Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Upper limits from counting experiments with multiple pipelines

Sutton, Patrick J. 2009. Upper limits from counting experiments with multiple pipelines. Classical and Quantum Gravity 26 (24) , 245007. 10.1088/0264-9381/26/24/245007

[img]
Preview
PDF
Download (523kB) | Preview

Abstract

In counting experiments, one can set an upper limit on the rate of a Poisson process based on a count of the number of events observed due to the process. In some experiments, one makes several counts of the number of events, using different instruments, different event detection algorithms or observations over multiple time intervals. We demonstrate how to generalize the classical frequentist upper limit calculation to the case where multiple counts of events are made over one or more time intervals using several (not necessarily independent) procedures. We show how different choices of the rank ordering of possible outcomes in the space of counts correspond to applying different levels of significance to the various measurements. We propose an ordering that is matched to the sensitivity of the different measurement procedures and show that in typical cases it gives stronger upper limits than other choices. As an example, we show how this method can be applied to searches for gravitational-wave bursts, where multiple burst-detection algorithms analyse the same data set, and demonstrate how a single combined upper limit can be set on the gravitational-wave burst rate.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Physics and Astronomy
Subjects: Q Science > QB Astronomy
Publisher: Institute of Physics
ISSN: 0264-9381
Last Modified: 18 Oct 2018 01:31
URI: http://orca.cf.ac.uk/id/eprint/19693

Citation Data

Cited 8 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics