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Abstract. This paper considers error propagation in three dimensional
geometric constructions using a geometric approach. First, we present
definitions and constructions of tolerance zones for various fundamental
elements in Euclidean space. Then, we study in detail the propagation of
errors during several geometric computations, including the the distance
between two skew lines, reflections, projections, and rotations, and we
derive new tolerance zones from the old ones.

1 Introduction

Computer-aided design and other geometric application areas create a demand
for efficient and robust algorithms, which must often deal with imprecisely de-
fined data. There is a need for reliable mathematical foundations of such algo-
rithms, and in particular an understanding of how errors propagate during a
chain of calculations with imprecise data.

A commonly used approach to this problem is to use interval arithmetic,
which represents imprecise floating point numbers by intervals; some of this
work is specific to geometric applications [1, 3, 2, 7]. However, in general, interval
methods tend to be too conservative, and overestimate the errors produced [6].

An alternative approach to dealing with errors in geometric computations is
to use geometric tolerances as proposed by Wallner [9]. In this case, geometric
tolerance zones are used, giving a more precise estimate of errors. They also have
the important property of geometric invariance under rotations and translations,
which interval methods based on coordinates do not [9]. Geometric tolerance
computation and propagation have been studied in several papers, considering:
errors in construction of geometric fundamental elements [6, 9], tolerances of
free-form curves [6, 9], error propagation in geometric transformations [4], and
geometric constraint solving [8]. However, much of this work has concentrated
on two-dimensional problems.

In this paper we consider tolerance zone computation and error propaga-
tion during various geometric computations in three dimensions, including the



Fig. 1. Tolerance zone of line defined by two points.

distance between two skew lines, and constructions including reflections, projec-
tions, and rotations.

2 Tolerances of fundamental geometric elements

We start by defining imprecise geometric elements in three dimensions, which
are the fundamental items used later in the paper. The simplest assumption
to make is that the uncertainty is isotropic, i.e. an imprecisely known point lies
somewhere in a sphere centred at its notional position. While this is the simplest
model for a tolerance zone, other models may also be appropriate. For example,
the uncertainty may be greater in a particular direction, or we may have separate
ranges of uncertainty for each axis, leading to initial tolerance zones which are
ellipsoidal, or box shaped, for example. In the following, we initially refer to a
general 3D tolerance zone T for a point P , although later at times we assume
more specifically that T is spherical, in order to provide simple results.

In many cases T may naturally be convex: for example, a sphere, ellipsoid, or
polyhedron. Minkowski sums are useful when manipulating tolerance zones, as
we will explain later. We note that the Minkowski sum of two convex objects is
also a convex object—Minkowski sums can be computed much more easily and
efficiently for convex objects than for general objects. If a tolerance zone is not
naturally convex, it is often convenient to replace it by its convex hull, or some
other simple convex shape, for this reason.

We start by defining the basic element, a point associated with a tolerance
zone:

Definition 1. A fat point is a 3D point with an associated tolerance zone T .

If P is the notional position of the point, the fat point is the volume of space

given by:

FP (P ) = {Q|Q − P ∈ T }.
We next define a fat line constructed from two fat points:

Definition 2. A fat line is constructed from two fat points based on P1, P2,

and is given by

FL(P1, P2) = {l(p1, p2)|p1 ∈ FP (P1), p2 ∈ FP (P2)}
where l(p1, p2) means the line through points p1, p2.



FL(P1, P2) denotes the region covered by all lines having one point in FP (P1)
and another point in FP (P2). Taking a specific case, if FP (P1) and FP (P2) are
spherical tolerance zones, the resulting volume is bounded, in part, by two cones
as shown in Fig. 1; one of the cones may degenerate into a cylinder.

We next define a fat plane constructed from three fat points:

Definition 3. A fat plane is constructed from three fat points based on P1, P2,

P3 and is given by

FPl(P1, P2, P3) = {α(p1, p2, p3)|p1 ∈ FP (P1), p2 ∈ FP (P2), p3 ∈ FP (P3)}
where α(p1, p2, p3) is the plane determined by three points.

When FP (P1), FP (P2), FP (P3) are all convex zones, FPl(P1, P2, P3) can be
bounded by eight planes [6], each tangent to the tolerance zone for all three
points.

Finally, we define a fat sphere with an associated tolerance zone, based on a
fat point, and an uncertain radius. Let S(P, r) be the sphere with centre P and
radius r. Let S−(P, r) to denote its interior. Then:

Definition 4. A fat sphere defined using the fat point based on P , with a

radius range of [r, R], is given by

FS(P, r, R) =
⋃

p∈FP (P ),l∈[r,R]

S(p, l)

If r is sufficiently large, and, for instance, exceeds the radius of FP (P ), FS(P, r, R)
is a hollow object. Here the radius of FP (P ) is defined to be half of the maxi-
mum distance between any two points on the boundary. More precisely, FS =
FSR − FSr. In many cases, for simplicity of calculation, a convex polyhedron
will be used as the tolerance zone for a fat point. In such a case, we may write

FSR =
⋃

p∈FP (P )

S−(p, R), FSr =
⋂

p∈FP (P )

S−(p, r)

Here, FSR is clearly the Minkowski sum of S−(0, R) and FP (P ). The expression
for FSr can be simplified to

FSr =
⋂

p∈V (P )

S−(p, r),

where V (P ) denotes the set of vertices of FP (P ). FSr could be an empty set,
if r is small. We now formally state this as a theorem for the case where the
tolerance zone of the fat point is a convex polyhedron, and prove it:

Theorem 1. Given a fat sphere defined as in Definition 4, when r is larger

than the diameter of FP (P ), FS(P, r, R) can be expressed as FS(P, r, R) =
FSR − FSr, where

FSr =
⋂

p∈V (P )

S−(p, r).

.



Fig. 2. Illustration of Lemma 1

Proof. It can be readily seen that
⋂

p∈V (P )

S−(p, r) ⊇
⋂

p∈P

S−(p, r) = FSr.

Thus, we have to prove the fact that ∀p ∈ P ,
⋂

q∈V (P )

S−(q, r) ⊆ S−(p, r)

and hence the validity of
⋂

p∈V (P )

S−(p, r) ⊆
⋂

p∈P

S−(p, r) = FSr.

We do so using the following three lemmas:

Lemma 1. In two dimensions, let C−(P, r) denote the interior of the circle

centred at P with radius r. Any point P on the line segment between any two

points P1 and P2 must satisfy C−(P, r) ⊇ C−(P1, r) ∩ C−(P2, r).

Proof. If C−(P1, r) ∩ C−(P2, r) = ∅, then the lemma is obviously correct. Oth-
erwise, we construct a circle centre O with radius r at either end of the line
segment (O is P1 or P2). See Fig. 2. P is an arbitrary point on the line segment.
Assume P is in the interior of the circle with center P1, we can easily see that the
intersection of the two circles centered at P1 and P2 respectively lies within the
circle centered at P : distance PD is smaller than distance OD, i.e. PD < r. By
symmetry, the same holds if P is in the interior of the circle with centre P2. ⊓⊔
Lemma 2. Generalising Lemma 1 to three dimensions for a sphere, S−(P, r) ⊇
S−(P1, r) ∩ S−(P2, r).

Lemma 3. Let V (M) be the vertex set of a polygon M . Given a point P inside

the polygon M , Then

S−(P, r) ⊇
⋂

Q∈V (M)

S−(Q, r).
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Fig. 3. Illustration of Lemma 3
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Fig. 4. Convex polyhedron

Proof. Construct some line through P that meets the boundary of the polygon at
points P1, P2, on edges AB and CD, as shown in Fig. 3. According to Lemma 2,

S−(P, r) ⊇ S−(P1, r) ∩ S−(P2, r)

and

S−(P1, r) ⊇ S−(A, r) ∩ S−(B, r), S−(P2, r) ⊇ S−(B, r) ∩ S−(C, r),

so

S−(P, r) ⊇ S−(A, r) ∩ S−(B, r) ∩ S−(C, r) ∩ S−(D, r) ⊇
⋂

Q∈V (M)

S−(Q, r).

⊓⊔
We now complete the proof of Theorem 1. For a point inside the polyhedron

representing the tolerance zone of the fat point, construct some line intersecting
the faces of the polyhedron at P1, P2, as shown in Fig. 4. Using Lemmas 2 and 3,
the following statements may now be proved in turn:

S−(P, r) ⊇ S−(P1, r) ∩ S−(P2, r),

S−(P1, r) ∩ S−(P2, r) ⊇
⋂

p∈V (m)

S−(p, r) ∩
⋂

p∈V (n)

S−(p, r),



⋂

p∈V (m)

S−(p, r) ∩
⋂

p∈V (n)

S−(p, r) ⊇
⋂

p∈V (M)

S−(p, r),

as required. ⊓⊔
We now give an alternative definition of a fat sphere based on four fat points.

Definition 5. The fat sphere generated by four fat points based on P1, P2, P3,

P4 is given by

FS(P1, P2, P3, P4) =

{σ(p1, p2, p3, p4)|p1 ∈ FP (P1), p2 ∈ FP (P2), p3 ∈ FP (P3), p4 ∈ FP (P4)}

where σ(p, q, r, s) is the function which constructs a sphere through four points

p, q, r, s.

We may now state the following theorem, assuming that the fat points in
this case have spherical tolerance zones:

Theorem 2. ∂FS(P1, P2, P3, P4) ⊆ Σ where Σ is a set comprising 16 spheres

that are each tangent to FP (Pi), i = 1, . . . , 4.

Proof. Suppose P is an arbitrary point on the boundary of the fat sphere. Let
Ω be a sphere passing through P , determined by 4 points A, B, C, D, one from
each fat point zone respectively. We will prove that Ω is tangent to all 4 fat
zones. Let Ω(A) be a sphere passing through A and intersecting the other three
fat point zones. Perform a polar transformation with center at A, so all spheres
passing through A transfrom into planes and spheres not passing through A re-
main spheres afterwards. After this transformation, P(FP (Pi)) are still spheres.
P(Ω(A)) is a plane passing through A. In particular, P(Ω(A)) is the fat plane
passing through the three spheres which are the images of three fat points under
polar transformation. After polar transformation, if a point is originally interior
to a sphere, it remains interiority to the image of the sphere. Points P in (Ω(A))
are boundary points of the fat sphere if under polar transformation, there exists
a plane passing through P ′, the image of P , which is tangent to images of three
spheres. Thus, Ω(A) is tangent to all the spheres. More precisely, the boundary
of the fat sphere is composed of 16 common tangent spheres: each sphere has
two types of tangency, so four spheres have 16 different tangent spheres. ⊓⊔

3 Tolerance Zones and Geometric Computations in 3D

We now consider various geometric computations in three dimensions when per-
formed on objects defined with respect to tolerance zones.

3.1 Skew line detection and distance computation

This section considers the issue of deciding whether two fat lines intersect, and
the distance between two skew lines, assuming they are based on points with
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Fig. 5. Distance between two cones

spherical tolerance zones. We combine the detection and distance computation
into one algorithm. We assume the two fat lines are skew lines; if their distance
is negative, then the lines intersect.

A continuity argument shows that the distance between two skew fat lines
may be represented by a single interval, i.e. it can take on any value between a
minimum, and a maximum, value.

As explained earlier, a fat line determined by two fat points is bounded by
two cones. We compute the distance interval by considering pairs of defining
cones, one from each fat line.

Thus, all we must consider is the maximum and minimum distance between
two cones. Let θ1, θ2 denote the semi-angles of the two cones. and let h be the
skew distance between their axes (see Figure 5). O1 and O2 are two origins, and
l1 and l2 are two axes. Suppose points P1 and P2 lie on the two cones respectively,
and the distance between these two points is minimum (or maximum). These
points must satisfy:

1. P1 and P2 lie on the cone surfaces;
2. the line P1P2 is normal to the cones at P1 and P2, so it also passes through

axis of each cone. Thus, the angle between line P1P2 and l1 is π/2± θ1, and
the angle between line P1P2 and l2 is π/2 ± θ2.

Only lines on the cones need be considered to calculate maximum and min-
imum distances. Each fat line has two cones, so there are 4 combinations of
cones to consider. We call the interval formed from the maximum and minimum
distance arising from one combination a partial distance [dmin

i , dmax
i ]. The con-

tinuity argument given before shows that the final result [Dmin, Dmax] must be
the union of these four intervals. The main problem is now to compute dmin

i and
dmax

i for each pair of cones. This calculation can be done as a special case of the
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Fig. 6. Distance between two skew lines
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Fig. 7. Two possibilities for AC

method given in [5], which considers the distance between a canal surface and a
simple surface. Here we give an alternative, direct, approach.

See Figure 6. The axes of the cones under consideration are l1, l2, and their
semi-angles are θ1, θ2. Points A and B are are the points of closest approach of
the two axes (the distance between them is h). Points P and Q are the points
where the line P1P2 meets each axis l1, l2 respectively. Note that the angles
between PQ and l1, l2 respectively are π

2 − θ1,
π
2 − θ2. Construct l′1, l′2 parallel

to l1, l2, so that l′2 meets l1 in A and l′1 meets l2 in Q. Shift PQ to AC. AC is
now either a minimum or maximum distance between two cones (equal to PQ).
as desired. The distance CH , from C to the plane determined by l1 and l′2, is
exactly h, the extremal distance between the axes.

Figure 7 shows in further detail how to compute AC, and the extremal dis-
tance. The angles between AC and l1, l2 are π/2 ± θ1, π/2 ± θ2 respectively,
giving four possible cases to consider for AC. Construct the projections E and
F of H on l1 and l′2 on the given plane. CF and FH , and CE and EH are both
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perpendicular to l1, and l2 respectively. The following formulae can be obtained,
starting from AC = D, CH = h, and θ is the angle between l1 and l′2:

AE = D cos a, AF = D cos b, EF = D
√

cos2 a + cos2 b − 2 cos a cos b cos θ,

AH =
D
√

cos2 a + cos2 b − 2 cosa cos b cos θ

sin θ
,

h = CH =
√

D2 − AH2 =
D

√

sin2 θ − cos2 a − cos2 b + 2 cosa cos b cos θ

sin θ
,

D =
h sin θ

√

sin2 θ − cos2 a − cos2 b + 2 cosa cos b cos θ
,

Substituting a = π/2± θ1, b = π/2± θ2, in which θ1, θ2 are acute angles, we get

D =
h sin θ

√

sin2 θ − sin2 θ1 − sin2 θ2 ± 2 sin θ1 sin θ2 cos θ
.

In addition, the lengths of the line segments inside each cone must be added
or subtracted from D to give the overall maximal or minimal distance (see Fig-
ure 8). These segments are AM and AN and their lengths should be added to
or subtracted from AC: note that AC is perpendicular to O1M . We can easily
find that

AM = O1A/ sin θ1

AN = O1A(tan 2θ1/ cos θ1 − sin θ1).

Determination of whether addition or subtraction is required depends on the
relative positions of AC and the cone axis l1.

The distance between two fat lines [Dmin, Dmax] can thus be computed by
combining four groups of minimum and maximum distances between cones.
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3.2 Reflection and line projection in 2D

In this section we consider how to reflect an exact point in a fat line in 2D, using
circular tolerance zones. A closely related problem is that of projecting an exact
point onto a fat line in 2D: the projection of a point onto a line is the midpoint
of the line joining the point and its reflection. Thus, a solution to either problem
gives a solution to the other. Here, we consider 2D projection of an exact point
onto a fat line; we then extend the ideas into 3D space in the next section.

If we wish to project a fat point onto a fat line, this can readily be done
if the fat point is represented by a convex polygon. The tolerance zone of the
projection can be found by computing the hull of the tolerance zones of the
projection of each vertex of the polygon. The case in which the fat point is
defined as a circular tolerance zone is more complicated, however, and further
work is needed.

We start by giving a theorem concerning projection of an exact point P in a
fat line.

Theorem 3. Suppose we are given a 2D fat line FL(O1, O2) defined in terms

of two fat points with circular tolerance zones FP (Oi), with Oi as center, and

ri as radius respectively. The boundary of the projection of an exact point P in

this fat line can be expressed as a pair of curves ρ = −l cos θ ± ri, i = 1, 2 in

polar coordinates, where the origin of polar coordinates is placed at P , and O1P ,

O2P are taken as θ = 0 axes respectively.

Proof. It can be easily seen that under projection, P goes to a region which is
the intersection of two heart-shaped zones (H-zones for short), H1, H2 where
Hi is the set of points H such that H is on the circumference of a circle with
diameter PA, and A ∈ FP (Oi)}. As Figure 9 shows, H is the projection point
corresponding to some definite line joining some point A in FP (O1) to some
point B in FP (O2): PH⊥AH and PH⊥BH . Thus H belongs to both H1 and
H2. We now consider how to calculate these two H-zones H1, H2.



o

y

x

Q

Q

Q

P

A

1

2

Fig. 10. Computation of inner and outer boundaries of H-zones

See Figure 10, where O corresponds to either O1 or O2, i.e. the tolerance zone
for either of the fat points. Construct a circle of diameter of PA, where A is an
arbitrary point inside circle O. This circle intersects a line l passing through
P at Q with AQ⊥l, i.e. Q is the projection of A on l. The H-zone consists
of the envelope of all such circumferences. No point inside circle O can have a
corresponding point Q which lies outside the line segment Q1Q2, bounded by
the tangents to FP (O) as shown in Figure 10. As l rotates through an angle
ranging from −π/2 to π/2, the positions of Q1 and Q2 sweep out the inner and
outer boundaries of the H-zone.

If l has an angle given by θ in polar coordinates with line PO, θ ∈ [−π, π].
In polar coordinates r is the radius of circle O. Thus, we have

−−→
PQ1 = −−−→

PO cos θ + r,
−−→
PQ2 = −−−→

PO cos θ − r.

Hence the boundaries of the H-zone are ρ = −−−→
POi cos θ ± ri, i = 1, 2. ⊓⊔

Having found the projection of a point in a fat line, it is now straightforward
to find the corresponding regions for reflection of a point in a fat line. The
equations are simply:

ρ = −2
−−→
POi cos θ ± 2ri, i = 1, 2.

3.3 Reflection and plane projection in 3D

We now consider projection and reflection of a point in a fat plane in 3D. The-
orem 3 can be generalized as follows:

Theorem 4. The tolerance zone formed by projection of a point P onto a fat

plane in 3D is surrounded by 6 surfaces with equations in polar coordinates:

ρ = l cos θ cosϕ ± ri, i = 1, . . . , 3



Fig. 11. Tolerance zone for 3D projection

Proof. Following the ideas in 2D, the tolerance zone is the intersection of three
H-zones H1, H2, H3. To find its boundaries, consider an arbitrary line l(θ, ϕ),
whose spatial orientation is given in spherical polar coordinates by θ, ϕ (eee
Figure 11). The intersection of Hi and l(θ, ϕ) is a segment of l. Using the same
notation as in the 2D case, if Q is on this segment, the following inequality holds:

l cos θ cosϕ − r ≤ −−→
PQ ≤ l cos θ cosϕ + r

Thus, as the oriented line l takes on all orientations in 3D space, the boundaries
of tolerance zone are, following the argument used in 2D:

ρ = 2l cos θ cosϕ ± 2r

⊓⊔

3.4 Rotation

Finally, we consider rotation of a fat point point P (x, y, z) relative to an ori-
gin at Q, about an arbitrary axis. The transformation can be described by an
orthogonal matrix R:

P ′ − Q = (P − Q)R

where P ′ is the position of P after rotation.



When there is uncertainty in Q, denoted by ∆Q, P ′ − Q − ∆Q = (P − Q −
∆Q)R holds for all possible positions of Q. We may rearrange this as

P ′ − Q = (P − Q)R + ∆Q − ∆QR.

Consider the term arising due to uncertainty, ∆Q − ∆QR. If the rotation
angle is θ, the magnitude of this error term is 2 sin θ/2, and it makes an angle
π/2− θ/2 relative to ∆Q. Thus, ∆Q−∆QR is obtained by rotation through an
angle π/2 − θ/2 and stretching by a ratio of 2 sin θ/2.

If we now consider the specific case where the uncertainty in Q is a sphere
with radius r, the uncertainty after rotation is still a sphere, but with a radius
2r sin θ/2.

Let us now further suppose that there is an uncertainty ∆P in the original
point P . The total uncertainty is now ∆PR + ∆Q − ∆QR. This can be viewed
as the Minkowski sum of the uncertainty in P after rotation, with ∆Q − ∆QR.
If ∆P is also represented by a sphere independently of ∆Q, the final result is
a larger sphere of radius rp + 2r sin θ/2, where rp is the size of the spherical
tolerance zone of P .

4 Conclusion and future work

We have provided definitions and constructions for various three dimensional
geometric elements with tolerance, including points, lines, planes and spheres.
We have then shown how to perform several geometric computations which take
these tolerances into account, and provide suitable tolerance zones for the output.
These calculations include the distance between two skew lines, and various
reflections, projections, and rotations, with spherical tolerance zones. We have
also discussed other computations with polyhedral tolerance zones.

Representation of tolerance zone boundaries is an important issue, and still
needs further work. Boundaries of tolerance zones need to be restricted to certain
particular shapes (e.g. spheres and polyhedra) if algorithms are to be efficiently
implemented.
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