


TABLE 5
� 1� 1-A2-ILA contacts (residues mutated from wild type shown in red)

* A 3.4-Å cutoff was used for H-bonds and salt bridges, and a 4-Å cutoff was used for van der Waals (vdW).

TCR-Peptide Specificity Governs Antigen Recognition

634 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 289 • NUMBER 2 • JANUARY 10, 2014

 at U
N

IV
 W

A
L

E
S C

O
L

L
 O

F C
A

R
D

IF on June 26, 2014
http://w

w
w

.jbc.org/
D

ow
nloaded from

 



shows that the interaction between TCR and antigenic peptide
can play a minimal structural role, often being responsible for
less than a third of the binding interface relative to contacts
between the TCR and MHC (5). Thus, the molecular mecha-
nism by which the TCR maintains peptide-specific recognition
is not immediately obvious.

To re-examine how the TCR CDR loops co-operatively act to
stabilize TCR-pMHC binding, we designed a range of soluble
TCRs that exhibited up to a 18,500-fold enhancement in affin-
ity for cognate antigen using CDR loop mutations selected by
phage display (26). Previous studies using high affinity TCRs
have shown that these artificial reagents retain a high level of
antigen specificity similar to their wild type progenitors (34,
46 – 48). In all cases, the enhanced affinity observed for the
mutated TCRs compared with the wild type TCRs was due to
small differences in the on-rate but a vastly extended off-rate.
The slower off-rate indicated that any initial “transition state”
was less important than the formation of a stable complex dur-

ing high affinity TCR-pMHC binding. These high affinity TCRs
enabled modification to the TCR-peptide interaction while
retaining a strong enough residual TCR-pMHC affinity to
measure using SPR. Furthermore, we were able to incorporate
mutations into individual CDR loops to generate a panel of
TCRs with an identical sequence except for their CDR2 loops.
Structural analyses confirmed that these loops were distal to
peptide binding in both wild type and enhanced affinity MEL5
and ILA1 TCRs. Based on some models of TCR engagement
(11), we reasoned that HLA A*0201-restricted TCRs with high
affinity mutations in their CDR2 loops should retain a residual
ability to bind to the surface of HLA A*0201 independently of
the peptide because the TCR-peptide interactions should only
account for a small proportion of the overall binding energy. In
contrast to this prediction, we were unable to show binding to the
HLA A*0201-GLGGGGGGV or HLA A*0201-ALAAAAAAV
null antigens with any of the CDR2 loop high affinity TCRs
tested. These observations support the notion that specific
interactions between the TCR and peptide are required to allow
the TCR to effectively engage MHC. Using this system, we were
also able to examine whether subtle alterations in the inter-
action between TCR and peptide were independent of TCR
CDR2 loop binding to MHC. To investigate this, we tested
the binding affinity of a panel of HLA A*0201-ILAKFLHWL-
specific CDR2 loop-modified TCRs to peptides that con-
tained alanine substitutions at positions structurally shown
to be key TCR contacts. These data revealed that even min-
imal changes to the TCR-peptide interaction had a substan-
tial impact on the TCR affinity and binding energy (�G).
These data show that TCR-peptide contacts are strongly
“coupled” to TCR-MHC contacts.

We also performed a kinetic investigation of the effect of
altering the TCR-peptide interaction. These data showed that
the vastly extended off-rates that governed the enhanced affin-
ity of the high affinity mutated TCRs were effectively nullified
by altering the TCR interaction with peptide, although the on-
rates remained relatively unchanged. Thus, our data indicate
that complex formation is not initiated by TCR-MHC binding.
Rather, successful TCR-peptide sampling must precede or
occur at the same time as the stabilizing interaction between
the TCR and the MHC surface. In support of this notion, our
data show that altering the TCR interaction with peptide can
override the optimal formation of TCR-MHC interactions
resulting in a disproportionate knock-on effect on TCR-pMHC
affinity.

Mounting evidence from other studies also contests the
notion that conserved interactions between the germ line-en-
coded loops of the TCR and the MHC initiate TCR-pMHC
complex formation. First, Burrows et al. (16) have demon-
strated that disrupting conserved interactions between the
TCR and MHC surface resulted in the formation of compensa-
tory interactions. In support of these data, Dyson and co-work-
ers (49) extensively diversified CDR1 and CDR2 loops in vivo
and demonstrated that the TCR is not genetically hardwired to
engage MHC ligands. Second, a number of molecular studies
are incompatible with TCR-MHC initiated binding. These
include the following: (i) the co-crystal structure of a TCR
bound to MHCI complexed with a 13-mer “super-bulged” pep-

FIGURE 6. Schematic of the effect of alanine peptide substitutions on
TCR-pMHC binding affinity. Nonmutated TCR and pMHC components are
shown in grayscale. TCRs with high affinity mutations are shown in red. Pep-
tide mutations are shown in yellow or green. A, expected difference in the
binding of an unmodified TCR (TCR1) compared with a CDR2 loop mutated
TCR (TCR2) (mutation shown in red), assuming that the CDR2 loops bind inde-
pendently of the TCR-peptide interaction. Because the mutated CDR2 loop
(shown in red) does not contact the peptide, the theoretical difference in
binding between the TCR1 and TCR2 to peptide variants 1 (yellow) and 2
(green) compared with the wild-type peptide (black) should be identical
according the interaction between the CDR3 loops and the peptide. B, sche-
matic of the observed difference in the binding of the ILA1 �1�1 TCR, com-
pared with the ILA1 �1 TCR engaging a peptide-MHC complex. These data
show that a disproportionate knock-on effect in binding occurs for the ILA1
�1�1 TCR, compared with the ILA1 �1 TCR. These data indicate that TCR-MHC
binding does not occur independently of TCR-peptide interactions and that
the latter likely governs the former.
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tide (19) showing that the extended central peptide bulge phys-
ically restricted the TCR from contacting the MHC surface (Fig.
7A) (19); (ii) the co-crystal structure of a TCR bound to MHCI
complexed with an 11-mer peptide demonstrating that the pep-
tide was “bulldozed” or flattened by the TCR, allowing the TCR
to contact the MHC surface (Fig. 7B) (20); (iii) accumulated
studies showing that TCR-MHC interactions can play a mini-
mal energetic role, compared with TCR-peptide interactions,
during TCR binding to MHC (15, 18, 21, 50), and (iv) the struc-
tures of the A6 and B7 TCRs bound to HLA A*0201-
LLFGYPVYV (27, 51, 52), showing that, despite both TCRs
sharing a genetically identical germ line-encoded V�-gene
(V�6-5), the TCR-MHC contacts were distinct, although a
number of identical TCR-peptide contacts existed (Fig. 7C).
Finally, our data, in which we have tested affinity-enhanced
TCRs against a range of normal tissue cell samples, show that
high affinity CDR2 mutations do not render the TCRs more
unspecific than high affinity CDR3 mutations. The examples
above are consistent with a model for T-cell antigen recogni-
tion in which TCR-peptide binding overrides TCR-MHC
engagement.

The idea that TCR-peptide contacts govern T-cell antigen
recognition is in accord with several biological requirements of
T-cell immunity. First, given that extremely weak TCR binding
is required for positive selection of peptide-dependent T-cells
in the thymus (53), control of this delicate aspect would repre-

sent a far greater challenge were TCR-MHC contacts to pro-
ceed TCR-peptide interactions (11). Second, accumulated
studies that have demonstrated that alloreactive TCR recogni-
tion is peptide-dependent (54 –56) are favored by models where
TCR-peptide contacts dominate TCR engagement. Third, if
TCR-MHC interactions initiate antigen recognition then the
extraordinarily rapid kinetics of CD8 and CD4 coreceptor bind-
ing might enable aberrant T-cell signaling, bypassing antigen-
specific TCR-peptide sampling (57). Fourth, a system where
TCR-MHC contacts dominate TCR binding is difficult to rec-
oncile with the kinetic segregation model of T-cell activation
(58, 59). In this model, small molecules such as CD2 and CD28
facilitate contact zones to enable the TCR to scan pMHCs. The
proximity of the T-cell and target cell membranes in these con-
tact zones excludes large phosphatase molecules, such as CD45,
triggering phosphorylation of the TCR and downstream signal-
ing events. Thus, TCR-MHC binding in these contact zones
could enable TCR phosphorylation independently of TCR-pep-
tide binding. Finally, a mode of action that requires that the
TCR interacts with MHC prior to peptide scanning wastes both
time and energy. This is particularly important for a system that
requires an individual TCR to scan a multitude of pMHC mol-
ecules to locate a cognate peptide.

We propose two new models of TCR-pMHC binding that are
accommodated by our data and are both temporally and ener-
getically complementary with a system requiring recognition of
self in the thymus and rapid intolerance of non-self in the
periphery. First, the “scan-clamp” model, in which the TCR
“scans” the peptide before “clamping” onto the MHC surface
(Fig. 8A). Second, the “synchronized docking” model, in which
there is no temporal separation between the TCR binding to the
peptide or MHC, but TCR-peptide interactions are dominant
over TCR-MHC interactions (Fig. 8B). These new models are
consistent with the requirement for T-cells to target cells based
on their antigenic peptide, allowing them to expeditiously dis-
tinguish aberrant cells from healthy cells (60 – 63).

FIGURE 8. New models for TCR engagement of pMHC. 1. schematic of a TCR
(dark and light gray) proceeding engagement of peptide (black)-MHC (light
gray). A, “Scan-clamp” model. Only specific TCR-peptide contacts (light gray
and black) (2A) allow the TCR (shown in dark gray) to clamp-onto the MHC
surface and (3A) complete TCR-pMHC docking, which leads to T-cell activa-
tion. B, “synchronized docking” model. TCR contacts the peptide and MHC
simultaneously (2B), but TCR-peptide interactions are dominant over TCR-
MHC interactions (3B). Only the scan clamp and synchronized docking mod-
els for T-cell antigen recognition are permissive with our data.

FIGURE 7. Structural evidence demonstrating that TCR-peptide contacts
precede TCR-MHC contacts. A, co-crystal structure of the SB27 TCR (shown
as yellow schematic) bound to the HLA-B*3508 (shown as gray yellow sche-
matic) LPEP super-bulged 13-mer peptide (shown as sticks, colored using Wil-
son “B” factor) complex. The expanded panel below illustrates the extended
conformation of the peptide, making it highly improbable that the SB27 TCR
could contact the MHC surface before the peptide (19). B, co-crystal structure
of the ELS4 TCR (shown as red yellow schematic) bound to the HLA-B*3501
(shown as gray yellow schematic) EPLP 11-mer peptide (shown as sticks, col-
ored using red complexed to the ELS4 TCR and in blue uncomplexed). The
expanded panel below illustrates how the EPLP peptide is bulldozed into a
different conformation during TCR binding (before TCR binding is shown in
blue and after TCR binding is shown in red), allowing the TCR to contact the
MHC surface (20). C, co-crystal structure of the A6 TCR (shown as green sche-
matic) superposed with the B7 TCR (shown as blue schematic) which both
bind to the HLA A*0201 (shown as gray schematic) Tax (shown as peach sche-
matic) complex (27, 51, 52). These TCRs share the same �-chain germ line-
encoded CDR1 and CDR2 loops, and they bind to the same N-terminal region
of the A2-Tax complex. The expanded panel below illustrates that the CDR3
loops engage some of the same residues of the peptide, whereas the CDR1
and CDR2 loops bind to distinct regions of the MHC surface.
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In conclusion, it is clear that T-cells have evolved to ensure
that TCR-pMHC binding is carefully balanced to guarantee
that the fidelity of antigen recognition is permissive for the
conserved and universal interactions that lead to T-cell activa-
tion. Our new data shed light on the mechanisms controlling
the seemingly paradoxical observation that a receptor-ligand
(TCR-pMHC) interaction with both a self (TCR-MHC) and
non-self (TCR-peptide) component can control T-cells by only
forming productive interactions when encountering alien
antigen.
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