






clotting. At this time, we present a proposed structure based on
strong and consistent UV, GC/MS, and LC/MSn data. Once the
sufficient synthetic standard is available, full NMR analysis will be

undertaken. We note that many other biologically relevant lipids,
including thromboxane, leukotrienes, protectins, etc., were first pub-
lished as proposed structures in a similar manner to our study.

SCHEME 2. Proposed mechanism of DXA3 formation by COX. During COX turnover, a dioxolane ring forms between C9 and C11, prior to prostanoid ring
formation, resulting in a carbon-centered radical at C8. Leakage of this lipid intermediate from the active site, then addition of oxygen followed by reduction
to LOOH, and then LOH leads to formation of DXA3.
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The mechanism of DXA3 formation in vitro by COX
enzymes is described, as well as its detailed cellular biosynthesis
pathway in human platelets. DXA3 represents the first DX eico-
sanoid isolated and characterized within cells. To date, these
have only been demonstrated to form via chemical oxidation of
purified arachidonate esters or �3 fatty acids or by in vitro
lipoxygenase oxidation of epoxides, and neither their genera-
tion by cells nor any bioactivities have been described (14, 18,
19, 24, 25, 27, 28). Our study greatly extends these old in vitro
observations by demonstrating that DX lipids are not only gen-

erated by live primary cells under physiological conditions, but
they possess biological activity of relevance to innate immunity.
This study places this eicosanoid in a new family of products
likely relevant as a lipid mediator as are the prostaglandins,
leukotrienes, and P450-derived eicosanoids. Extending these
cell biology studies to in vivo measurements of leukocyte func-
tion and inflammation will be undertaken as soon as the syn-
thetic standard becomes available.

Eicosanoids are essential lipid signaling mediators involved
in diverse biological processes (29 –32). Identification of new

FIGURE 9. DXA3 is generated by RAW cells and during physiological coagulation. A–D, RAW cells generate DXA3 under basal non-inflammatory conditions.
RAW cells were incubated in serum-free DMEM for 1 h at 37 °C, 5% CO2. Where used, 200 ng/ml LPS was added for 24 h. Cells (8 � 106 ml�1) were activated using
10 �M A23187 at 37 °C for 10 min, and lipids were extracted and analyzed using LC/MS/MS. DXA3 was monitored using m/z 351.2 to 165.1 and PGE2/D2 using
m/z 351.2 to 271.1 utilizing a 4000 QTrap. A and B, LC/MS/MS of basal RAW cells with/without 10 �M A23187. C and D. LC/MS/MS of LPS-treated RAW cells
with/without 10 �M A23187. E, DXA3 is generated during physiological blood clotting. Whole blood was clotted, serum was harvested, and lipid was extracted
as described under “Experimental Procedures.” LC/MS/MS was performed as for free DXA3 on a Q-Trap platform. Note that retention time of serum and RAW
cell DXA3 differs slightly because these were analyzed several months apart on different columns. The identities have been confirmed through co-elution with
platelet DXA3 (data not shown).
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bioactive eicosanoids from this pathway could pave the way for
additional and more selective therapeutic approaches. Thus,
the proposed structure for DXA3 represents a new member of
this family, characterized by a unique five-membered endoper-
oxide ring, and generated by a COX isoform known to play
important roles in vascular disease and, more recently, in
cancer.

Mac-1 (CD11b/CD18) is the predominant �2 integrin on
neutrophils that mediates adhesion-dependent processes, such
as binding to the endothelium or phagocytosis, recruitment,
and transendothelial migration (33, 34). Herein, we show that
DXA3 enhances Mac-1 on the cell surface (Fig. 3). The only
other known Mac-1-inducing eicosanoids are leukotriene B4
and 5-oxo-ETE, both neutrophil-derived lipids (35, 36). Thus,
neutrophil integrin activation by platelet-derived DXs could be
of relevance during acute inflammation and infection. DXA3
was generated by platelets utilizing endogenous substrate in
nanogram amounts that are 	10-fold higher than platelet PGE2
(Fig. 4E). Its formation does not require supply of exogenous
substrates and can be triggered directly by pathophysiological
agonists in healthy primary cells, both important criteria in
establishing that a new lipid mediator is endogenously relevant.

As DXA3 was generated via COX-1 in platelets, we reasoned
that it could form through two potential mechanisms, either (i)
rearrangement of 11-LOO�, known to be released by the
enzyme during turnover, or (ii) that the dioxolane ring could
form before the lipid exits from the active site (20, 21, 23, 37). In
both cases, attack at C9 by the peroxyl radical would form the
9,11-dioxolane, which would be followed by oxygen addition at
C8, and finally peroxidase reduction of the resulting LOOH by
COX-1 peroxidase or GSH peroxidase in platelets. Our data
using mutant COX-2 enzymes that generate less DXA3 but
more 11-HETE suggest that the DX ring forms before lipid
release by the enzyme. Thus, dioxolane ring formation occurs
first and before prostanoid ring closure between C8 and C12
(Scheme 2). Finally, given that COX-1 generates 11R-HETE, we
postulate that the dioxolane ring will likely be 9S,11R. Our
observation of a single DX isomer in platelets but several in
purified enzyme reactions indicates that platelets exert addi-
tional control over its biosynthesis. This may be at the stage of
oxygen insertion into the chiral center at C8.

DXA3 was generated by platelets via a highly coordinated
sequence of signaling events, including PAR-1 and -4, src tyro-
sine kinases, intracellular Ca2�, cPLA2, PLC, p38, and MAPK.
This indicates tight control of its formation, similar to genera-
tion of other COX metabolites, such as TXA2. The signaling
pathway is distinct from generation of free and esterified HETE
and hydroxydocosahexadienoic acids, which form via 12-LOX,
and require extracellular calcium, independent of PLC and
MAPK (6, 26).

DXA3 was also generated by RAW cells as a single isomer,
similar to platelets. Our preliminary data suggest that it origi-
nates primarily from COX-1 in these cells. In contrast, we
found that either isoform could generate the lipid in vitro. In
line with our observation that cellular DXA3 is a single isomer
in platelets and RAW cells, although three isomers form via
COXs in vitro, this collectively suggests that cellular DXA3 gen-
eration is under enzymatic control downstream of its synthesis

by COX-1. Future studies will examine the ability of cellular
COX-2 to generate the isoform and under which activation
conditions. COX-1 is important not only in acute innate immu-
nity but also in gastric function and development, and thus its
generation by this isoform may have wider implications for
eicosanoid biology in other organs.

Murine platelets also generated DXA3, and levels of this were
enhanced in cells deficient in 12-lipoxygenase. This may be
related to greater availability of substrate, although this has not
been explored herein.

Eicosanoids include a large number of related structures
formed via oxidation of arachidonate, following its release from
intracellular membranes by phospholipases. A rapid burst of
eicosanoid generation is a key event during cell activation and is
stimulated during innate immunity by bacterial products,
growth factors, cytokines, thrombin, and collagen. Most known
eicosanoids from COXs were identified and structurally char-
acterized in the 1980 –1990s and include platelet-derived lipids,
TXA2 and 12-HETE, as well as the PGs, exemplified by PGE2,
and D2, well known as mediators of pain, fever, cell prolifera-
tion, and innate and adaptive immune responses. Our observa-
tion of a cellularly generated DX eicosanoid defines a new class
of these lipids formed endogenously by mammalian cells. More
members of this class are possible, given recent observations of
purified LOXs being able to generate DX isomers via oxidation
of epoxides in vitro in acellular experiments (14).
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Supplementary Data. 
 

 

Supplementary Results 

 

Derivatization, acid hydrolysis and catalytic hydrogenation of DXA3 

DXA3 generated by COX-1 oxidation of AA was partially purified using reverse phase 

HPLC, as described in Supplementary Methods, derivatized using PFB, MOX and/or 

TMS, and analyzed using GC/MS and/or LC/MS. First, LC/MS of MOX-derivatized DXA3 

showed no loss of lipid, indicating that it does not contain any carbonyl groups 

(Supplementary Figure 1 A,B). In contrast, a small amount of contaminating PGE2 was 

lost on derivatization. It was not possible to analyze TMS-ethers using LC/MS/MS due 

to derivatization of the carboxyl group by the reagent (required for PFB derivatization 

and negative ionization and detection). Derivatization of DXA3 using PFB, then MOX 

and TMS followed by GC/MS analysis, yielded signals at m/z 423 (+TMS), indicating 

one hydroxyl (Supplementary Figure 1 C). Note that during negative ion chemical 

ionization (NICI) analysis, the PFB group is lost generating the carboxylate anion, which 

is detected as a negative signal. Also, several lipids are detected on derivatization since 

three isomers as generated by COX-1 (Figure 7 C).  Ions were not detected for addition 

of carbonyls or more than one hydroxyl (not shown). The MS spectrum at 11.4 min 

shows a molecular ion of m/z 423.2 and a fragment at m/z 333.1 (-90 amu), 

representing the loss of –OTMS (Supplementary Figure 1 D). This further supports the 

presence of a single hydroxyl group.  Since the remaining two oxygens are neither 

hydroxyl or carbonyl, this is consistent with the proposed dioxolane structure.  Epoxides, 

but not dioxolanes are acid sensitive. Thus, purified DXA3 was incubated with 1% acetic 

acid, and analyzed using LC/MS. No loss of m/z 351 was observed (Supplementary 



Figure 1 E,F). We note that DXA3 will be considerably more lipophilic than PGE2 or D2, 

which both contain additional hydroxyl and carbonyl functional groups, consistent with 

our observation of later elution on reverse phase HPLC (Figure 1 A).  

 

Supplementary Figure Legends. 

 

Supplementary Figure 1. Derivatization and analysis of DXA3 using LC/MS/MS and 

GC/MS, shows the presence of one hydroxyl and no carbonyl or epoxide 

functional groups. Panels A,B. LC/MS shows DXA3 contains no carbonyl groups. 

Semi-purified DXA3 generated using COX-1 was derivatized using methyloxime (MOX) 

and analyzed using LC/MS/MS, on the 2000 Q-Trap, monitoring m/z 351 in Q1. Panel 

A, no derivatization. Panel B, after derivatization. Note: loss of small peak 

corresponding to contaminating PGE2 in this preparation confirms derivatization has 

been successful.  Panels C,D. GC/MS shows that DXA3 contains one hydroxyl group 

and no carbonyls.  Purified DXA3 generated using COX-1 was derivatized using PFB, 

MOX and TMS, and analyzed using GC/MS as described in Methods. Panel C. m/z of 

derivative with one hydroxyl, showing a major peak at 11.38 min, and two additional 

smaller peaks at either side. Panel D. MS spectrum at 11.38 shows ion at m/z 432, with 

loss of 90 amu at m/z 333 (-OTMS).  Panels E,F. DXA3 is insensitive to acid hydrolysis 

indicating no epoxide groups.  Semi-purified DXA3 generated by COX-1 was solubilized 

in acetonitrile before the addition of 1 % acetic acid (1:4). Following 30 min at 22 °C, 

lipids were extracted using a C18 Bond Elute cartridge and analyzed using LC/MS/MS 

on the 2000 Q-Trap for m/z 351.2 in full scan Q1 mode. Panel E: no hydrolysis, Panel F: 

after hydrolysis. 

 



Supplementary Figure 2. Characterization of DXA3-d8 MS/MS and MS3 

fragmentation, using high resolution FTMS. Panel A. LC/MS/MS of COX-1 derived 

DXA3-d8, generated using AA-d8 as substrate. Analysis was undertaken on the Orbitrap 

Elite in FTMS mode, separating using reverse phase LC, isolating m/z 359.27 in the 

Velos Pro, then fragmenting using CID at 50 V, with resolution 15,000 ppm, as 

described in Methods.   Panel B. MS3 of daughter ion at m/z 340.25 (smaller ion 

adjacent to m/z 341 in Panel a), with CID 30V. Panel C. MS3 of daughter ion at m/z 

322.24, with CID of daughter ion at 30V. Panel d. Proposed fragmentation pathway for 

m/z 359.2679 generating m/z 341.2573, which fragments to m/z 278.2507 via via m/z 

322.2405.  DXA3 loses H2O forming m/z 341.2573. Following ring opening m/z 

340.2511 , leaving a keto group at C9, H2O and CO2 are lost, generating m/z 

278.2507via a m/z 322.2405 intermediate, as shown. 

 

Supplementary Figure 3. Characterization of DXA3-d8 MS/MS and MS3 

fragmentation, using high resolution FTMS.  Panel A. MS3 of daughter ion at m/z 

231.15 with CID 30V.  Panel B. MS3 of daughter ion at m/z 212.13, with CID 30V. Panel 

c. Proposed fragmentation pathway for m/z 359.2 generating m/z 358.2, then via 

fragmentation of 340.2, forming 212.1 and 168.1. Following ring opening, with keto 

group at C11, H2O is lost, followed by two 1[5]-sigmatropic shifts generating m/z 

340.2511. Following loss of a conjugated triene, m/z 231.1509 is generated, which then 

loses H2O, and via an intermediate fragments to m/z 212.1341 and last 168.1422.   
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