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Abstract We present a method for learning ameta-
Iter from an example pair comprising an original im-
ageA and its Itered version A°using an unknown im-
age lter. A meta- Iter is a parametric model, consist-

ing of a spatially varying linear combination of simple
basis Iters. We introduce a technique for learning the
parameters of the meta- lter f such that it approxi-

mates the e ects of the unknown lter, i.e., f (A) ap-
proximates A°. The meta- Iter can be transferred to

novel input images, and its parametric representation
enables intuitive tuning of its parameters to achieve
controlled variations. We show that our technique suc-
cessfully learns and models meta- Iters that approxi-
mate a large variety of common image Iters with high
accuracy both visually and quantitatively.
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1 Introduction

Image Itering is one of the most fundamental opera-
tions in computer graphics. It is the key building block
in many graphics algorithms as well as an important
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tool in many image editing and image enhancement
applications. In this paper we examine the problem of
learning an image Iter from a pair of example images,
transferring it to new inputs, and intuitively tuning its
parameters. Learning lters from examples is an im-
portant task, because the exact functioning principles
behind many image lters in commercial software are
undisclosed. Even if the algorithmic details are known,
source code is often not available and the Iter might be
di cult to re-implement from scratch. Moreover, apply-
ing image lters often involves manual tuning of (spa-
tially varying) parameters, which might require expert
knowledge and can be time consuming.

The task of learning an image lIter from an exam-
ple pair can be challenging since in its widest sense
image ltering is a very general concept. Filters are
implemented using a variety of techniques, including
iterative, recursive, and data-driven approaches. Often
several Iters are applied in sequence to achieve a de-
sired compound e ect. Even some manual operations,
such as retouching skin blemishes in portraits can be
considered as a kind of image lter.

To alleviate this task we introduce the parametric
meta- Iter . The meta- Iter is a linear combination of
elementary basis lters from small lter bank. Given
an example pair comprising an original imageA and its
ltered version A° (Figure 1a), our method learns the
spatially varying combination weights of the meta- Iter
f,sothatf(A) Al(Figure 1b). The learnt meta- lter
can then be applied to novel input images,B ! f(B)
(Figure 1c). Since our basis Iters are parametric we can
intuitively tune their parameters to achieve controlled
variations (Figure 1d).

The Image Analogies algorithm [1] attempts a sim-
ilar problem using a non-parametric texture synthesis
algorithm. As such, it works well for \texture-like" ef-
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Fig. 1 Given an example pair comprising an input image and a
meta- Iter
representation enables intuitive parameter tuning to achi

fects (e.g., painterly Iters), however, we show that it
does not perform as successfully on many other typical
image lter categories. In addition, the non-parametric
nature of the algorithm makes it di cult to tune I-

ter parameters to achieve variations. Our parametric
method, in contrast, is applicable to a wider range of
image lters, including artistic Iters (e.g., from the
Photoshop Filter Gallery), tone adjustment, color trans-
fer, curves, and some manual image enhancement tasks
such as skin smoothing.

We tested our method on more than 50 examples
from before mentioned categories. We show that our
learnt meta- Iters approximate the latent lter on the
given exemplar pairs near perfectly, and also transfer
well to novel input images. We evaluate our results nu-
merically using common image similarity metrics, as
well as perceptually through a user study. In addition
to the results shown in the paper, we include further re-
sults and more extensive comparisons and evaluations
in the supplementary material.

2 Related Work

Filter Estimation. An ongoing area of research in the
eld of image restoration is Iter estimation, where an
original image is sought to be recovered from a given
\ Itered" image. The most important instance of this
problem is removing blur from images. Here, the Iters
are typically modelled as convolutions with blur kernels,
and their inversion is referred to as deconvolution [11].
When the lter is unknown, the result is a blind decon-

that approximates the latent Iter (b). The meta- Iter can b

Novel Input B Nawe Filter Strengthening

Meta-Filtered f (B)

Meta-Filter Strengthened

(c) Transferred (d) Meta-Filter Editing

Meta-Filter

Itered  version (a), our method learns the parameters of a

e transferred to novel input images (c). Its parametric

eve controlled ltering variations (d).

volution problem. These techniques use some priors and
regularization to constrain the solution and restrict the
search space [5,9,10,15{19,30]. Most Iter estimation
methods assume that a homogenous lter is applied to
the whole image (or a su ciently large region). The re-
cent work of Joshi et al. [17] estimates the point-spread
functions in local windows and, thus, allows recover-
ing spatially varying blur kernels. Li et al [14] apply a
nonlinear lter bank to the neighborhood of each pixel.
Outputs of these spatially-varying Iters are merged us-
ing global optimization, which bene t a set of applica-
tions. The problem we address in this paper is di erent
from image restoration in two important ways: First,
we have no knowledge of the nature of the unknown
Iter; we are dealing with general and spatially varying
Iters. Second, we do have the original image available
as part of the input.

Learning from Pairs. Our work is strongly related to
various transfer techniques. These techniques often work
by taking one or more example pairs, where each con-
sists of an imageA and a modied version A% Then
for a given input image B, the aim is to produce B°
that somehow mimics the transform fromA to A°. Im-
age analogies [1,26] is a well-known technique that uses
non-parametric texture synthesis. By using appropriate
example pairs, a large variety of e ects can be achieved,
from simple smoothing to sophisticated artistic e ect-
s. Our approach explicitly learns and models the Iter
from example pairs, and avoids various artifacts associ-
ated with a direct patch work in image space. As men-
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tioned earlier, having a parametric model o ers control
and e ciency.

There are more techniques that learn from pairs or
examples. For example, the work by Kang et al. [20]
and Bychkovsky et al. [23] consider learning global tone
mapping from a training set using machine learning

techniques, the work of Wang et al. [2] considers example- of unity, i.e.,

based learning of color and tone mapping, Ling et al. [27]
introduce an adaptive tone-preserved method for image
detail enhancement, and Huang et al. [8,28] consider
example-based contrast enhancement by gradient map-
ping. By analyzing the relation between the color theme
and a ective word, Wang et al. [24,25] introduce an ex-
ample based a ective adjustment method with a single
word. Unlike these techniques, our method is generic
and learns a more general lter structure.

Our work is also related to the work of Berthouzoz
et al. [7], who introduce a framework for transferring
photo manipulation macros to new images. Multiple
training demonstrations are used to learn the relation-
ship between the image features, and macro parame-

ters of selections, brush strokes and image processing

operations, using image labeling and machine learning.
While having similar goals to our work, their method
requires Photoshop macros to be recorded. Our method
fully automatically learns the Iter from a single pair
of input images.

Linear Combination of Filters. In this work we model a
compound Iter by a linear combination of basis lters.
Sahba and Tizhoosh [6] also use a linear combination of
four lters to produce an improved denoising Iter for a
given input image using a reinforced learning algorith-
m. Their algorithm is only suitable for a speci c type of
Iter, which cannot be spatially varying. Given an addi-
tional guide image, which can be identical to the input
image, He et al. [12] construct a linear combination of
local mappings within windows of the guided image.
Simple linear mappings are derived within each over-
lapping window such that when applied to the guided
image, the results approximate the input image. In our
work, we consider locally linear combinations of gen-
eral Iters that approximate a large variety of many
di erent composite lters.

3 Overview

We de ne the parametric meta- Iter as a linear combi-
nation of elementary basis lters fy:

X
f(p) =

Wi (p) fk(p); ()

where p is a pixel coordinate. To facilitate the opera-
tion we precompute the basis lters, i.e.,fy is an image
that contains the result of applying the basis lter to

the input image A. The spatially varying weights wy (p)
comprise the parameters of the meta- Iter. Note that
we do not rest'gct the weights at a pixel to be a partition
Wy IS not required to be 1. This exi-

bility is essential since the original and Itered images
may di er in contrast, brightness, or tone.

Our basis lter bank contains instances from a few
families of Iters, in particular, Gaussian, Box, Motion
Blur (i.e., directional Gaussians), Sobel edge, Color O -
set, and ldentity lters. The Motion Blur and Sobel
edge lters include horizontal and vertical variants. S-
ince most basis Iters are parameterized we include for
each family a number of variations in our lIter bank:

Filter Para. Count Instances
Gaussian Stdev. 20 = f0:5;1;:::; 10g
Box Sizes 10 s= f5; 10; ::;; 509
Motion Blur Asnlglees‘ 20 S - ff%o 190009 >09
Sobel n/a 2 horizontal, vertical
Color O set n/a 3 red, green, blue
Identity n/a pl

56

A linear combination of these basis lIters enables
approximating more complex lters; for example, a Lapla-
cian Iter can be approximated using a di erence of
Gaussians. Even many non-linear lters can be well ap-
proximated by the meta- Iter due to its spatially vary-
ing nature. Figures la{b show a visualization of the
optimized meta- Iter weights for a highly non-linear ex-
ample lter pair.

In Section 4 we describe how we learn meta- lters
from example pairs using constrained optimization in
the Iter space. Optimizing the meta- Iter over all ba-
sis lters, however, is prohibitively expensive. There-
fore, we rst select a smaller subset that is able to rep-
resent the latent Iter A ! A°well (Section 4.1), and
carry out the optimization over this smaller set using
an energy minimization formulation (Section 4.2) that
can be e ciently optimized (Section 4.3). In Section 5
we discuss transferring the learnt lters to novel input
images as well as editing the meta- Iter parameters. In
Section 6 we present our results, discuss optimization
objective alternatives, and present extensive numerical
and perceptual evaluations of our method.
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Fig. 2 Our learnt meta- Iters approximate a wide variety of non-li
A9, while the bottom right shows our meta- lter approximation

gures shows the ground truth result

4 Learning Meta- Iter Parameters

Given an imageA and its Itered version A° produced
by some latent Iter or potentially a sequence of Iter-
s, our goal is to compute the parameters (i.e., weight
maps) for the meta- Iter f such that f (A) A°

4.1 Filter Selection

Our rst task is to select a subset S = ff;g from the
full lter bank that is still su cient to represent the
exampleA ! ACwell. This selection process makes the
following optimization computationally tractable while
still achieving high accuracy.

The following Iters are always included in the sub-
set, as our experiments showed they are almost always
needed:

1. The identity lter, fip(p) = A(p), which passes
through the input color unchanged. It is useful when
certain parts of the image are either unchanged or
only changed by a linear mapping (e.g., contrast ad-
justments).

2. Three color o set lters, which provide a constant
color o set for a speci ¢ channel:

fr(p)=(c;0;0); fa(p)=(0;c;0); fe(p)=(0;0;c);

where ¢ = 0:01 is a small empirically determined
constant. The amount of actual o set is controlled
by the weight map. The o set lters are particu-
larly useful when the intensity or color of a region
is shifted by a certain amount (e.g., brightness or
tonal adjustments).

The initial Iter subset S© = ff5;fr;fg;fagis
now augmented by additional candidate Iters f, 2 S©
that are found to be e ective.

Each candidate lter is evaluated independently by
nding the optimal weight map for the reduced meta-
Iter f’\c that contains only the initial Iter subset and
the candidate itself,

o= wfe+  wif;:
250

)

near lters with high accuracy. The top left of the split
f (A).

such that f'\C(A) ALl The details of this optimization
are provided in the next subsections. The contribution
of f. is measured as tl'\g approximation error when it
is used in isolation, i.e., ,(Wcfe(p) AYp)°. We in-
clude the two Iters from each family that exhibit the
lowest approximation errors into S.

Overall, S contains 12 lters: two from each of fam-
ily of Gaussian, Box, Motion Blur, and Sobel, as well as
the three color o set lters, and the identity Iter. Our
results demonstrate that this empirically determined |-
ter selection heuristic works well in practice.

4.2 Energy Formulation

We formulate the task of determining the optimal weight
maps for a given meta Iter and lter example pair as
an energy minimization problem. Our objective func-
tion comprises three terms.
The data tting term, Egaia , 2ims at approximating
the [tering e ect:
2
A%p) ®)

Edata =

P

wi (P)fi(p)
p i2S
The smoothing term, Egmeoth , @iMs at reducing s-

patial variation in the weight maps:
X X
4)

Esmooth = r wi(p) i:

p i2S

The term forces spatially close pixels to have similar
weights and concentrates necessary changes into few
pixels, yielding less fragmented and more homogeneous
weight maps. Note, that we minimize the term in the
L1 norm,

wi(x+1;y)
w; (x;y +1)

wi (x;y) +
wi(x;y) :

In Section 6.4 we compare our L1 minimization against
L2 minimization and show that ours leads to signi -
cantly improved results. Our formulation is related to
total variation [13], however, here we seek sparsity of
Iter weights rather than of pixel intensities.

rwi(x;y) i =

(5)
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The third term, Egpase, iS €ssential to ensure the

unigueness of the solution:
X X

Esparse = wi (p) : (6)

p i2S
Without this term the system would become singular
and numerically unstable. It also improves the concen-
tration of weights at each pixel to fewer basis lters.
The overall energy is given as

()

The balancing coe cients are empirically determined:

= 50 prefers accuracy over smoothness, and = 10 4
takes a small value just to ensure the stability of the
solution.

Figure 2 demonstrates the ability of our meta- Iters
to approximate several non-linear Iters from the Pho-
toshop Filter Gallery. We measure the approximation
quality using the Structure Similarity Image Metric (S-
SIM) [29], which is widely used and known to be more
consistent with perception than root mean square (RM-
S) errors. In the supplementary material we provide
extensive results to show that we can successfully ap-
proximate a wide range of lters.

E = E data * Esmooth + E sparse:

4.3 Implementation

Let n denote the number of basis Iters and m the
number of pixels in A=AC In matrix notation, we can
rewrite Equation 7 as

E = FW Vk FG}N } |<V%lk1
Z— {z.}

E data E smooth E sparse (8)
= kFW VK +k(G | Y Wk

whereF, mn is the matrix of precomputed basis Iter
results fi(p), Wmn 1 is the vector of unknown basis
weightsw; (p), Vmn 1 is the vector of pixel values from
Al G is the matrix of the gradient operator in Equa-
tion 6, and I mn mn IS the identity matrix.

This is an L1 regularized convex problem. The glob-
al minimum can be e ciently obtained using the Split
Bregman method [21]. Let = (G | ). Using two
additional vectors b and d and the unknown vector W
(all initialized as zero vectors of lengthmn), we apply
the following three steps iteratively until convergence:

S1: wkt= min ZkFW  VkE + skdk W bkk3
S2: dk*t = mln kdki+ skd WK1 bkks:

S3: bk+1 — bk + Wk+1 dk+1l

Here, k is the iteration number, and =10 is a relax-

ation constant which a ects the convergence rate but

not the nal result. Step 1 involves a quadratic func-
tion of W. Denote N(W) = skFW V%3 + skdX

W b¥kZ. The minimizer is computed using ONW) —
F>(FW V9+ >( W+bk d¥)=0. Thisis equiv-
alent to solving the linear system (F>F+ ~ )W =
F>VvoO >(b% d¥). The matrix ( F>F + > )
is symmetric positive de nite and does not change over
the course of the optimization. We use sparse Cholesky
factorization [22] to e ciently decompose this matrix
into LDL > wherel is a lower triangular matrix and D
is a diagonal matrix. This only needs to be factorized
once; during iteration the linear systems have triangu-
lar matrices and can be solved e ciently using substi-
tution. Step 2 can be solved in linear time using the
shrink operator (see [21]), and Step 3 is direct.

5 Applications
5.1 Filter Transfer

Once a meta- Iter is learnt from an example pair A !
A0 it can be applied to novel input imagesB to obtain
a ltered result f (B) that approximates the (unknown)
ground truth BC To transfer the Iter we establish pixel
correspondence betweeA and B, and copy the weights
of the elementary lIters using the correspondence warp
map.

Computing reliable correspondence between gener-
al images is a challenging problem. However, since we
are only transferring basis Iter weights between the
images, obtaining exact correspondence is less critical.
We use the state-of-the-art SIFT ow algorithm [4] to
nd an initial correspondence map that globally aligns
the two images while well preserving spatial coherence.
We found that SIFT ow sometimes does not work reli-
ably around strong image edges. For that reason we re-
ne (replace) the initial correspondence around strong
edges with one that is computed using the PatchMatch
algorithm [3] on Canny edge images extracted fromA
and B.

Figure 3 shows examples from before mentioned cat-
egories. The rst row shows curve adjustment (see the
inset gure inthe Itered image). The second row shows
an example of tone transfer. A similar result could be
achieved by Wang et al.'s method [2]. However, while
their method learns the tone adjustment Iter from a
dataset containing several examples, our method re-
quires only a single example pair, as shown here. Rows
three to six show various artistic stylization Iters. These
kinds of Iter are more challenging to transfer. Final-
ly, in the last row we learn and transfer a manual face
polishing job (includes removing blemishes and wrin-
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kles, and improving skin tone). Many more results are
provided in the supplementary material.

The correspondence for all of our results is comput-
ed fully automatically, with the only exception being
the face polishing results (last row in Figure 3). Here,
we found it necessary to interactively select the skin re-
gions. These are set as hard constraints and the remain-
ing correspondence is computed as described above.

5.2 Filter Editing

The parameters of the meta- lter comprise the per-
pixel weights of the basis Iters w;(p), and their global
parameters (i.e., the size of the Box, Gaussian, Mo-
tion Blur lters, as well as the Motion Blur angle). By
manipulating these parameters, we can edit the learnt
meta- Iter in a semantic manner and obtain interesting
controlled variations. For instance, we can increase or
reduce all or some of the weights to yield a strengthened
or weakened lter.

In Figure 4 we show some lter variations that were
obtained through simple manipulations of the meta-
Iter parameters. The rst row shows a manipulation of
the Motion Blur basis lters: the blur size s is reduced
to 0:5s to obtain a reduced \Motion Blur" e ect (third
column) and enlarged to 45s to obtain a strength-
ened motion blur (the forth column), while keeping the
per-pixel weights unchanged. The second row shows a
manipulation of the Sobel basis lters: the Iter per-
pixel weights w; (p) are uniformly reduced to 05 and
increased by 8 to obtain reduced and strengthened
\Poster Edge" e ects. The third row shows results of
a manipulation for the Box basis Iters: the blur size
s is reduced/increased to 05s=4s to obtain a reduced/
strengthened \Color Cut" e ect. Many other lter edit-
ing results are provided in the supplementary material.

In Figure 1d we compare a simple meta- Iter manip-
ulation of the Box blur size against the result achieved
by nawe lter strengthening.

6 Results and Evaluation

We tested our algorithm with a wide range of common
image lters, including artistic lters, tone adjustmen-

t, color transfer, curves, and manual image edits. For
e ects generated by automatic algorithms (such as Pho-
toshop lters), the same algorithms are used to obtain
the ground truth images. More complicated e ects in-
volve manually applying various Iters to selected re-
gions. For example, the \Gouache" e ect in Figure 3
was created by an artist using a combination of smart
blur, overlay, paint daubs, hue/saturation adjustment,

curve adjustment etc. to selected regions using manual
layering. The ground truth results of such e ects were
also created by artists. It typically takes 15-20 minutes
for an artist to create such e ects for a given image. A-
part from face polishing, which required minimal user
interaction, all results were achieved fully automatical-
ly using the same algorithm settings (as described in
the paper).

6.1 Comparison to Image Analogies

In Figure 5 we compare our method against Image
Analogies [1]. In contrast to their method, ours does
not synthesize a new image by stitching small patch-
es, but rather transfers a set of basis lters. For this
reason our method is less sensitive to exact correspon-
dence and avoids several artifacts present in the Image
Analogies results.

In the supplementary material we include a more
extensive ground truth comparison with their method
on a larger number of image Iters and target images.
Our numerical analysis shows that our method increas-
es the average SSIM score from:84 (Image Analogies)
to 0:61 (Our results).

6.2 User Study

We validated our algorithm further by conducting a for-
mal user study with 20 participants (25% female, ages
ranging from 18 to 29). For this study we generated
72 lter transfer examples with our method and Im-
age Analogies [1] using the software provided on their
project page. The images we used for our study are
included in the supplementary material.

In each test we showed the participant the input im-
agesA; A% B and two choices forB° one produced by
our algorithm, and the other either produced by Image
Analogies, or the actual ground truth result. Partici-
pants were asked which result was closer to the trans-
fer result they would imagine (Two-Alternative Forced
Choices, or 2AFC).

The results of our study are summarized in Figure 6.
When comparing against Image Analogies participants
chose our method in 73.7% of all cases. When com-
paring against ground truth participants still chose our
method in 45.8% of all cases.

6.3 Filter Bank

We validate that our Iter bank contains enough vari-
ation in lter families and instances to support our
target applications, and is minimal in a sense that it
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Input Image A Filtered Input A° Novel Input B Transferred Filter f (B) Ground Truth B?°
Curve Adjustment SSIM = 0.83

Input Image A Filtered Input A° Novel Input B Transferred Filter f (B) Ground Truth B?°
Fire Cloud E ect SSIM = 0.81

Input Image A Filtered Input A° Novel Input B Transferred Filter f (B) Ground Truth B?°

Gouache E ect SSIM = 0.85

N

Input Image A Filtered Input A° Novel Input B Transferred ilter f(B)
Dry Brush E ect SSIM = 0.76

Filtered Input A°

Traﬁsferred Filter f(B) Ground Truth B°
Mural E ect

SSIM = 0.75

Transferred Filter f (B) Ground Truth B?°
SSIM = 0.74

Input Image A Filtered Input A°
Color Cut E ect

A il . =T . 4
Input Image A Filtered Input A° Novel Input B Transferred Filter f (B)
Manual Skin Polishing SSIM = 0.89

Fig. 3 Transferring learnt meta- Iters to novel input images. Amo  re extensive set of results can be found in the supplementary
material.
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Input Image Filtered Input

Fig. 4 Filter editing results. Given the original (rst column) an
easily manipulated to obtain reduced (third column) and str

Original Image A Filtered original A° Novel Image B

Fig. 5 Comparing our results with Image Analogies [1].

does not contain more lters than necessary. Our re-
sults throughout the paper and supplementary material
demonstrate that the lIter bank is able to represent a
wide range of common image lters well. To show that it
is minimal we perform a series of \leave-one-out" tests,
in which we show that each subset of the Iter bank
where one whole family is removed yields poor results
at least for some input pairs.

We evaluate the approximative power of the meta-
Iter as well as its ability to transfer Iters to novel in-

Filter Reduced Filter Strengthened

d ltered (second column) input images, the e ect can be

engthened (fourth column) results.

SSIM = 0.57 SSIM = 0.79
SSIM = 0.59 SSIM = 0.85
SSIM = 0.56 SSIM = 0.78
Ground Truth B?° Image Analogies Our Result

put images. For this task we prepared image#\; A% B;B °©
using lters from the Photoshop Filter Gallery, and
then compare the approximation resultsf ¢y (A)=fsupset (A)
and transfer resultsf ¢y (B)=fsupset (B) against their re-
spective ground truths A° and BC Here, fq is the
meta- Iter learnt using the full lter bank, and fgypset

is a meta- Iter learnt using a Iter bank in which one of
the Iter families is removed. We compare the images
both numerically using SSIM score, as well as through
visual inspection.
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Our experiments showed that the approximation qual- 6.5 Performance

ity does not suer much from removing single lter
families. However, we found that it can have signi -
cant impact on the ability to transfer Iters to nov-
el input images, which is our main application. In the
supplementary material we show results from our ex-
periments that demonstrate how leaving each of the
basic Iter families out signi cantly a ects the quali-
ty of transferred meta- Iters on at least one important
class of image lters. These experiments support our
claim that all families in our Iter bank are necessary
for our target application.

6.4 L1 minimization

Our meta- Iter learning algorithm uses L1 minimiza-
tion objectives. In order to validate this design choice
we tested two alternatives: (1) leaving out the sparsi-
ty term Esgparse , and (2) replacing the smoothness term
Esmooth With an L2 objective.

Removed Sparsity TermE sparse : As mentioned in Sec-
tion 4.2, the sparsity term Egparse iS NECESSary to ensure
the numerical stability of the solution. When removing
this term from the optimization objective, the S1 term
of the Split-Bregman method reduces to

W T =min ~kFW V% + —kd* GW bkk3;
w2 2

which amounts to solving the least square problem
ANE = min k(-F G)TW (vPd* bkyka:

The problem lies with the least square matrix A =
(zF G)Y, which is highly singular. Solving for it is
numerically unstable and very time consuming. Adding
the sparsity term yields A = (;F G | )T, which is
non-singular and can be robustly solved.

The Smoothness TermEsmeoth : An interesting design
alternative is to replace the smoothness term with aL 2
version:

L2 X 2
E = wi (0)

smooth wi (p) 9

P g2N(p)i2s

This leads to a simpler optimization that can be solved
much more quickly than solving the L1 energy (about
3 faster in our experiments). However, the approxima-
tion and transfer quality su ers dramatically for some
Iters, especially around edges in the images. We show

We tested our MATLAB implementation on a dual In-

tel Core2Quad CPU at 2.4GHz. Our implementation
is not optimized. Given an image of size 500 375 our
Iter learning algorithm implemented requires 1{3 min-

utes for lter selection and 1{2 minutes for meta- Iter

learning. Once the lter is learned, transferring it to

novel images takes only about 2 seconds.

6.6 Limitations

Our current lter transfer algorithm performs less suc-
cessfully for Iters that create texture-like structures, as
shown in Figure 7. This is partially due to our method
for establishing correspondence which does not transfer
structures in the ltering e ect well. Alternative meth-
ods may be adopted to alleviate this.

Filters that depend not on image content, but only
on the spatial position within the image (e.g., tilt-shift
e ect) can be well approximated by our meta- Iter, but
they do not transfer well to novel image, because the
correspondence algorithm takes only the image content
into account but not the position within the image.

Our current algorithm assumes that the example
image pairs are well aligned. E ects that involve warp-
ing, projective transform, or any transform that in-
volves moving pixels around cannot be approximated
by the meta- Iter. We are considering extending our
method and integrating image registration methods to
establish correspondences between pairs of images. How-
ever, these are not simple problems and are left for fu-
ture research.

7 Conclusions

We have introduced a meta- lter that linearly combines

spatially varying Iters. We have presented a minimiza-

tion technique with an L1 regularization term that op-

timizes the weights of the meta- lter to approximate

a general lter whose operation is determined from a
before and after pair of examples.

Our meta- Iter is a simpli ed model that, neverthe-
less, spans a surprisingly large space of Iters that can
well approximate various e ects that were generated by
applying a sequence of a number of unknown Iters. We
speculate that part of the power of our meta- Iter stems
from the fact that it is spatially varying, enriching the

some exemplary comparisons between results achieved possible e ects considerably.

with L1 and L 2 optimization in the supplementary ma-
terial.

In the future we want to explore the possibility of
learning the generation of intermediate level Iters. Such



10

Shi-Sheng Huang et al.

§

E

§

§

E

§

§

§

§

8 9 10 111213 14 15 16 17 18 19 20
I ouR

8 9 10 11 12 13 14 15 16 17 18 19 20
I OUR

§

é

H

H

4

H

H

H

H

H

B

§

Fig. 6 Results of the user study. Top: the percentage in
which participants chose our result (OUR) over Image Analo-
gies (IA), broken down per participant. Bottom: results for
our method compared against ground truth (GT).

Input Image Input Filtered Filter Transferred
SSIM = 0.47
Input Image Input Filtered Filter Transferred

SSIM = 0.40

Fig. 7 Limitation of our method: our method performs
sometimes less successfully for transferring texture e ec ts.

Iters can be learnt from a large set of common and use-
ful Iters, and encapsulate the functionality of a series
of low level Itering operations. We believe that such in-
termediate level lters can further strengthen the qual-
ity of the meta- Iter, as well as improving its speed and
expanding its capabilities.
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