Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Observation of an organic acid mediated spin state transition in a Co(II)-Schiff base complex: an EPR, HYSCORE, and DFT study

Vinck, Evi, Carter, Emma ORCID: https://orcid.org/0000-0001-6691-2377, Murphy, Damien Martin ORCID: https://orcid.org/0000-0002-5941-4879 and Doorslaer, Sabine Van 2012. Observation of an organic acid mediated spin state transition in a Co(II)-Schiff base complex: an EPR, HYSCORE, and DFT study. Inorganic Chemistry 51 (15) , pp. 8014-8024. 10.1021/ic300058p

Full text not available from this repository.

Abstract

The interactions of a weak organic acid (acetic acid, HOAc) with a toluene solution of the Co(II)-Schiff base type complex, (R,R')-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-diamino Co(II) (labeled [Co(1)]), was investigated using EPR, HYSCORE, and DFT computations. This activated [Co(II)(1)] system is extremely important within the context of asymmetric catalysts (notably the hydrolytic kinetic resolution of epoxides) despite the lack of detailed structural information about the nature of the paramagnetic species present. Under anaerobic conditions, the LS [Co(II)(1)] complex with a |yz, (2)A(2)〉 ground state is converted into a low-spin (LS) and a high-spin (HS) complex in the presence of the acid. The newly formed LS state is assigned to the coordinated [Co(II)(1)]-(HOAc) complex, possessing a |z(2), (2)A(1)〉 ground state (species A; g(x) = 2.42, g(y) = 2.28, g(z) = 2.02, A(x) = 100, A(y) = 120, A(z) = 310 MHz). The newly formed HS state is assigned to an acetate coordinated [Co(II)(1)]-(OAc(-)) complex, possessing an S = 3/2 spin ground state (species B, responsible for a broad EPR signal with g ≈ 4.6). These spin ground states were confirmed with DFT calculations using the hybrid BP86 and B3LYP functionals. Under aerobic conditions, the LS and HS complexes (species A and B) are not observed; instead, a new HS complex (species C) is formed. This complex is tentatively assigned to a paramagnetic superoxo bridged dimer (AcO(-))[Co(II)(1)···O(2)(-)Co(III)(1)](HOAc), as distinct from the more common diamagnetic peroxo bridged dimers. Species C is characterized by a very broad HS EPR signal (g(x) = 5.1, g(y) = 3.9, g(z) = 2.1) and is reversibly formed by oxygenation of the LS [Co(II)(1)]-(HOAc) complex to the superoxo complex [Co(III)(1)O(2)(-)](HOAc), which subsequently forms the association complex C by interaction with the HS [Co(II)(1)](OAc(-)) species. The LS and HS complexes were also identified using other organic acids (benzoic and propanoic acid). Thermal annealing-quenching experiments revealed the additional presence of [Co(III)(1)O(2)(-)](HOAc) adducts, corroborating the presence of species C and the presence of diamagnetic dimer complexes in the solution, such as the EPR silent (HOAc)[Co(III)(1)(O(2)(2-))Co(III)(1)](HOAc). Overall, it appears that a facile interconversion of the [Co(1)] complex, possessing a LS ground state, occurs in the presence of acetic acid, producing both HS and LS Co(II) states, prior to formation of the oxidized active form of the catalyst, [Co(III)(1)](OAc(-)).

Item Type: Article
Date Type: Publication
Status: Published
Schools: Chemistry
Subjects: Q Science > QD Chemistry
Publisher: American Chemical Society
ISSN: 0020-1669
Funders: EPSRC
Last Modified: 08 Feb 2023 07:22
URI: https://orca.cardiff.ac.uk/id/eprint/38478

Citation Data

Cited 17 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item