious ionising source in the tail, which we do not see in the
Spitzer 24 mm image (Fig. 2). Instead of a red-supergiant,
the progenitor star could be a Wolf Rayet (WR) star, which
has ionised gas in the CSM, and hence can emit free-free
emission at radio wavelengths. However, the lifetime of a
WR star is too short to form such a large scale structure
while the star is moving in the local space. The typical life-
time of a WR star is 10 { 36 kyrs ( Meynet & Maeder 2003,
2005). At a distance of 12 kpc, the furthest �lament (cen-
tred at approximately a = 17h40m 43:8s;d = � 30� 55044:900) is
� 25pc from the centre of the Tornado head. This requires
a progenitor to move through the ISM at speeds of approx-
imately 1,000 km s� 1. Though not impossible, such a high
speed motion is unlikely. It is therefore di�cult to explain
the Tornado's tail with past mass loss from a SN (SN-CSM
interaction).

Although the X-ray and radio emission from the head
can be explained by thermal and synchrotron radiation from
a SNR, the presence of an X-ray binary within the SNR
would explain the length and the morphology of the tail in
radio emission (Helfand & Becker 1985; Stewart et al. 1994).
Stewart et al. (1994) detected a spiral magnetic �eld around
both the head and tail which they proposed could be ex-
plained by outows from the central source dragging existing
�elds along the precession cone. In this instance, thermal X-
ray emission at the location of the head is expected to arise
from interactions between the jets and surrounding nebula,
similar to that seen in the X-ray binary SS433 surrounded
by a SNR W50 (Brinkmann et al. 1996 ; Sa�-Harb & •Ogel-
man 1997). The radio power law index of the central part of
W50 is found to be typical for SNR ( a � 0.58) (Dubner et al.
1998), while a hydrodynamic model shows that episodic jets
from an X-ray binary containing a black hole compresses the
SNR shell, forming a cylinder/helical shaped outow in one
direction ( Goodall et al. 2011).

If the Tornado is formed by a binary system, the loca-
tion of its source is controversial. In the case of the W50 {
SS433 system, the high mass X-ray binary is located in the
SNR, following which would place the Tornado binary within
the head. However,Sawada et al.(2011) suggested that there
is a Suzaku 1.5 { 3.0 keV band detection of a `twin' source,
opposite to where X-ray emission is already detected in the
Tornado head. They propose that this originates from the

interaction between the second jet of an X-ray binary system
and a molecular cloud, placing any potential binary system
source at the middle of the structure seen in Fig. 2, rather
than in the head. In this case, one might expect visible emis-
sion in the IR/FIR wavelengths at the location of the `twin'
due to shocked gas/heated dust arising from jet interaction
with the ISM. In the 24 mm and the Herschel bands there
is emission towards the south-west of this region which cor-
relates with radio structures in the tail. However, we do not
see any clear evidence for an IR counterpart of the `twin'; in
all Spitzer and Herschel maps the ux at the location of the
Suzakupeak is at a similar level to, or lower than, that of the
surrounding area (see Fig.B2). There is some X-ray emis-
sion in the XMM-Newton and Chandra data at the location
of the `twin', although the emission does not seem correlated.
However, the X-ray emission may be a�ected by foreground
absorption, which makes association di�cult to determine,
and the region may peak in the 1.5 { 3.0 keV Suzaku band,
with much lower emission of softer X-ray, making compari-
son between multiple bands complicated.

As there does seem to be X-ray and radio emission at
the location of the `twin' it is plausible that there is an objec t
in this region, which may be associated with the Tornado as
suggested bySawada et al. (2011). However, if there is emis-
sion from such an object in any of the Spitzer or Herschel
bands, it is very faint and is not detected above the level
of the ISM in this region (Fig. B2). This is unlike the head,
from which there is a clear detection in the 5.8 { 500 mm
bands, as well as a very bright radio structure (Fig. B1). It
seems strange that their IR pro�les are so di�erent if the two
regions have been formed by a similar process, although we
cannot exclude this as a possibility. If the X-ray `twin' head
is unrelated to the Tornado, it is plausible that the location
of an X-ray binary, if any, could be within the head of the
Tornado as discussed above.

Although the IR-radio emission supports a SNR ori-
gin for the Tornado head, we see no clear indication that
the X-ray emission from the head results from an interac-
tion between X-ray binary jets and the surrounding nebula.
However, the helical shape of the tail, and the presence of its
magnetic �eld and synchrotron radiation, can be explained
by a jet ploughing into a SNR shell, as observed in W50.
Although there is no detection of a central powering source,
there are cases in which the central X-ray binary may be
too faint to detect at a distance of 12 kpc. Gaensler et al.
(2003) suggest that this would be the case for a high-mass
X-ray binary such as LS 5039 (Paredes et al. 2000), from
which the luminosity may vary with orbital phase and its
minimum is slightly higher than the upper limit for detec-
tion of a Tornado central source. It could also be the case
that the Tornado is powered by a low mass X-ray binary in
a quiescent state, having produced the observed features in
a past period of prolonged activity ( Sawada et al. 2011), as
seen in 4U 1755{338 (Angelini & White 2003 ).

6 CONCLUSION

We detect FIR emission from dust in the unusual SNR candi-
date the Tornado (G357.7� 0.1), akin to the terrestrial sandy
whirlwinds known as `Dust Devils'. We investigate the distri-
bution of dust in the Tornado using Point Process Mapping,
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ppmap. Similar to that found in the radio emission, we �nd
a complex morphology of dust structures at multiple tem-
peratures within both the head and the tail of the Tornado,
ranging from 20 { 60 K. In the head of the Tornado, we �nd
warm dust in the region at which the object is thought to be
interacting with a molecular cloud. We also �nd a �lament
along the SE edge coinciding with radio emission, and a cool
dusty shell encapsulating hot dust near to the location of an
X-ray peak. We derive a total dust mass for the head of the
Tornado of 16.7 M� , and we �nd that the majority of the
dust is most likely heated radiatively, with a small propor-
tion of collisionally heated dust. When considering whether
the Tornado may be a SNR, we �nd that it is aged between
2000 and 8000 yrs and it is plausible that the estimated dust
mass originates from material swept up from the ISM.

The origin of the Tornado is still unclear. We do not �nd
clear evidence of a FIR counterpart to the Tornado `twin'
detected by Sawada et al. (2011), which was suggested to
be the other end of an X-ray binary system. The FIR-radio
colours in the Tornado head are consistent with a SNR origin
for this structure, yet the tail is not easily explained via just
the SN or a SN-CSM interaction. The tail can be explained
via jets from an X-ray binary source within the nebula, sim-
ilar to the W50 SNR. One useful way to distinguish between
the several hypotheses put forward by various authors would
be to measure the velocity of the gas motion in the tail, if it
emits in near-infrared Br a or [Fe II] for example.
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APPENDIX A: SYNTHETIC OBSERVATIONS
WITH ppmap

In order to try to quantitatively distinguish between the out-
puts based on di�erent runs of ppmap with di�erent assump-
tions (and in particular using di�erent estimates of back-
ground subtraction) we produced synthetic observations.
These were created from the output dust column density
maps at a range of temperatures and then reversing the
physical steps ppmap uses to produce maps of ux at each
wavelength, ultimately regridding the pixels and smoothing
back to the resolution of the original data. This also al-
lows us to independently check no artefacts are introduced
in ppmap since these would be obvious in the synthetic im-
ages. Fig. A1 shows a comparison of the synthetic images
from ppmap versus the original data for the zero-mean-
background-subtracted case. Here we see a close agreement
with the dust structures and components seen in the head
of the Tornado in the original data in all wavebands.

APPENDIX B: THE X-RAY TWIN OF THE
HEAD

This paper has been typeset from a T EX/LATEX �le prepared by
the author.
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Figure A1. A grid comparing the original Spitzer and Herschel
observations of the Tornado ( left ) with the synthetic observa-
tions ( right ) created by taking the results from ppmap and post-
processing them.
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Figure B1. IR, radio, and X-ray view of the location of the Tornado head. Left column: Herschel images, middle column: Spitzer
images, right top: 1.4 GHz VLA image, right second row: XMM-Newton X-ray image, right third row: Chandra X-ray image, and right
bottom: Suzaku 1.5 { 4.0 keV X-ray image. We note that we have not applied a bac kground subtraction or correction for vignetting as
was done by Sawada et al. (2011). The white and cyan contours show the VLA 1.4 GHz and XMM-Newton emission respectively. There
is a clear detection of emission from the head at the Spitzer and Herschel wavebands, between 5.8 and 250 mm, at 3.6, 350, and 500 mm
there is emission which seems associated although it is more confused. There is a clear detection in all of the radio and X- ray images.
(We use the cubehelix colour scheme, Green (2011).)
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Figure B2. IR, radio, and X-ray view of the location of the X-ray twin, de tected by Sawada et al. (2011), the scale is increased
compared with the image in Fig 2 to enhance any features in the region. Left column: Herschel images, middle column: Spitzer images,
right top: 1.4 GHz VLA image, right second row: XMM-Newton X-ray image, right third row: Chandra X-ray image, and right bottom:
Suzaku 1.5 { 4.0 keV X-ray image. We note that we have not applied a bac kground subtraction or correction for vignetting as was don e by
Sawada et al. (2011). The white contours show the VLA 1.4 GHz emission. In all Herschel and IRAC bands the ux level at the location
of the twin is similar to, or lower than, that of the surroundi ng ISM. In all other bands there is some emission, although th e morphology
is not consistent with the Suzaku features, and at 24 mm this is fainter than much of the surrounding ISM. (We use the cubehelix colour
scheme, Green (2011).)
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