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Gravitational waves from coalescing compact binaries are one of the most promising sources for

detectors such as LIGO, Virgo, and GEO600. If the components of the binary possess significant angular

momentum (spin), as is likely to be the case if one component is a black hole, spin-induced precession of a

binary’s orbital plane causes modulation of the gravitational-wave amplitude and phase. If the templates

used in a matched-filter search do not accurately model these effects then the sensitivity, and hence the

detection rate, will be reduced. We investigate the ability of several search pipelines to detect gravitational

waves from compact binaries with spin. We use the post-Newtonian approximation to model the inspiral

phase of the signal and construct two new template banks using the phenomenological waveforms of

Buonanno, Chen, and Vallisneri [A. Buonanno, Y. Chen, and M. Vallisneri, Phys. Rev. D 67, 104025

(2003)]. We compare the performance of these template banks to that of banks constructed using the

stationary phase approximation to the nonspinning post-Newtonian inspiral waveform currently used by

LIGO and Virgo in the search for compact binary coalescence. We find that, at the same false alarm rate, a

search pipeline using phenomenological templates is no more effective than a pipeline which uses

nonspinning templates. We recommend the continued use of the nonspinning stationary phase template

bank until the false alarm rate associated with templates which include spin effects can be substantially

reduced.
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I. INTRODUCTION

In 2005–2007, the Laser Interferometer Gravitational-
Wave Observatory (LIGO) recorded two years of data at
design sensitivity [1] and the LIGO, Virgo [2], and
GEO600 [3] detectors now form a world-wide network
of broadband gravitational-wave observatories. The
LIGO and Virgo detectors are scheduled to resume opera-
tions in summer 2009 with a factor of �2–3 sensitivity
increase over previous observations. The gravitational
waves emitted during the inspiral and merger of binaries
containing neutron stars (NS) and/or black holes (BH) are a
primary target of this network. Binary neutron stars (BNS)
can be observed up to 35 Mpc (70 Mpc) in the Initial
(Enhanced) LIGO detectors and up to 450 Mpc in the
Advanced LIGO detectors, which will begin observations
in 2015 [4]. Binary black holes (BBH) with 10M� compo-
nents should be visible at 170 Mpc (350 Mpc) in the Initial

(Enhanced) LIGO detectors, increasing to 2 Gpc in
Advanced LIGO [4]. Population synthesis calculations
constrained by radio observations of BNS systems contain-
ing pulsars predict BNS detection rates between
10�3–1 yr�1 for Enhanced LIGO and 0:4–400 yr�1 for
Advanced LIGO, with the most likely values being
0:1 yr�1 and 40 yr�1, respectively [4–6]. Much less is
known about the detection rates of BBH and NS-BH
coalescences, although it is plausible that Enhanced
(Advanced) LIGO rates could be as high as 1ð300Þ yr�1

for NS-BH binaries and 20ð4000Þ yr�1 for BBH [4,7,8].
The sensitivities listed in the preceding paragraph are

optimal: they assume accurate knowledge of the signal
waveform in order to construct matched filters which can
extract gravitational-wave signals buried in the noisy de-
tector data [9,10]. The gravitational waveform from the
inspiral of two compact objects has been calculated using
the post-Newtonian (PN) approximation, which uses the
characteristic velocity of the binary ðv=cÞ as an expansion
parameter [11–25]. Ongoing comparisons of PN wave-
forms with numerical simulations of binary black holes
have thus far confirmed the accuracy of the PN solution in
the late stages of inspiral [26–28], although optimal
searches for sources with total mass * 30M� in the first-
generation detectors require waveforms that also model the
merger and ringdown [29,30]. If the components of the

*Chris.van-den-Broeck@astro.cf.ac.uk
†dabrown@phys.syr.edu
‡Thomas.Cokelaer@astro.cf.ac.uk, Thomas.Cokelaer@inria.fr
xIan.Harry@astro.cf.ac.uk
kGareth.Jones@astro.cf.ac.uk
{B.Sathyaprakash@astro.cf.ac.uk

**tagoshi@vega.ess.sci.osaka-u.ac.jp
††hirotaka@oberon.nagaokaut.ac.jp

PHYSICAL REVIEW D 80, 024009 (2009)

1550-7998=2009=80(2)=024009(11) 024009-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.80.024009


binary have negligible intrinsic angular momentum (spin)
then it is straightforward to construct a bank of matched
filters, parametrized by the two component masses of the
binary, and use these filters to search for signals [31–34].
However, if the components of a binary are spinning, then
these spins can couple with the orbital angular momentum
of the binary and with each other to cause amplitude and
phase modulation of the gravitational waveform [35].
Attempting to detect gravitational waves from spinning
binaries with nonspinning templates will result in a sub-
optimal search and a corresponding reduction in the detec-
tion rate [36,37]. Since it is possible that a large fraction of
astrophysical black holes have considerable spin [38,39], it
is important to consider the effect of spin in searches for
gravitational waves from BBH and NS-BH coalescences.
However, optimal filters for spinning binaries are charac-
terized by a much larger number of parameters than the
ones for nonspinning binaries, complicating placement of
filters in the bank and considerably increasing the compu-
tational cost of searches.

To mitigate the computational problem without compro-
mising the sensitivity of the search, a phenomenological
family of templates was proposed by Buonanno, Chen, and
Vallisneri [40] (we refer to these templates as BCV spin).
Filters constructed from these templates are described by
only four parameters and have good overlaps with the full
PN waveforms [40]. Moreover, constructing a bank of
filters using BCV-spin waveforms is straightforward, if
cumbersome [41,42]. The first searches for binary black
hole signals in LIGO data used nonspinning templates
[43,44], however BCV-spin templates were recently used
to search for BBH and NS-BH signals with spin in data
from the third LIGO science run [42]. The sensitivity of the
search described in [42] was not as good as the main results
of Ref. [40] might suggest. This was primarily due to the
response of the BCV-spin template to the non-Gaussian
noise transients present in real gravitational-wave detector
data and the increase in the number of degrees of freedom
associated with the detection statistic (due to the larger
search parameter space) [42]. This was already anticipated
in [40]; here we provide a quantitative analysis.

In this paper, we present an improvement to the search
pipeline described in [42], by constructing banks that are
much better suited to the BCV-spin template family. We
compare the sensitivity of this search to the search for
gravitational waves from compact binary coalescence
with nonspinning templates in LIGO data [33,34]. Our
main conclusion is that, while the BCV-spin templates
have rather good overlaps with the target waveforms, the
current search pipeline needs further improvements before
any gains from these increased overlaps can be realized.
The false alarm rate of BCV-spin filters in real detector
data is larger than that of a nonspinning search. This makes
a search using BCV-spin templates less sensitive than a
nonspinning search when looking for binaries with spin,

since one has to use a higher detection threshold to obtain
the same false alarm rate. The results of this work were
used to guide the decision not to implement the BCV-spin
search on data from the fifth LIGO science run and instead
to use nonspinning filters to search for binaries with spin
[45]. The motivation for this decision was summarized in
an appendix of Ref. [45] and this paper can be seen as a
companion to that work. Here we present a detailed ac-
count of how the BCV-spin banks were constructed, and
how the comparisons between the BCV spin and nonspin-
ning searches were performed.
This paper is organized as follows. In Sec. II we give a

description of our target signals, which are post-Newtonian
waveform models for signals from spinning black hole
binaries, followed by a summary, in Sec. III, of the phe-
nomenological BCV-spin templates of Ref. [40]. In Sec. IV
we review the construction of the template bank used in
Ref. [42] and present two new methods to construct BCV-
spin template banks, relaxing the assumptions used in
Ref. [42]: a ‘‘square-hexagonal’’ placement which general-
izes the hexagonal placement developed in [46] to a
higher-dimensional template manifold, and a stochastic
placement technique proposed in [47]. In Sec. V we com-
pute matches of these banks with target waveforms and
compare the results with those obtained from two-
dimensional template banks based on the stationary phase
approximation (SPA) [48,49] and hexagonal template
placement used in LIGO’s nonspinning searches [43–
45,50–53]. We compare the detection efficiency of the
spinning banks with that of SPA banks in Sec. VI followed
by concluding remarks in Sec. VII. Throughout this paper,
we set G ¼ c ¼ 1 unless otherwise stated.

II. POST-NEWTONIAN WAVEFORMS FROM
SPINNING BINARIES

Depending on their birth spins, BH in binaries could
accumulate significant spin through accretion [38,54].
There is much uncertainty concerning the equation of state
of a neutron star, but most models place an upper limit
J=M2 & 0:7 on the spin, above which the star would break
up [55]. There is also an upper limit for the spin of a black
hole due to torque caused by radiation from the accretion
disk getting swallowed by the BH, leading to an expected
bound of J=M2 & 0:998 [56]. Most of the modeling of spin
evolution in compact binaries has been confined to NS-BH
systems, in which case the spin tilt with respect to the
orbital angular momentum can be considerable [38,54];
this may also be the case for BBH.
PN theory has achieved great success in modeling the

adiabatic, quasicircular phase of inspiral, during which the
fractional change in the orbital frequency over each orbital
period will be negligible (see, e.g., Ref. [57] for a review).
The orbital phasing has been calculated to order ðv=cÞ7 (or
3.5PN in the usual notation) [11–18,58–63] while the
gravitational-wave amplitude for nonspinning binaries
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has been calculated to order ðv=cÞ6 [13,19,20]. The effect
of spin on the gravitational-wave phasing is known to order
ðv=cÞ5, [21–24] and to order ðv=cÞ3 for the amplitude [25].
However, since the matched filter is most sensitive to the
phase evolution of the binary, template waveform ampli-
tudes are typically computed only at leading order in

amplitude (the restricted waveform). Spin-orbit interaction
enters the phasing at 1.5PN and 2PN order and spin-spin
interaction at 2PN order. Spin effects influence the evolu-
tion of the orbital frequency as a function of time.
Including these effects, the adiabatic evolution of the orbi-
tal frequency !ðtÞ is given by1
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where L̂N is a unit vector in the direction of orbital angular
momentum (and hence the unit normal to the orbital plane
of the binary), S1;2 are the spins, �1;2 ¼ jS1;2j=m1;2 with
m1;2 the component masses, Ŝ1;2 ¼ S1;2=jS1;2j,M ¼ m1 þ
m2 is the total mass, and � ¼ m1m2=M

2 the symmetric
mass ratio. � ¼ 0:577 . . . is the Euler-Mascheroni con-
stant. The spins and the direction of the orbital angular
momentum evolve according to [22,35]
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_̂L N ¼ �ðM!Þ1=3
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_S; (4)

where S ¼ S1 þ S2. The dynamics of the binary is gov-
erned by the nonlinear, coupled differential equations (1)–
(4). It will not be possible to solve these exactly, but they
can easily be treated numerically.

By numerically evolving!ðtÞ, one can obtain the orbital
phase,

�ðtÞ ¼
Z t

!dt; (5)

which can be substituted into the usual expressions for the
restricted PN waveform polarizations [64]. In the case of
spinning binaries, we need to take into account the time
dependence of the amplitudes through the inclination of
the orbit with respect to the observer. The plus and cross

polarizations of the gravitational wave are given by

hþðtÞ ¼ �½1þ ðL̂ � n̂Þ2� cosð2�ðtÞÞ;
h�ðtÞ ¼ �2ðL̂ � n̂Þ sinð2�ðtÞÞ;

(6)

where the unit vector n̂ points from source to detector. The
detector strain is

hðtÞ ¼ FþðtÞhþðtÞ þ F�ðtÞh�ðtÞ; (7)

where Fþ;�ðtÞ ¼ Fþ;�ð�; �;�ðtÞÞ are detector antenna

factors which depend on the right ascension and declina-
tion of the source and a time-dependent polarization angle
�ðtÞ (see, e.g., Ref. [35]).
As suggested by Eq. (4), the direction of orbital angular

momentum and hence the plane of the inspiral will undergo
precession, the effect being more pronounced for asym-
metric systems. It will also be more prominent if the spins
are large, and if they are significantly misaligned with the
orbital angular momentum. The time evolution of spins
and angular momentum will affect the phasing of the
waveform through Eqs. (1)–(5), and the precession of the
orbital plane will modulate the amplitudes of the wave
polarizations in Eq. (6). The waveforms given by Eqs. (1)–
(7) will be the ‘‘target-signal waveforms’’ for testing our
template banks.

III. A DETECTION TEMPLATE FAMILY FOR
SPINNING BLACK HOLE BINARIES

The frequency-domain phenomenological detection
template family proposed in Ref. [40] is designed to cap-
ture spin-induced amplitude and frequency modulation in
an approximate way. Specifically, for gravitational-wave
frequencies f > 0, the BCV-spin template is

1At the time this work was started the spin-orbit term at 2.5PN
[23,24] was not yet known and so is not included here.
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~h½t0; �0
j�ðfÞ ¼ e2�ift0�ðfcut � fÞ

�
�X3
j¼1

ð�0
j þ i�0

jþ3ÞhjðfÞ
�
: (8)

Here t0 is the time of arrival, �ðxÞ is the usual Heaviside
step function, and fcut is an upper cutoff frequency beyond
which the waveform is unlikely to be close to a true signal
(due to breakdown of the adiabatic approximation to the
inspiral regime). The detection statistic will be maximized
analytically over the parameters �0

1; . . . ; �
0
6 in the linear

combination (8), as well as over t0; these parameters are
referred to as extrinsic parameters because they do not
need to be explicitly searched over.

The waveforms hjðfÞ, j ¼ 1; . . . ; 3 are basis templates,

which take the form

~h jðfÞ ¼ AjðfÞei�NMðfÞ; (9)

where

A1ðfÞ ¼ f�7=6; A2ðfÞ ¼ f�7=6 cosð�f�2=3Þ;
A3ðfÞ ¼ f�7=6 sinð�f�2=3Þ; (10)

and � captures the effect of spin-induced amplitude modu-
lation. The (nonmodulated) phase �NMðfÞ takes the form2

�NMðfÞ ¼ f�5=3ðc 0 þ c 3fÞ: (11)

It will not be possible to analytically maximize the detec-
tion statistic over the parameters c 0, c 3, and �, and these
must be explicitly searched over using a bank of templates;
they are referred to as intrinsic parameters.

It will often be useful to approximately identify the
intrinsic parameters with the physical masses and spins
of a compact binary. By relating c 0 and c 3 to the 0PN and
1.5PN phase coefficients [65], one has the correspondences

c 0 $ 3

128�
ð�MÞ�5=3; c 3 $ � 3�

8�
ð�MÞ�2=3:

(12)

Similarly, the parameter � can be related to the rate of
precession by [35]

� $ 256 Hz2=3
�
1þ 3m2

4m1

�
m1

m2

�
M�
M

�
2=3 jS1j

m2
1

: (13)

We stress that these mappings are only approximate, and
for a given physical signal, the detection template that
matches best may correspond to values of ðc 0; c 3; �Þ
that differ significantly from the ones suggested by the
identifications above.

The identifications (12) allow us to make a choice for
fcut. In the limit where one component mass goes to zero
while total massM remains fixed, and assuming zero spins,

the frequency of last stable orbit (LSO) of a test mass in the

Schwarzschild spacetime is given by fLSOðMÞ ¼
ð63=2�MÞ�1. For simplicity we set fcut ¼ fLSOðMÞ, where
M ¼ �c 3=ð16�2c 0Þ is computed from the correspon-
dence (12).
Next, one constructs an orthonormal basis from the basis

templates (9) with respect to the usual inner product for
waveforms a, b on the template manifold given by

ha; bi ¼ 4<
Z fcut

fs

~aðfÞ~b�ðfÞ
SnðfÞ df; (14)

where tilde denotes a quantity computed directly in the
frequency domain (as in the case of the BCV-spin tem-
plates) or the Fourier transform of a time-domain quantity
[such as the waveforms hðtÞ given in Eq. (7)]. SnðfÞ is the
one-sided power spectral density (PSD) of the detector
data, and fs is some lower cutoff frequency associated
with the detector; in the case of initial LIGO one sets fs ¼
40 Hz. The orthonormalization of the basis templates can
be effected using the Gram-Schmidt procedure as in [42].
In addition, one demands that the templates themselves are

normalized (denoted by ĥ): hĥ; ĥi ¼ 1. This leads to the
requirement

X6
j¼1

�2
j ¼ 1; (15)

where the �j, j ¼ 1; . . . ; 6, are the coefficients of ĥ when

expressed into the orthonormal basis of templates resulting
from the Gram-Schmidt procedure.
Finally, the signal-to-noise ratio (SNR), which is used as

the BCV-spin detection statistic, is given by

� ¼ ½max
t0;�j

hs; ĥ½t0; �j�i�1=2; (16)

where s represents the detector data stream, and the max-
imization over the �j is subject to the constraint (15).

IV. TEMPLATE BANKS FOR SPINNING BINARIES

The template waveforms h may not exactly model
gravitational-wave signals s. The loss in SNR due to
differences between the template and signal waveforms is
quantified by the fitting factor F [35]. If s is a signal
waveform and h a template waveform, then

F � max
ĥ

hŝ; ĥi; (17)

where the hat denotes normalization: hŝ; ŝi ¼ hĥ; ĥi ¼ 1.
1�F is the fractional loss in SNR resulting from the use
of suboptimal template waveforms rather than the true
signal waveforms. Since we do not a priori know the
intrinsic parameters of any gravitational-wave signals we
may detect, we decide on a target-signal space and con-
struct a discrete bank of templates to search for signals in

this space. If ĥb is a normalized template waveform in the2What is called c 3 here was denoted c ð3=2Þ in [40].
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discrete bank and ĥ is a normalized waveform from the
space used to construct the bank, then the minimum match
M of the bank is defined to be [31]

M � min
ĥ
ð max
ĥb2bank

hĥ; ĥbiÞ: (18)

A typical choice for the minimum match in gravitational-
wave searches is M ¼ 0:97. When measuring the per-
formance of a template bank, we are interested in the

effective fitting factor �F given by [66]

�F ¼ max
ĥb2bank

hŝ; ĥbi: (19)

If the signal waveforms are identical to those used to
construct the bank, then the effective fitting factor will be
bounded below by the minimum match. In practice, the
true gravitational-wave signals will differ from the tem-
plates used to construct the bank, so the effective fitting
factor may be smaller than the minimum match. The larger
the effective fitting factor, the better the bank is at captur-
ing the target signals.

If the parameters ~	 between two (normalized) templates

differ by a small amount� ~	, the loss in SNR can be related
to a distance defined by a metric gij given by

hĥð ~	Þ; ĥð ~	þ� ~	Þi ’ 1� gij�	
i�	j; (20)

where

gij ¼ 1

2

�
@ĥ

@	i ;
@ĥ

@	j

�
: (21)

The standard method of constructing a template bank then
consists of computing this metric in the intrinsic parameter
space of a waveform family and using it to place templates
such that the distance between any template waveform and
the nearest template in the bank is greater than the desired
minimum match M. In searches for nonspinning binaries,
the intrinsic parameters of the templates are the just com-
ponent masses ðm1; m2Þ of the binary. In practice, we
reparametrize the waveforms using the chirp times
ð
0ðm1; m2Þ; 
3ðm1; m2ÞÞ [32]. With respect to these varia-
bles the metric is almost Euclidean, and so template place-
ment using the metric gij becomes a straightforward two-

dimensional hexagonal packing problem [33].
As described in Sec. I, a search for gravitational waves

using the BCV-spin templates has been performed in S3
LIGO data [42]. The metric used in that analysis was
computed using the ‘‘strong modulation approximation’’
where one assumes that the binary precesses many times
while emitting in the most sensitive part of the detector’s
band. This allows one to treat the basis templates of Eq. (9)
as orthonormal, simplifying the calculation of the metric.
However, the resulting template banks were only appro-
priate for fairly low-mass, asymmetric systems. We now
present an improved algorithm for constructing a metric in

which the assumptions of [42] are dropped. In our case, the
parameters of the waveform are

~	 ¼ ðt0; �1; . . . ; �6; c 0; c 3; �Þ: (22)

The detection statistic can be maximized over the extrinsic
parameters t0 and �1; . . . ; �6, which, as shown in [67],

leads to a projected metric g
proj
ij which only measures

distances in the ðc 0; c 3; �Þ directions. However, the com-
ponents of gprojij will still depend on the �j. This residual

dependence on extrinsic parameters can be removed as
follows:
(1) Introduce some fiducial distance �s0.
(2) Specify a large number of unit vectors (in the coor-

dinate sense) n̂ in ðc 0; c 3; �Þ space.
(3) For each n̂, numerically maximize the metric length

�sn̂ computed from gprojij , over values of the �j

consistent with the constraint (15); i.e.,

�s2n̂ ¼ maxP
k

�2
k
¼1
g
proj
ij ð�m;�Þn̂in̂j: (23)

(4) Rescale each vector n̂ by defining a new vector �u ¼
ð�s0=�sn̂Þn̂.

(5) Fit an ellipsoid in parameter space to the vectors �u.
(6) Define an ‘‘effective’’ metric geffij by requiring that

any point on the ellipsoid is at effective metric
distance �s0 from the template we started with.

Note that this construction is independent of the fiducial
length scale �s0. In what follows, g

eff
ij is the metric we will

use to satisfy the criterion (18) through the relationship
(20). A property of geffij is that it is essentially independent

of c 0 and c 3 and only has a weak dependence on �.
It is important to note that, given a short straight line

segment in coordinate space with coordinate length � ~	, by
construction geffij associates almost the largest possible

metric length to it consistent with the family of metrics

g
proj
ij ð�j; �Þ parametrized by the �j. When generating tem-

plate banks, in practice one specifies a minimum match
which will then be used together with the metric to deter-
mine the spacing of templates. Since geffij is too conserva-

tive in assigning lengths, neighboring templates will tend
to have a larger match than needed, and the true minimum
match defined by (18) will always be significantly larger
than what was originally intended. As we shall see below,
setting an a priori value of M ¼ 0:8 will be more than
enough for a bank to obtain high overlaps ( * 0:9) with
target waveforms.
We would like to capture signals from binaries whose

component masses are in the interval ½1; 35�M�, with total
massesM 	 35M�. We do not need to worry about captur-
ing BNS signals, since spin does not have a significant
effect on waveforms from those sources. However, our
template bank should have good overlap with NS-BH

TEMPLATE BANKS TO SEARCH FOR COMPACT BINARIES . . . PHYSICAL REVIEW D 80, 024009 (2009)

024009-5



and BBH signals. Taking neutron star masses to lie be-
tween 1M� and 3M� and black hole masses to be larger
than 3M�, we imposeM 
 4M�. To capture these signals,
we want an appropriately chosen bounding box in
ðc 0; c 3; �Þ within which to place templates. Such a box
can be specified using the correspondences (12) and (13).
The suggested intervals for ðc 0; c 3Þ are then roughly

c 0 2 ½8� 103; 5� 105� Hz5=3;
c 3 2 ½�3� 103; 10� Hz2=3;

(24)

where the upper bound for c 3 has been chosen generously.

As to �, the correspondence (13) suggests that � &

150 Hz2=3 should suffice, but to have good matches with
a variety of physical signals, here too it turned out to be
better to have a larger upper bound:

� 2 ½1; 4� 102� Hz2=3: (25)

We now present two methods for constructing template
banks for BCV-spin templates which cover this space.

A. Square-hexagonal template bank

The metric geffij depends only on �, so it is natural to first

define layers of constant �, with a spacing determined by
the minimum match. Within each of the two-dimensional
layers, one can then lay out templates in a hexagonal
pattern, which is the optimal placement in two dimensions.
We will refer to this kind of placement as square hexago-
nal. The construction of this bank is analogous to that
described in Ref. [46] which was used to construct tem-
plate banks for search for binary black holes in data from
the third and fourth LIGO science runs [44] using non-
spinning phenomenological templates [68]. For the BCV-
spin templates, we have a 3-metric, which in each � layer
is diagonalized by going to a new set of coordinates
ðc 0

0; c
0
3; �

0Þ, where �0 ¼ �. After that a hexagonal place-
ment in ðc 0

0; c
0
3Þ can be performed as in [46]. As explained

above, the metric is overly conservative in specifying
distances between templates, and setting an a priori mini-
mum match of M ¼ 0:8 will suffice to obtain high
matches with target waveforms.

At this point we note that optimal coverings are known
for high dimensions and have been studied in the context of
other gravitational-wave searches by Prix [69]. For future
higher-dimensional template banks that treat spin in a more
comprehensive way than BCV spin does, a more optimal
template placement may be in order. However, for BCV
spin the number of templates will not be so high that the
efficiency of our search will be compromised by the adop-
tion of a more simple placement.

B. Stochastic template bank

We now consider a different bank placement for BCV
spin, which we hope will reduce the overcoverage of the
parameter space that is unavoidable with the square-

hexagonal placement method defined above. This will
lead to a smaller number of templates but will yield the
same or better matches with target waveforms, and similar
efficiencies. This template bank is created by the place-
ment of a large number of randomly distributed templates,
followed by a ‘‘pruning’’ stage in which unnecessary tem-
plates are discarded. This method is described in [47] and
summarized below. Other, similar methods for creating
stochastic template banks were proposed in [70,71].
The stochastic placement algorithm we wish to use for

BCV spin is very simple. We begin by generating a very
large number of points in the parameter space, far more
than would be needed to fill the space. We then iteratively
cycle through these points, retaining a point only if it is not
closer than some predefined metric distance� to the points
retained in previous iterations. The remaining points form
our stochastically generated bank. Tests have shown [47]
that one should begin with at least N1:5 points, where N
would be the number of templates remaining after filtering,
to have a good coverage of the parameter space after
pruning.
In testing this algorithm against lattice placement algo-

rithms, it was found [47] that in a two-dimensional
Cartesian space the stochastic algorithm produced a tem-
plate bank with 1.5 times the number of templates that a
square lattice algorithm would have generated. However,
in the case of a two-dimensional nonspinning (non-
Cartesian) SPA bank (as described above) the stochastic
algorithmwas found to place�10% less templates than the
square lattice algorithm and only �25% more templates
than the hexagonal lattice placement, while achieving a
similar degree of coverage. We emphasize here that this
stochastic placement algorithm would be of most use in
parameter spaces with more than two dimensions, where
lattice placement becomes significantly subobtimal.
For the specific case of BCV spin, the templates are

sprinkled randomly over a rectangular box in ðc 0; c 3; �Þ
space using the same bounding box as in the previous
subsection. An estimate for the number of templates that
will be needed is provided by the invariant volume of the
box, divided by the volume taken up by an individual
template:

N ¼
R
box

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgeffij Þ

q
dc 0dc 3d�

ð1�MÞ3=2 : (26)

Once again it will suffice to set an a priori minimum
match M ¼ 0:8 (i.e., setting the � defined above to 0.2).
Given the box in parameter space specified by (24) and
(25), the number of sprinkled templates should then be
about 500 000. When using a larger number of initial
templates, we find that the final number of templates after
pruning does not change significantly. With the Initial
LIGO design PSD, the number of templates for stochastic
BCV-spin banks with M ¼ 0:8 is about 8000; SPA banks
with M ¼ 0:95 have �12 000 templates, and for BCV
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spin with square-hexagonal placement andM ¼ 0:8more
than 16 000 templates are obtained (see Table I).

V. COMPARISON OF BCV-SPIN BANKS WITH
SPINNING PN SIGNALS

We now study the performance of our banks against the
target waveforms of Sec. II. In particular, for a variety of
target waveforms s corresponding to different masses and

initial spins, we compute the effective fitting factor �F of
the bank for the target waveforms, as given by Eq. (19).

Figure 1 compares the effective fitting factor of tem-
plates in square-hexagonal and stochastic BCV-spin banks
with those of a nonspinning SPA bank. There is no dis-
cernible difference between square-hexagonal and stochas-
tic placements, but both differ significantly from the
nonspinning SPA bank. As one would expect, the differ-
ence is largest for binaries with large mass ratios, although
there is improvement also for a variety of other target
waveform masses. Depending on masses and spins, for

the same target waveform s, the difference in �F can be
more than 25%. The medians and means for the effective
fitting factors are summarized in Table I. We find that
BCV-spin with stochastic bank placement has marginally
better effective fitting factors than the square-hexagonal
bank, and both BCV-spin banks have noticably higher
effective fitting factors than the nonspinning bank. Given
the small difference between the stochastic and square-
hexagonal BCV-spin banks we will subsequently only
consider differences between the stochastic BCV-spin
bank and the nonspinning SPA bank.

VI. SEARCH PERFORMANCE OF BCV-SPIN
TEMPLATE BANKS

The effective fitting factor of a target waveform over a
template bank as defined in Eq. (19) indicates how similar
the templates are to physical signals, but when searching
for gravitational-wave signals in real detector data, other
factors also come into play. The effective fitting factor of a
template bank gives us a measure of how the signal-to-
noise ratio is reduced by not filtering with the true signal
waveform, but to detect a signal we must be able to dis-
tinguish it from background noise in the detector. To
determine the overall performance of a template bank,
we have to consider both the effective fitting factor and
the false alarm rate of the bank, i.e., the response of the
filters to noise (both Gaussian and transient) in the detector.

Once we establish the false alarm rate of a search, we
measure the performance of a bank by its efficiency, i.e.,
the bank’s ability to find simulated target waveforms in-
jected in the noise at a given false alarm rate. We will
establish the false alarm rates and efficiencies of BCV spin
and SPA banks by means of the data-analysis pipeline used
in searches by the LIGO Scientific Collaboration (LSC) for
inspiral signals [42,44,45], which is available in the LSC
Algorithm Library [72]. More details on this pipeline can
be found in Ref. [73].

A. False alarm rates

The BCV-spin detection statistic (16) involves maximi-
zation over six parameters (t0, and the �j with the con-

straint
P

j�
2
j ¼ 1), to be compared with only two for SPA.

It should also be noted that the BCV-spin detection tem-
plate family consists of waveforms that are only approxi-
mate. As we shall see below, the larger number of degrees
of freedom will make the BCV-spin banks more prone to
detecting instrumental noise transients with high SNR.
Both for SPA and BCV spin, one needs to set an SNR
threshold below which no candidate events are accepted,
and the higher false alarm rate with BCV spin will neces-
sitate setting a higher threshold.
The pipeline used to search for gravitational-wave sig-

nals in the LIGO detectors demands that candidate events
be coincident in two or more detectors [73]. If the noise
sources in our detectors are uncorrelated (as in the case of
the two 4 km LIGO detectors), we can measure the false
alarm (or background) rate of this pipeline by time shifting
the detector data by more than the gravitational-wave
travel time between the detectors (11 ms) and looking for
coincident triggers; such triggers will be due to accidental
coincidence of noise alone. We can repeat this with time
steps of, say, 10 s, and count the number of coincident
triggers in each of the time shifts to obtain a good estimate
of the false alarm rate.
Before triggers are compared between detectors, they

are clustered together, keeping only the trigger with the
loudest SNR within a certain time window (in our case
400 ms). Next, various methods can be used for declaring
two clustered triggers to be coincident across detectors.
Usually one demands not only coincidence in time, but
also that the parameters of the template that gave the
loudest SNR be similar in the different detectors. The
simplest way of implementing this is the so-called box-

TABLE I. Number of templates for the SPA, square-hexagonal, and BCV-spin banks with Initial LIGO design PSD, and median and
mean effective fitting factors �F of the banks with target waveforms as in Fig. 1

Template Bank placement SNR threshold Minimum match M Number of templates �Fmedian
�Fmean

SPA SPA 5.5 0.95 11 832 0.89 0.86

BCV spin Square hexagonal 8 0.8 16 431 0.96 0.92

BCV spin Stochastic 8 0.8 7913 0.96 0.93
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coincidence method, whereby two triggers are considered
coincident if they occurred within a certain time from each
other (say, 100 ms), and the associated templates have
parameters that differ only within certain tolerances [73].

In the case of BCV spin, these were chosen as �c 0 ¼
40 000 Hz5=3 and �c 3 ¼ 600 Hz2=3, with no restrictions
on differences in � [42].

More recently, a more sophisticated technique was de-
veloped which has the potential to dramatically reduce the
false alarm rate [74]. In this method, the covariances

between the signal parameters are used to define an error

ellipsoid in parameter space around the triggers, and trig-
gers in different detectors are considered coincident if their

associated ellipsoids overlap. In the case of SPA banks, the
size of the ellipsoids will depend strongly on the region of
parameter space the triggers occur in. Generally, they will
be smaller for triggers associated with smaller masses, as
waveforms will then spend more time in the detector band
and errors will be smaller. This leads to a dramatic reduc-
tion in the number of spurious coincident triggers. By
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FIG. 1. Effective fitting factors of 1124 target waveforms with templates in a square-hexagonal BCV-spin bank (top left), a stochastic
BCV-spin bank (top right), and an SPA bank using the Initial LIGO design PSD. The black crosses indicate the component masses for
the target waveforms; spins have random orientations, and 0:7 	 jS1;2=m

2
1;2j 	 1. The color coding gives the effective fitting factor of

a target waveform over the template bank. There is no discernible difference between the performances of the square-hexagonal and
stochastic BCV-spin banks, but both do notably better than SPA.
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contrast, the box-coincidence method described above uses
the same parameter windows anywhere in parameter space.

The ellipsoid coincidence method has been successfully
implemented for SPA banks. The technique is well suited
for banks where the templates are simplified versions of
target waveforms, so that one can assume template wave-
forms to be reasonably close to physical signals. It would
be possible in principle to implement such a method also
for the (phenomenological) BCV-spin banks. However, in
this case the metric geffij is basically independent of c 0 and

c 3, the parameters that are most closely related to the
masses. Hence, for a given value of �, the associated
ellipsoids would not differ in size across ðc 0; c 3Þ space,
and only their orientations would differ with �. This way,
no great improvements can be expected in terms of reduc-
ing the false alarm rate.

Table II shows the average number and variance of
coincident triggers between the 4 km LIGO Hanford and
Livingston detectors for time shifts within�9 days of data
from the fifth LIGO science run [1]. The SNR threshold for
SPA is 5.5, while for BCV spin it is 8. With these thresh-
olds, SPA and BCV-spin banks have approximately the
same false alarm rates.

B. Efficiencies

We are now in a position to compare the efficiencies of
SPA and BCV-spin banks. Given a large number of target
waveforms injected in the data, the efficiency is the ratio of
the number of found injections to the total number of
injections made. For our purposes, an injection is consid-
ered found if it had an SNR above the chosen threshold
with at least one template in the bank, within a certain time
interval around the time when the injection was actually
made. In the case of SPA, the width of this interval can be
chosen to be 40 ms. BCV-spin templates, being phenome-
nological, turn out to have a larger timing inaccuracy, and
an interval of 100 ms was found to be more appropriate.
This had already been noticed in [42]; presumably the
larger timing uncertainties of BCV spin are related to its
unphysical phasing (essentially, missing PN terms) as it is
predominantly the phasing which affects timing errors.

It is important that efficiencies be compared for the same
false alarm rate. And indeed, as we have just seen, SPA

and BCV spin have essentially the same background rates
if the SNR thresholds are set at 5.5 and 8, respectively.
We made 1124 injections distributed logarithmically in

distance between 1 and 50 Mpc, with component masses
randomly chosen between 1M� and 30M�, spin magni-
tudes jSij=m2

i , i ¼ 1, 2 between 0.7 and 1, and arbitrary
directions for the initial spin vectors. (As we mentioned
before, astrophysical black holes are expected to have
jSij=m2

i < 1 [56], although in future studies it may be
prudent to relax this restriction on injected signals to allow
for possible violations of cosmic censorship.) The effi-
ciency of SPA then came out to be 0.93, versus 0.89 for
BCV spin. These results have been summarized in
Appendix I of [45]; here we have provided a detailed
account of how they were obtained. We refer to the latter
paper for plots of efficiency against distance; see Table II
for the distances at which the efficiencies are 50%, 75%,
and 90%, both for SPA and stochastic BCV spin. As one
would expect, the close-by missed injections tended to
have parameters that would lead to significant precession
of the orbital plane (i.e., asymmetric systems with signifi-
cant misalignment of spins with orbital angular
momentum).
We find that, despite the fact that BCV-spin banks have

higher effective fitting factors with the target waveforms
than SPA banks, in a more realistic data-analysis compari-
son the two waveform families have similar abilities to
detect simulated signals. The detection statistic for BCV
spin involves more degrees of freedom and the pipeline
using BCV-spin waveforms is more sensitive to nonsta-
tionary noise transients in the data. Consequently, at the
same false alarm rate the detection threshold of the BCV-
spin bank is higher than the SPA bank, negating the effect
of the improved effective fitting factor of the BCV-spin
bank.3 Searches for spinning binaries using the nonspin-
ning bank therefore have approximately the same perform-
ance as even our improved BCV-spin bank. We emphasize
that this is a statement regarding the detection problem. If a
search with nonspinning banks were to lead to a serious
detection candidate, then further investigations would have
to involve much more realistic template waveforms, which
would include spin.

VII. CONCLUSIONS

Past searches for low-mass compact binary inspiral
events in LIGO data (with the exception of [42]) have
used waveforms which do not attempt to model the spin
effects, despite the fact that astrophysical black holes may
be spinning rapidly. In this paper we have constructed
template banks using the BCV-spin waveform proposed
in [40]. Though phenomenological, these waveforms seek
to capture the spin-induced amplitude modulation one

TABLE II. Average number of triggers per time shifts (hNi),
and variances thereof (� ¼ hN2i1=2), for SPA with M ¼ 0:95,
and BCV spin with stochastic placement and M ¼ 0:8. Note
that the 1-� intervals overlap, so that the false alarm rates are
comparable. Next to these we list distances at which the effi-
ciencies are 50%, 75%, and 90%. See [45] for histograms of
trigger numbers and efficiency plots.

Bank hNi � D50% (Mpc) D75% (Mpc) D90% (Mpc)

SPA 97.3 8.7 40.1 33.9 15.9

BCV spin 85.4 8.4 34.6 17.5 14.5
3The problem had been anticipated in [40]; here we have

quantified it using real data.
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expects to see in a physical signal, and have high effective
fitting factors with PN waveforms that include spin. We
have improved on the search method of [42], in two ways:
(i) we have constructed a bank using the metric outlined in
Ref. [41], which is much better suited to the template
family, and (ii) we have explored two new placement
algorithms (square hexagonal and stochastic). We used
spinning PN signals to study the effective fitting factors
of three different banks: an SPA bank, a BCV-spin bank
with square-hexagonal placement, and a BCV-spin bank
with stochastic placement. We found that the two BCV-
spin banks had a similar performance, but both did mark-
edly better than SPA. However, search performance should
be judged by detection efficiency at a given false alarm
rate. The search pipeline for low-mass compact binaries
(2M� 	 M 	 35M�) in data from the fifth LIGO science
run used a nonspinning SPA bank with an SNR threshold of
5.5. We have demonstrated that to achieve a comparable
false alarm rate with the currently available search pipe-
lines using BCV-spin templates requires an SNR threshold
of 8 and with this higher threshold, the detection efficiency
of BCV spin for spinning PN signals becomes similar to
that of the nonspinning SPA pipeline. Our findings, pre-
sented at length here and summarized in Ref. [45], were
used to guide the decision not to repeat the analysis of
Ref. [42] with data from the fifth LIGO science run.

In conclusion, the detection performance of the BCV-
spin pipeline is similar to that of the nonspinning SPA
pipeline. We note, however, that our comparison is not
entirely fair, because the SPA pipeline implements the
metric-based coincidence algorithm of Ref. [74] which
dramatically reduces the number of spurious coincident
triggers. In principle, such a technique could also be ap-

plied for BCV spin, but since the metric has essentially no
dependence on ðc 0; c 3Þ and only a weak dependence on �
it is unlikely that implementation of the metric-
coincidence algorithm would improve the sensitivity of
the BCV-spin pipeline. This justifies the use of nonspin-
ning SPA pipelines rather than BCV-spin pipelines in
LIGO searches. Nevertheless, to search for spinning sig-
nals with nonspinning banks is still suboptimal, and work
is ongoing to improve the performance of searches for
spinning signals using templates determined by physical
(rather than phenomenological) parameters proposed in
Refs. [67,75]. In the mean time, we recommend the con-
tinued use of nonspinning SPA banks in upcoming searches
until more efficient template families designed to capture
spin-modulated waveforms have been incorporated into a
pipeline.
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