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ABSTRACT

The main focus of this thesis was to assess the performance of a full scale Horizontal
Axis Tidal Turbine (HATT), using the CFD package, Fluent'™, and measured high
shear tidal profiles. Two sites are considered: the Anglesey Skerries and a site in the
Severn Estuary, both off the Welsh coast. In order to achieve this aim a number of key
steps were performed including the use of an existing laboratory scale prototype HATT
to establishing the optimum blade pitch angle and provide an experimental data set.
Once established the HATT CFD model was used to scale up from the laboratory scale
to 30 m diameter. By the use of non-dimensionalised characteristics of power, thrust
and torque coefficients, it was shown that the HATT was scaleable and independent of
Reynolds number. Using these findings a suitable turbine diameter was determined for
site specific analysis. Velocity profiles from the two sites were obtained via vessel
mounted Acoustic Doppler Current Profiler (ADCP) surveys. These data were used to
define a high velocity shear environment. When non-dimensionalised these data were
found to also collapse onto the scaling curves provided a true average for the velocity,

across the swept area, is used.

In addition, when the HATT was ‘positioned’ at varying depths down the water column
the power extraction was shown to reduce considerably with depth. When positioned
close to the seabed, the cyclic torque, power and axial thrust loads were studied with
and without a stanchion positioned downstream of the turbine. The presence of a
stanchion was also shown to significantly increase the amplitude of the cyclic torque,
power and axial thrust during rotation. The findings of this thesis suggest that the
complexity of the dynamic torque, power and axial thrust, along with the wake profile,
are influenced by the HATT’s interaction with the ocean seabed. These complexities
are therefore of prime importance when considering a deep water application which
encompasses all or part of a high velocity shear regime.

The work presented in the thesis shows that it is possible to predict a turbine’s
performance (for a given geometry) for any scale and velocity profile, from a single
diameter. When positioned lower in the water column, the downstream wake also

showed a high level of asymmetry which was also shown to influence the upstream

flow field.
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Nomenclature

A = Swept area of turbine, m?

A, = Area vector of the face in x-component, m>
a = Axial induction factor

a'= Rotational induction factor

B = Number of blades

¢ = Chord length, m

Cp = Power coefficient

Cp,max = Maximum theoretical power coefficient (Betz limit)
Cr = Thrust coefficient

Ck = Electrical power generation coefficient

CL = Coefficient of lift

CD = Coefficient of drag

C;; = Convective transport

Dy = Viscous diffusion term

D}, = Turbulent diffusion term

D = Diameter, m

Dy = Hydraulic diameter, m

Ex = Available kinetic energy. Also see Pa, W

Ep = Potential energy in tidal range, W

F_ = Force vector in x-component (sum of shear force and static pressure force), N
F, = Force vector in y-component (sum of shear force and static pressure force), N
Fr = Froude Number

F = Total force, N

F; = Shear force, N

FT = Axial thrust force, N

F, = Static pressure force, N

F;, = Force due to static pressure in x-component, N

xxii



I % = Turbulence Intensity percentage

I % = Percent of servomotor current

I = Servomotor current, A

I = Turbulence intensity,

Ibr = Turbulence intensity relative to chord length at blade tip
Ibp = Turbulence intensity relative to turbine diameter

K = turbulent kinetic energy, m%/s>

£ = Turbulence length scale, m

N = Total number of faces

Ne = Ensemble average of experiments

n = Face number

P = Turbine power extraction, W

P, = Peak power extraction, W

Pa = Available power upstream of turbine, W
P;; = Stress production rate

P = Static pressure acting on the element, N/m?
Pcrp = Power predicted using CFD, W
Pscaling 1aw = Power calculated using scaling law, W
Ps = Mechanical shaft power, W

PE = Electrical power, W

Pn = Normalised power

Re = Reynolds number,

R;; = Reynolds stresses, N/m’

r = Radius, m

r, = Distance in x-component, m

r,= Distance in y-component, m

T = Position vector in rotating reference frame, m
TSR = Tip speed ratio at blade tip

TSR, = Tip speed ratio at radius r

TSRy = Tip speed ratio at blade base

t = Time, s

xxiii



T= Torque, Nm

T, = Peak torque, Nm

u = Velocity fluctuation, m/s

u, = Velocity average, m/s

U = Mean Velocity, m/s

i, = Relative velocity in MRF, m/s

u, = Friction velocity and typical velocity turbulence length scale
V = Up stream water velocity, m/s

Vmsp = Mean Spring peak velocity, m/s

Vri = Resultant incident flow velocity at blade segment (i), m/s
V4er = Downstream wake velocity deficit

V, = Axial water velocity upstream of HATT, m/s

Vw = Axial water velocity downstream of HATT, m/s

Yaw = distance from wall boundary and turbulence length scale
Y = Power generated at segment (i) along the blade radius, W
y+ = Near wall flow resolution factor (local Reynolds number)
y* = Near wall flow resolution factor

Zus = Distance upstream of stanchion, m
Greek Symbols

a = Incident or attack angle, Degrees

B = Relative flow angle, Degrees

8Zps = Axial distance between hub rear and downstream MRF face, m
8Zys = Axial distance between hub apex and upstream MRF face, m

¢ = Turbulence dissipation rate, m*/s’

¢ = turbulent dissipation term,

(Dij = source/sink due to pressure/strain correlation

v = Blade twist angle between tip and base, degrees
p,= Turbulent viscosity

XXiv



p = Fluid dynamic viscosity, kg/ms

v = Kinematic viscosity, m?/s

0 = Blade pitch angle, degrees

6, = optimum blade pitch angle, degrees
p = Density of fluid, kg/m’

¢’ = Local solidity factor, Bc/2nr

Q) = Angular velocity of MRF, rad/s

® = Angular velocity of turbine, rad/s
o, = Specific dissipation rate, 1/s

y = Tip loss factor

Acronyms

ADCP: Acoustic Doppler Current Profiler
BEM: Blade Element Momentum theory
BERR: Department for Business Enterprise and Regulatory Reform
BDC Bottom Dead Centre

BWEA: British Wind Energy Association
CCC: Committee on Climate Change
CD: Chart Datum

CFD: Computational Fluid Dynamics
DNS: Direct Numerical Simulation

DTL Department of Trade and Industry
EIA: Energy Information Administration
EMEC: European Marine Energy Centre
ETSU: Energy Technology Support Unit
EVM: Eddy Viscosity Models |



GDP: Gross Domestic Product

HATT: Horizontal Axis Tidal Turbine

HAWT: Horizontal Axis Wind Turbine

HAT: Highest Astronomical Tide

HWS: High Water Spring

IPCC: International Panel for Climate Change
LAT: Lowest Astronomical Tide

LES: Large Eddy Simulation

LMG: Permanent Magnet Generator

MCT: Marine Current Turbines

NOAA: National Oceanic and Atmospheric Administration
NIA: Nuclear Industry Association

N-S: Navier-Stokes equations

RANS: Reynolds Averaged Navier-Stokes
RNG: Renormalized Grouping

RSM: Reynolds Stress Model

SDC: Sustainable Development Commission
TDC: Top Dead Centre

THGL: Tidal Hydraulic Generators Ltd

THWAT: Transverse Horizontal Axis Water Turbine
UDF: User Defined Function
UKWED: UK Wind Energy Database

VATT: Vertical Axis Tidal Turbine
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VOF: Volume Of Fluid

WHOI: Woods Hole Oceanographic Institution
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