Financial Development, Structure and Growth: New Data, Method and Results
Online Appendix

Figure 1: Plots of selected time series for selected countries.
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FAC, SAC FA and S” respectively stand for finance aggregate, structure aggregate, finance

activity and structure activity as defined in the notes to Table 3 in the paper.




Figure 2: The priors for a particular period being a break unconditional on the previous periods for

different specifications of D when T=22
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The vertical axes shows the probability Pr(B; = 1) unconditional on previous periods. It is represented
with the symbol A when D=T and in this case the prior probability of a break significantly increases with
time. When D=5T the prior probability of a break (represented with ) remains roughly constant over the
whole sample period. In our empirical analysis we specify a uniform distribution in (T, 5T) as a prior for
D, such that there is only a slight increase in the prior probability of a break over time (as shown in the

graph with the symbol o).



Table Al: Identification of the order of lags, leads and the deterministic components

With breaks no breaks
Case AXt L AXt L AXt trend LPL AXt LAX L AXt trend LPL
High- M1 |0 0 0 quadratic | 475.879 0 0 0 quadratic | 475.849
Income- | M2 | 0 0 0 quadratic | 474.205 0 0 0 quadratic | 474.094
Panel M3 |0 0 0 quadratic | 481.865 0 0 0 quadratic | 481.843
M4 |0 0 0 quadratic | 479.997 0 0 0 quadratic | 479.959
M5 |0 0 0 quadratic | 474.174 1 0 0 quadratic | 474.545
M6 |0 0 0 quadratic | 480.432 0 0 0 quadratic | 480.416
M7 |0 0 0 quadratic | 472.225 0 0 0 quadratic | 471.795
M8 |0 0 0 quadratic | 483.329 0 0 0 quadratic | 483.31
M9 |1 0 0 quadratic | 487.872 1 0 0 quadratic | 482.111
Middle- | M1 |1 0 1 quadratic | 515.413 1 0 1 quadratic | 515.413
and- M2 |1 0 1 quadratic | 516.066 1 0 1 quadratic | 516.068
Low- M3 |1 0 1 quadratic | 510.099 1 0 1 quadratic | 510.098
Income- | M4 | 1 0 1 quadratic | 525.447 1 0 1 quadratic | 525.529
Panel M5 |1 0 1 quadratic | 524.622 1 0 1 quadratic | 524.621
M6 |1 0 1 quadratic | 520.706 1 0 1 quadratic | 520.877
M7 |1 0 1 quadratic | 528.244 1 0 1 quadratic | 528.244
M8 |1 0 1 quadratic | 524.735 1 0 1 quadratic | 524.788
M9 |1 0 1 quadratic | 517.057 1 0 1 quadratic | 517.056
Full- M1 |1 0 0 quadratic | 992.417 1 0 0 quadratic | 992.416
Panel M2 |1 0 0 quadratic | 991.15 1 0 0 quadratic | 991.146
M3 |1 0 0 quadratic | 990.524 1 0 0 quadratic | 990.523
M4 |1 0 0 quadratic | 1001.024 |1 0 0 quadratic | 1001.024
M5 |1 0 0 quadratic | 990.744 1 0 0 quadratic | 990.743
M6 |1 0 0 quadratic | 993.985 1 0 0 quadratic | 994.029
M7 |1 0 0 quadratic | 985.209 1 0 0 quadratic | 985.212
M8 |1 0 0 quadratic | 1002.025 |1 0 0 quadratic | 1002.019
M9 |1 0 0 quadratic | 990.964 1 0 0 quadratic | 990.964

Note: This Table reports the log of predicted likelihood (LPL) for our empirical specifications (DOLS).
Each reported specification is based on the highest value of the LPL. We search through the first order
leads and lags and the deterministic components consisting of a constant, a linear and a quadratic trend.

This generates 15 potential specifications to exhaust all possible combinations of leads ( L+AXI), lags

( |-AXt ) and contemporaneous first differences terms ( AX, ) of 1(1) regressors and the deterministic

components. In all specifications, all three deterministic components — a constant, a linear and a quadratic
trend — appear significant, showing the highest predictive likelihood hence maintained.

Table Al reports the highest value of the log of predictive likelihood computed across all
15 specifications to exhaust all possible combinations of leads, lags and the deterministic
components for each specification. The results show that the empirical specifications of DOLS
regressions differ across panels and models. When models do not allow for breaks, the DOLS
specifications for the full panel require augmentation only by the contemporaneous first

differences of I(1) regressors; no lead and lag augmentations are required. The panel of high-
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income countries does not require any augmentations except in two cases (Models 5 and 9) —
these two requiring augmentation by contemporaneous difference terms only. In contrast, the
panels of middle-and-low-income countries require augmentations by contemporaneous and lead
terms of first differenced covariates. Allowing for potential breaks does not alter the empirical

specifications except for only one case (Model 5 for high-income countries).



Table A2:

Estimation results with structural breaks for high-income countries in selected

years.
Models Year k FAG SAG SA S? F? FA
1990 | 0.924 0.0058 0.0175 - - - -
(0.796,1.05) (-0.006,0.013) | (-0.054,0.026)
2008 | 0.923 0.0058 0.0186 - — - -
M1 (0.796,1.049) (-0.002,0.013) | (0.011,0.027)
2009 | 0.922 0.005 0.0189 - — - -
(0.792,1.049) (-0.006,0.013) | (0.001,0.030)
1990 | 0.918 0.0061 — 0.0151 - - -
(0.79,1.043) (-0.005,0.013) (-0.121,0.026)
2008 | 0917 0.0061 - 0.0163 - - -
M2 (0.789,1.043) (-0.0008,0.01) (0.006,0.026)
2009 | 0.914 0.0062 - 0.0091 - - -
(0.786,1.042) (-0.003,0.015) (-0.02,0.027)
1990 | 0.903 0.0065 - - 0.0343 - -
(0.78,1.028) (-0.0007,0.013) (0.020,0.045)
2008 | 0.903 0.0064 - - 0.0345 - -
M3 (0.78,1.028) (-0.0005,0.013) (0.023,0.045)
2009 | 0.901 0.0057 — — 0.0376 - -
(0.775,1.027) (-0.007,0.013) (0.021,0.068)
1990 | 0.924 — 0.0170 - — 0.0220 -
(0.802,1.046) (-0.013,0.024) (0.008,0.033)
2008 | 0.924 - 0.0172 - - 0.0220 -
M4 (0.801,1.046) (0.01,0.024) (0.009,0.033)
2009 | 0.924 - 0.0171 - - 0.0221 -
(0.801,1.046) (0.002,0.025) (0.007,0.034)
1990 | 0.923 - 0.0157 - — - 0.0029
(0.798,1.049) (-0.065,0.026) (-0.010,0.011)
2008 | 0.921 — 0.0193 — — — 0.0032
M5 (0.797,1.046) (0.011,0.027) (-0.004,0.011)
2009 | 0.919 — 0.0194 - - - 0.0017
(0.794,1.045) (0.0002,0.031) (-0.008,0.011)
1990 | 0.925 — — 0.0166 — 0.0249 —
(0.802,1.044) (0.006,0.026) (0.011,0.036)
2008 | 0.925 - - 0.0167 — 0.0249 -
M6 (0.801,1.044) (0.007,0.026) (0.011,0.036)
2009 | 0.924 - - 0.0159 — 0.0261 -
(0.8,1.044) (-0.018,0.026) (0.010,0.038)
1990 | 0.914 — — 0.0153 - — 0.0047
(0.787,1.04) (-0.175,0.026) (-0.005,0.013)
2008 | 0.913 — — 0.0169 — - 0.0044
M7 (0.787,1.039) (0.007,0.027) (-0.002,0.011)
2009 | 091 — — 0.0043 — — 0.0061
(0.783,1.036) (-0.023,0.027) (-0.004,0.017)
1990 | 0.909 - - — 0.0318 0.0185 —
(0.787,1.031) (0.019,0.043) | (0.003,0.030)
M8 2008 | 0.909 - - - 0.0319 0.0184 -
(0.787,1.031) (0.021,0.043) | (0.003,0.030)
2009 | 0.908 — — — 0.0327 0.0187 -
(0.786,1.031) (0.017,0.056) | (-0.003,0.030)
1996 | 1.01 — — - 0.1148 - -0.0194
(0.895,1.124) (0.093,0.136) (-0.028,-0.011)
M9 2005 | 1.016 - - - 0.0292 - -0.0087
(0.901,1.131) (0.018,0.040) (-0.015,-0.002)
2006 | 1.016 — — - 0.0296 - -0.0088
(0.901,1.131) (0.019,0.045) (-0.016,-0.003)

Note: The numbers inside () indicate the 95% posterior credible intervals. Variables and specifications are given in

the notes to Table 4 of the paper.




2. Simulation Details

Denote x;; = (ki fdie, fsi)' and X; = (x4, Xi2, -, Xi7)", Which is a T x 3 matrix. For each
cross-sectional unit i, stack up all the observations of T periods to obtain,

_ (A1)
Yi=Wyi+tXiB1+tEu+g

where,

Vi = (yilr ey yiT),! Vi = (Vlil V2irV3ir Yai,~dqs -+ Yaidyr Vsi—dqs =0 V5idy Yei,—dyr =0 V6i,dz),; u=
(uy,uy, ., ur—y)'; Wi is a matrix of T rows with the t™ row being,

(1' t, tZJ Aki,t—dy 'Aki,t+d2'Afdi,t—d1' "'lAfdi,t+d21Afsi,t—d11 'Afsi,t+d2) fort = 1; ey T;
E; = (B1X1,, B2X5 4, ..., Br—1Xr_1,;) and X; ; is a matrix with the first j rows being 0 and the
remaining rows being the same as those in X;. The posterior of p(8|y) is proportional to the
product of the prior p(8) and the likelihood function p(y|8):

p(0ly) x p(B1|c®)p(u|c2)p(62)p(B1.cr-1)|D)p(D) (A2)

NT-2 N = .
2\ ———— Yi=1Vi—-Wiyi—XiB1—-Eiw) (yi—W;yi—XiB1—Eu)
(0% exp|-E - -

After integrating out y; from the posterior kernel, one can obtain:
p(az,ﬁl,u, 0'121;31 (T- 1):D) X p(ﬁ1|0'Z)P(u|0121)17(012;)17(31:@—1)|D) (A3)

N(T- ky) 2 Cv.p. 5 ! P
(0-2) 2 exp[ Zl:l(yl Xlﬁl “l;lt)rle(yl X!ﬂl ,_,lu):l’

where k, is the number of elements in y; and M; = Iz — W;(W; ’W)‘1W’ We can then derive
the posterlor distribution of (B4, u, B1 (r—1)) conditional on (D, a2, o;7) as the following:
ﬁllu y:Bl (T 1):0' auNN(VﬁZ 1X Ml(yl _"‘lu) o Vﬂ) (A4)
ul y:Bl (T 1):0' au N(V Zz 1“1MX VﬂZIIVIXMlyl'O- Vu) (AS)
p(Bl:(T—l)lle o? Gu)

1 YL vi'yi— Ty MX Ve T, X[ M,y
o« p(Brr—n D)oV, [Zex p |~ B (A6)
Tl VirMXiV g By Xt MiEVy SIL 1 By MiX;V g B, X1 My,
exp[ ~o? ,
-1 -1

/ 1 P 2
where Vg = (X1, X/M;X; + 1) and V, = (ZI, 5/ MX,Vp B, X, Mi:i+Z—a1) .To
sample B,.¢r_1) from its conditional posterior, we set up another Gibbs sampler, which draws

each element in B;.(r—1) conditional on the other elements. The posterior of (D, g2, o;7)
conditional on (1, u, By.(r—1)) Is:

P(D|B1.(r-1),y) < p(D)p(By(7- 1)|D) (A7)

o |,81,u Bl (T-1) Y~ IG(ZL 1(yl lyl Xiﬁl "‘lu) (yl l)/l Xiﬁl - (A8)
Eu),N(T = ky)),

02| W, By.(r—1), y~I1G(X1=1 Beuf + 0.1,3 + X121 Be), for j = 1,2,3. (A9)
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Regarding the calculation of the predictive likelihood, Geweke (1995, 1996) shows that the

predictive likelihood p%o can be decomposed as the following product,

ph, = pr proes - Pho (A10)
where each of the components of the predictive likelihood is a one-step-ahead predictive
likelihood, which can be approximated by using draws from the posterior as:
ATott+l 23?:1 P(YTo+t+1|9%0+t+1»3’1:(T0+t)) (Al1)

Tott = 5 fort=01,..,(T—Ty—1).
where (871"0+t+1' 9$0+t+1) are S draws from the posterior of 67, 1.1 given y;.(r, +r). For the
model (1) in page 7, we just need to predict Br, .. and ur, . after the estimation with the initial
sample up to period T, + t. The posterior of 87, ,..1 given y,.(r,+r for our model is
P(9T0+t+1|3’1:(To+t)) = p(uT0+t|BTo+tr 01%:3’1:(T0+t)) (A12)
P(Bry+¢|B1.(ry+t-1) D Y1:(1y+0))0 (D, a?,0;, B, Uy (T +t-1) By s e—0) [ V1:(p40))-
We used 10,000 iterations to estimate each of the components of the predictive likelihood.



